尹明華 余璐 周佳慧 劉李娜 徐文萱 孫美齡
DOI:10.13925/j.cnki.gsxb.20230558
摘??? 要:【目的】為了明確馬家柚葉綠體基因組結(jié)構(gòu)特征及其與同屬類群的系統(tǒng)發(fā)育關系,闡明馬家柚在柑橘屬中的分類地位,對馬家柚葉綠體基因組的特征及其密碼子的偏好性進行分析?!痉椒ā坎捎肈NBSEQ-T7測序平臺對馬家柚進行測序,采用Noveplastys、CAP3、GeSeq和tRNAscan-SE軟件對馬家柚葉綠體基因組進行組裝、注釋;采用CGViewServer、MISA、REPuter、CodonW、Gview、IRscope、NADnaSP6.0軟件對馬家柚葉綠體基因組特征進行分析;采用MAFFT 7.0和FastTree 2.1.10軟件對馬家柚及其85個同科種和山小橘屬3個外群種葉綠體基因組進行序列比對和建樹?!窘Y(jié)果】馬家柚葉綠體基因組全長160 186 bp,包括1個大單拷貝(LSC)區(qū)、1個小單拷貝(SSC)區(qū)和2個反向重復(IR)區(qū),為典型閉合環(huán)狀雙鏈結(jié)構(gòu)。馬家柚葉綠體基因組共注釋到133個功能基因,包括88個編碼蛋白(CDS)基因、8個核糖體RNA(rRNA)基因和37個轉(zhuǎn)運RNA(tRNA)基因。馬家柚葉綠體基因組共檢測到79個簡單序列重復(SSR)和34個長序列重復(Longrepeat)。馬家柚葉綠體基因組非編碼區(qū)的變異程度高于基因編碼區(qū),LSC區(qū)的變異性>SSC區(qū)>IR區(qū),SC/IR邊界較為保守。馬家柚葉綠體基因組平均ENC值為48.02,密碼子偏好性較弱。馬家柚葉綠體基因組密碼子使用偏好性主要受自然選擇的影響,受內(nèi)部突變的影響小。馬家柚葉綠體基因有10個最優(yōu)密碼子(AAU、UGU、AAA、UUU、GCU、GGA、CCA、ACU、CGU、AGU),均以A、U結(jié)尾。馬家柚與西雙版納東試早柚(KY055833,來源地:云南)、日本夏橙(ON193075,來源地:韓國)、福建六月早蜜柚(MT527726,來源地:福建)、福建琯溪蜜柚(MN782007,來源地:福建)有親緣關系。【結(jié)論】馬家柚是一個柑橘屬中較為獨特的品種,該研究結(jié)果為進一步研究馬家柚的遺傳資源、物種資源鑒定和系統(tǒng)發(fā)育分析提供了理論依據(jù)。
關鍵詞:馬家柚;葉綠體基因組;序列特征;密碼子偏好性;最優(yōu)密碼子;系統(tǒng)發(fā)育分析
中圖分類號:S666.3?????????? 文獻標志碼:A??????????? 文章編號:1009-9980(2024)05-0824-23
收稿日期:2023-12-29??????? 接受日期:2024-03-14
基金項目:國家自然科學基金項目(31960079、31860084、32060092);江西省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設專項(JXARS-13-贛東站);2022年上饒市科技專項項目(饒科發(fā)[2023]5號社發(fā)類)(2022A008));江西省科技廳重點研發(fā)計劃一般項目(20202BBG73010);江西省教育廳科學技術(shù)研究項目(GJJ201704、GJJ211729);上饒市科技局平臺載體建設項目(2020J001)
作者簡介:尹明華,女,教授,主要從事植物生物技術(shù)方面的研究。Tel:0793-8153721,E-mail:yinminghua04@163.com
Analysis of the chloroplast genome sequence characteristics and its code usage bias of Citrus maxima (L.) Osbeck ‘Majiayou
YIN Minghua1, 2, 3, 4, 5, YU Lu1, ZHOU Jiahui1, LIU Lina1, XU Wenxuan1, SUN Meiling1
(1College of Life Sciences, Shangrao Normal University, Shangrao 334001, Jiangxi China; 2Shangrao Agricultural Technology Innovation Research Institute, Shangrao 334001, Jiangxi China; 3Majiayou Industry Research Institute of Shangrao Normal University, Shangrao 334001, Jiangxi China; 4Key Laboratory of Protection and Utilization of Medicinal and Edible Plant Resources in Shangrao City, Shangrao 334001, Jiangxi China; 5Key Laboratory of Germplasm Conservation and Utilization of Potato and Taro Crops in Shangrao City, Shangrao 334001, Jiangxi China)
Abstract: 【Objective】 Citrus maxima (L.) Osbeck ‘Majiayou was approved by the former Ministry of Agriculture as a national geographical indication agricultural product in 2010. At present, all counties and cities in Shangrao City are vigorously developing the C. maxima (L.) Osbeck ‘Majiayou industry. It is urgent to trace the origin of C. maxima (L.) Osbeck ‘Majiayou to ensure its authenticity. There have been some studies indicating that the genetic relationship between C. maxima (L.) Osbeck ‘Majiayou and C. maxima (L.) Osbeck ‘Xinmuyou in the surrounding areas is relatively close, and it is quite likely that C. maxima (L.) Osbeck ‘Majiayou is a variant strain derived from the bidirectional (natural and artificial) selection of local pomelo. However, the above research has not yet solved the phylogenetic problem of C. maxima (L.) Osbeck ‘Majiayou. The study aimed to rectify the source of C. maxima (L.) Osbeck ‘Majiayou and explore the phylogenetic relationship with other Citrus plants through surveying the characteristics of the chloroplast genome of C. maxima (L.) Osbeck ‘Majiayou and its codon preference. 【Methods】 The total DNA extraction from the leaves of C. maxima (L.) Osbeck ‘Majiayou was performed using an improved CTAB method. The purity of the DNA was detected using the NanoDrop 2000 spectrophotometer method; Preliminary quantification of the DNA library using Invitrogen Qubit? 2.0 fluorescence quantitative instrument method; The detection of inserted fragments in the DNA library was carried out using the Agilent 2100 biological analyzer system; The accurate quantification of the effective concentration in the DNA library was carried out using real-time fluorescence quantitative PCR method; The DNA library was sequenced using the DNBSEQ-T7 sequencer method. The assembly of the chloroplast genome was carried out using Noveplastys and CAP3 software; The annotation of the chloroplast genome was performed using GeSeq and tRNAscan-SE software; The production of the chloroplast genome map was carried out using OGDRAW software. The analysis and statistics of GC content in the large single copy region (LSC), small single copy region (SSC), and reverse repeat region (IR) of the chloroplast genome were conducted using CGViewServer software; The SSR analysis of the chloroplast genome was performed using MISA software; The Longrepeat analysis of the chloroplast genome was performed using REPuter software; The calculation and analysis of the RSCU of the chloroplast genome were carried out using CodonW software; The drawing of chloroplast genome variation circles and the calculation of sequence similarity for C. maxima (L.) Osbeck ‘Majiayou and its 18 congeneric species were performed using Gview software; The mapping of IR structural variations in chloroplast genomes of C. maxima (L.) Osbeck ‘Majiayou and its 18 congeneric species was performed using IRscope software; The calculation of the chloroplast genome Pi of C. maxima (L.) Osbeck ‘Majiayou and its 18 congeneric species was carried out using NADnaSP6.0 software; The sequence alignment and tree construction of chloroplast genomes of C. maxima (L.) Osbeck ‘Majiayou and its 85 same family species, as well as three outer groups of Glycosmis, were carried out using MAFFT 7.0 software and FastTree 2.1.10 software, respectively. 【Results】 The chloroplast genome of C. maxima (L.) Osbeck ‘Majiayou had a total length of 160 186 bp, including 1 LSC region (87 791 bp), 1 SSC region (18 395 bp), and 2 IR regions (including IRa and IRb, both 27 000 bp). Its structure presented a typical closed circular double stranded structure. The average GC content of the chloroplast genome of C. maxima (L.) Osbeck ‘Majiayou was 38.47%, with the GC content in the IR region being higher than that in the LSC and SSC regions. The chloroplast genome of C. maxima (L.) Osbeck ‘Majiayou annotated 133 functional genes, including 88 coding sequence (CDS) genes, 8 ribosomal RNA (rRNA) genes, and 37 transporter RNA (tRNA) genes. A total of 79 simple repeat sequences (SSRs) were detected in the chloroplast genome of C. maxima (L.) Osbeck ‘Majiayou, including only single nucleotide repeat sequences and trinucleotide repeat sequences. The single nucleotide repeat sequences were mostly A and T repeats. A total of 34 long repeat sequences were detected in the chloroplast genome of C. maxima (L.) Osbeck ‘Majiayou, including 13 dispersed repeat D (1739-135 819 bp) and 21 palindrome repeat P (421-125 236 bp). The chloroplast genome sequences of C. maxima (L.) Osbeck ‘Majiayou and its 18 congeneric species were highly conserved, with significant sequence differences between genes such as petN, petL, psbI, psbK, psaI, pafII, trnT-GGU, trnR-UCU, trns-GGA, and trnL-UAA in the LSC and SSC regions. The variation ranges of the nucleotide diversity in the chloroplast genome of C. maxima (L.) Osbeck ‘Majiayou was from 0 to 0.00629; The degree of variation in the non coding region of the chloroplast genome of C. maxima (L.) Osbeck ‘Majiayou was higher than that in the gene coding region. The overall variability was higher in the LSC region, followed by the SSC region. The IR region had the lowest variability and was the most conservative region; The SC/IR boundaries of the chloroplast genomes of C. maxima (L.) Osbeck ‘Majiayou and its 18 congeneric species were relatively conservative. The bias analysis of synonymous codons showed that the variation trend of GC content at three positions of the chloroplast genome codon of C. maxima (L.) Osbeck ‘Majiayou and its 18 related species was GC3<GC2<GC1, with an ENC value ranging from 26.309 to 61 and an average of 48.04. The codon bias was weak, and all codons except UGG, UUG, and AUG ended in A and U. Neutral plot analysis showed that the GC3 and GC12 contents of the chloroplast genes of C. maxima (L.) Osbeck ‘Majiayou and its 18 congeneric species were mostly distributed above the diagonal, with an internal mutation contribution rate of only 2.5% and a natural selection contribution rate of 97.5%. The codon usage bias of the chloroplast genome of C. maxima (L.) Osbeck ‘Majiayou and its 18 congeneric species was mainly influenced by the natural selection, and was less affected by internal mutation pressure. The ENC plot analysis showed that there were significant differences between the actual and expected values of most of the genes ENC in the chloroplast genome of C. maxima (L.) Osbeck ‘Majiayou and its 18 congeneric species, and the distribution of GC3 values was relatively concentrated, indicating that natural selection was an important factor affecting the codon usage bias of chloroplast genome. The PR2 plot analysis showed that the chloroplast genomes of C. maxima (L.) Osbeck ‘Majiayou and its 18 congeneric species exhibited C>G and T>A phenomena at the third synonymous codon position, indicating that the codon usage preference of C. maxima (L.) Osbeck ‘Majiayou was influenced not only by internal mutations but also by natural selection. There were a total of 10 optimal codons in the chloroplast genome of C. maxima (L.) Osbeck ‘Majiayou, including AAU, UGU, AAA, UUU, GCU, GGA, CCA, ACU, CGU, and AGU, all ending in A and U. C. maxima (L.) Osbeck ‘Majiayou was closely related to C. maxima (Dongshizaoyou in Xishuangbanna, KY055833, source: Yunnan), Japanese summer orange (C. natsudaidai, ON193075, source: South Korea), C. maxima ‘Liuyuezao (MT527726, source: Fujian), and C. maxima (Burm.) Merr. ‘Guanximiyou (MN782007, source: Fujian). 【Conclusion】 C. maxima (L.) Osbeck ‘Majiayou is a relatively unique variety in the Citrus genus. The research results would provide a theoretical basis for further research on the genetic resources, species identification, and phylogenetic analysis of C. maxima (L.) Osbeck ‘Majiayou.
Key words: Citrus maxima (L.) Osbeck ‘Majiayou; Chloroplast genome; Sequence characteristics; Codon usage bias; Optimal codons; Phylogenetic analysis
尹明華
馬家柚[Citrus maxima (L.) Osbeck ‘Majia-
you]為蕓香科(Rutaceae)柑橘亞科(Aurantioideae)柑橘屬(Citrus)亞熱帶常綠果樹,為江西省地方特色紅心柚品種,原產(chǎn)于江西省上饒市廣豐區(qū)大南鎮(zhèn)古村馬家村[1],是由當?shù)剞r(nóng)業(yè)部門通過對諸多柑橘資源進行多年篩選和普查而獲得的優(yōu)良柚種質(zhì),2009年由江西省農(nóng)作物品種審定委員會審定并命名,2010年被農(nóng)業(yè)部核準為國家地理標志農(nóng)產(chǎn)品[2]。馬家柚藥食兼用。食用,馬家柚果大皮黃,肉粉多汁,甜酸清爽,口味獨特,營養(yǎng)豐富[3];藥用,馬家柚的柚皮、柚肉、柚花和柚核含有多種活性成分如β-檸檬烯、黃酮、檸檬苦素等,具有理氣和胃、消食化痰、鎮(zhèn)痛消炎、抗癌抑瘤、抗病毒、抗氧化、解酒毒等功效[4]。目前對馬家柚的研究主要集中于套袋處理[3,5-6]、營養(yǎng)成分[7]、光合特性[4]、花粉直感[2]、授粉昆蟲[1]、發(fā)酵工藝[8]、解剖觀察[9]、土壤養(yǎng)分[10]等方面,但馬家柚葉綠體基因組特征及其密碼子偏好性分析的研究尚未見報道,馬家柚的進化起源及其系統(tǒng)發(fā)育的親緣關系尚未得到明確的鑒定。目前,上饒市各縣市均在大力發(fā)展馬家柚產(chǎn)業(yè),如何保證廣豐馬家柚的道地性,急需對廣豐馬家柚正本溯源。
通過對同屬植物葉綠體基因組序列的比較和分析,構(gòu)建同屬植物系統(tǒng)發(fā)育樹,可綜合評估該品種的系統(tǒng)發(fā)育位置和演化關系[11]。葉綠體是綠色植物細胞內(nèi)可將光能轉(zhuǎn)化為化學能的半自主性細胞器[12],其基因組為四分體雙鏈環(huán)狀結(jié)構(gòu),一般由1個大單拷貝(Large single copy,LSC)區(qū)、1個小單拷貝(Small single copy,SSC)區(qū)和2個反向重復(Inverted repeats,IRs,包括IRa和IRb)區(qū)組成[13]。葉綠體編碼區(qū)的核酸替代速率相對較低的特點為植物深層次系統(tǒng)進化研究提供了必要條件。越來越多的葉綠體編碼基因被廣泛應用于不同科、目乃至整個被子植物的系統(tǒng)學研究,對植物間的系統(tǒng)發(fā)育研究和進化關系分析做出了重大貢獻[14]。在植物系統(tǒng)學研究中較為常用的葉綠體編碼基因有rbc、matK、atpB和ndhF等[15]。葉綠體基因組序列揭示了植物物種內(nèi)部和物種之間的序列差異和結(jié)構(gòu)變異較大,這些信息對了解重要作物的適應能力,促進密切相關物種的育種以及識別和保護有價值的性狀具有重大的意義[16]。通過完整葉綠體基因組的多態(tài)性和高通量基因組比較,對復雜的遺傳關系進行探究,目前已從屬傳遞到科,并達到目水平[17]。葉綠體的完整序列也為分子育種和DNA條形碼標記的開發(fā)提供了有用的信息,并已在植物種質(zhì)資源的保護方面得到了有效的應用。葉綠體基因組包含的簡單重復序列(Simple sequence repeat,SSR)和長重復序列(Long repeat sequence,Longrepeat)均可以作為有效的DNA分子標記用于物種遺傳多樣性和遺傳穩(wěn)定性的檢測,有利于植物的分子輔助育種和種質(zhì)資源保存[18-20]。徐世榮等[21]對六月早蜜柚(C. maxima ‘Liuyuezao)的葉綠體基因組及其特征進行了分析,發(fā)現(xiàn)六月早蜜柚與甜橙(C. sinensis)、檸檬(C. limon)和C. platymamma的親緣關系較近;Xu等[22]對福建琯溪蜜柚[C. maxima (Burm.) Merr. ‘Guanximiyou]的葉綠體基因組序列進行了分析,發(fā)現(xiàn)福建琯溪蜜柚與柚(C. maxima)、甜橙(C. sinensis)、C. platymoma和檸檬(C. limon)親緣關系較近;Zhang等[23]對云南紅河柑橘(C. hongheensis)的葉綠體基因組特征進行了分析,發(fā)現(xiàn)云南紅河柑橘與C. maxima親緣關系較近;Cai等[24]對手指檸檬(C. australasic)栽培種的葉綠體基因組序列進行了分析,發(fā)現(xiàn)手指檸檬栽培種與C. medica親緣關系較近;Su等[25]對手指檸檬(C. australasic)栽培種的葉綠體基因組序列進行了分析,確定了阿曼酸橙(Omani lime,C. aurantiifolia)3個基因間區(qū)域和94個簡單序列重復(SSR),是具有種間關系分辨率的潛在信息標記,可以利用這些標記更好地了解栽培柑橘的起源。Ishikawa等[26]利用葉綠體全基因組序列及其生物多樣性對扁實檸檬(Shiikuwasha,C. depressa Hayata)多個譜系進行評價,發(fā)現(xiàn)與野生種群相比,栽培種群已失去基因的多樣性。Bausher等[27]通過組織與系統(tǒng)發(fā)育以及與其他被子植物的關系對C. sinensis (L.) Osbeck ‘Ridge Pineapple的葉綠體基因組序列進行了分析,發(fā)現(xiàn)反向重復區(qū)的擴展包括rps19和部分rpl22以及rpl22的兩個截短拷貝的存在是不尋常的,完整的柑橘葉綠體基因組序列的可用性可為葉綠體基因工程提供關于基因間隔區(qū)和內(nèi)源性調(diào)控序列有價值的信息。目前,有關廣豐馬家柚的葉綠體基因組組裝、注釋、基因組特征及系統(tǒng)發(fā)育方面的研究尚未見報道。筆者在本研究中對廣豐馬家柚葉綠體基因組序列組裝注釋,明確其葉綠體基因組特征、密碼子偏好性及系統(tǒng)進化等相關問題,為廣豐馬家柚種質(zhì)資源的鑒定、開發(fā)和利用提供參考。研究首次對廣豐馬家柚的葉綠體基因組進行測序、組裝和注釋,進一步分析其葉綠體基因組特征和密碼子偏好性等,篩選有效的最優(yōu)密碼子,并將其與已公布葉綠體基因組的柑橘屬同屬種構(gòu)建系統(tǒng)發(fā)育樹,闡明廣豐馬家柚與其他柑橘屬同屬種的進化關系及其在系統(tǒng)發(fā)育中的地位,可為柑橘屬植物的遺傳進化研究提供思路,也為種質(zhì)資源開發(fā)利用和葉綠體基因工程研究提供參考。
1 材料和方法
1.1 材料
廣豐馬家柚(代號:MJY)盆栽苗由上饒師范學院馬家柚產(chǎn)業(yè)研究院提供。
1.2 方法
1.2.1 DNA提取和測序 馬家柚葉片的總DNA提取采用改良的CTAB法[28];葉片DNA純度的檢測采用NanoDrop 2000分光光度計(美國,Thermo Scientific公司)檢測;馬家柚葉片DNA文庫采用美國Invitrogen Qubit? 2.0熒光定量儀初步定量;馬家柚葉片DNA文庫插入片段采用Agilent 2100生物分析儀系統(tǒng)檢測;馬家柚葉片DNA文庫有效濃度采用實時熒光定量PCR(Real-time quantitative PCR,RT-qPCR)準確定量;馬家柚葉片DNA文庫采用廣州佰數(shù)生物科技有限公司(Bio&Data Biotechnologies)DNBSEQ-T7測序儀平臺(華大智造)測序。
1.2.2 葉綠體全基因組的組裝與注釋 采用fastp V0.23.2軟件(默認參數(shù))[29]過濾馬家柚葉片DNA文庫Raw Data原始數(shù)據(jù),去除馬家柚葉片DNA文庫低質(zhì)量Reads,獲得馬家柚葉片DNA文庫高質(zhì)量Clean Data。馬家柚葉綠體基因組的組裝采用Noveplastys[30]和CAP3[31]軟件,Noveplastys和CAP3軟件適用于組裝,其中Noveplastys是主程序,在Noveplastys未環(huán)化情況下,CAP3軟件參與序列環(huán)化處理;馬家柚葉綠體基因組的注釋采用GeSeq[32]和tRNAscan-SE[33]軟件,GeSeq和tRNAscan-SE軟件用于基因組注釋,tRNA-scan-SE用于補充GeSeq對tRNA注釋的不足;馬家柚葉綠體基因組圖譜的制作采用OGDRAW[34]軟件。注釋完成后,將馬家柚葉綠體基因組序列提交至NCBI(https://www.ncbi.nlm.nih.gov/),獲得登錄號(PP024602)。
1.2.3 葉綠體基因組特征分析 馬家柚葉綠體基因組的大單拷貝區(qū)(LSC)、小單拷貝區(qū)(SSC)和反向重復區(qū)(IR)GC含量的分析和統(tǒng)計采用CGViewServer[35]軟件;馬家柚葉綠體基因組的SSR分析采用MISA(MIcroSAtellite identification tool)[36]軟件;馬家柚葉綠體基因組的Longrepeat分析采用REPuter[37]軟件;馬家柚葉綠體基因組同義密碼子相對使用度(relative synonymous codon usage,RSCU)的計算和分析采用CodonW軟件[38];馬家柚及其18個同屬種(表1序號1~19)葉綠體基因組變異圈圖的繪制和序列相似性的計算均采用Gview[39]軟件;馬家柚及其18個同屬種(表1序號1~19)葉綠體基因組IR結(jié)構(gòu)變異的繪圖采用IRscope[40]軟件;馬家柚及其18個同屬種(表1序號1~19)葉綠體基因組核苷酸多態(tài)性(Nucleotide polymorphism,Pi)的計算采用NADnaSP6.0[41]軟件;馬家柚及其85個同科種(蕓香科柑橘亞科、蕓香亞科和飛龍掌血亞科)和3個外群種(橄欖NC048982、苦樹MW801117、海人樹MK830069)(表1)葉綠體基因組的序列比對和建樹分別采用MAFFT 7.0[42]軟件和FastTree 2.1.10[43]軟件。
1.2.4 葉綠體基因組密碼子使用偏好性分析 GC3-GC12(Neutrality-plot)、ENC-plot、PR2-plot和最優(yōu)密碼子分別采用參考Liu等[19]的方法進行分析。其中,GC3-GC12分析用R語言做GC3和GC12的線性回歸分析;ENC-plot用EMBOSS(6.6.0.0)計算ENC,用R語言繪制ENC-plot;PR2-plotPR2通過A3、T3、G3、C3(分別表示密碼子第三位堿基的A、T、G、C含量)分別計算AT-bias[A3/(A3+T3)]與GC-bias[G3/(G3+C3)],利用二者的對應關系來分析選擇和突變對密碼子使用模式的影響,所用數(shù)據(jù)由字寫python腳本計算。
1.2.5 葉綠體基因組特異性標記篩選 通過分析,馬家柚葉綠體基因組與KJ865401、KY055833、LC147381、MK250977、MN495932、MT106672、MT106673、MT880606、MT880607、MT880608、MW147176、MW207297、MW207298、MW478804、MW722946、MW770450、MZ929414、OK513184、OM773610、ON065546、ON065547、ON065548、ON065549、ON065550、ON065551、ON065552、ON065553、ON087692、ON087694、ON169959、ON193074、ON209170、ON209171、ON597621、ON641345、ON872190、ON872191、ON872192、ON872193、ON872195、ON872196存在變異的序列,通過這些變異的序列篩選出馬家柚葉綠體基因組的特異性標記。
2 結(jié)果與分析
2.1 馬家柚葉綠體基因組的基本結(jié)構(gòu)
馬家柚葉綠體基因組全長160 186 bp,包括1個LSC區(qū)(87 791 bp)、1個SSC區(qū)(18 395 bp)和2個IR區(qū)(包括IRa和IRb,均為27 000 bp),其結(jié)構(gòu)呈典型閉合環(huán)狀雙鏈結(jié)構(gòu)(圖1)。馬家柚葉綠體基因組平均GC含量為38.74%,其中IR區(qū)的GC含量(42.95%)高于LSC區(qū)(36.8%)和SSC區(qū)(33.34%)。
2.2 馬家柚葉綠體基因組的基因組成
馬家柚葉綠體基因組共注釋到133個功能基因(表2),包括88個編碼蛋白(Coding sequence,CDS)基因、8個核糖體RNA(rRNA)基因和37個轉(zhuǎn)運RNA(tRNA)基因,其中假基因為0個。按照基因功能,馬家柚葉綠體基因組的基因可分為四大類:第一類是與光合作用有關的44種基因;第二類是自我復制的77種基因;第三類是其他功能的6種基因;第四類是未知功能的6種基因。其中,trnH-GUG、trnK-UUU、trnI-GAU、trnA-UGC、trnG-UCC、trnV-UAC、trnL-UAA、rpoC1、ndhB、ndhA、rpl2、rpl16、petB、atpF、petD、rps16、rps12基因具有2個外顯子,rps12、clpP1、pafI基因具有3個外顯子(rps12有2個拷貝,每個拷貝具有3個外顯子,且兩個拷貝共享第一個外顯子,第一個外顯子位于LSC區(qū)域,另外兩個外顯子位于IR區(qū)域);完全在LSC區(qū)的基因有80個(21個tRNA基因和59個CDS基因),完全在SSC區(qū)的基因有11個(1個tRNA基因和10個CDS基因),完全在IRB和IRA區(qū)的基因有18個(4個rRNA基因、7個tRNA基因和7個CDS基因),在SSC-IRB連接處的基因有2個CDS基因(ndhF和ycf1),在LSC-IRB連接處的基因有1個tRNA基因(trnH-GUG),在SSC-IRA連接處的基因有1個CDS基因(ycf1)。
2.3 馬家柚葉綠體基因組SSR和Longrepeat分析
馬家柚葉綠體基因組共檢測到79個SSR(表3),只包括單核苷酸重復序列和三核苷酸重復序列,單核苷酸重復序列有78個(97.44%),其中77個為A和T重復(98.72%),1個為G和C重復(1.28%);三核苷酸重復序列1個(1.27%)。馬家柚18個同屬種葉綠體基因組(KJ865401、KY055833、LC147381、MN782007、MT106672、MT527726、MT880607、MT880608、MW722946、MW770450、OK513184、ON065548、ON065551、ON065553、ON169959、ON193075、ON597621、ON641345)分別具有77、76、84、79、80、79、76、79、76、76、80、76、76、76、76、79、77和76個SSR,且均以A和T的單核苷酸重復序列為主,說明馬家柚及其18個同屬種葉綠體基因組SSR偏好使用A和T堿基。馬家柚葉綠體基因組共檢測到34個Longrepeat(表4),包括分散重復(Dispersed repeats,D)和回文重復(palindromic repeats,P),其中分散重復D分為正向重復(forward repeats,F(xiàn))、反向重復R(reverse repeats,R)和互補重復C(complement repeats,C)3種。馬家柚葉綠體基因組具有13個分散重復D(30~50 bp)和21個回文重復P(30~27 000 bp)。
2.4 葉綠體基因組特異性標記篩選
與KJ865401、KY055833、LC147381、MK250977、MN495932、MT106672、MT106673、MT880606、MT880607、MT880608、MW147176、MW207297、MW207298、MW478804、MW722946、MW770450、MZ929414、OK513184、OM773610、ON065546、ON065547、ON065548、ON065549、ON065550、ON065551、ON065552、ON065553、ON087692、ON087694、ON169959、ON193074、ON209170、ON209171、ON597621、ON641345、ON872190、ON872191、ON872192、ON872193、ON872195、ON872196比較,馬家柚葉綠體基因組的部分特異性標記見表5。馬家柚葉綠體基因組的rps18、rpl36、psbZ、psbJ、psbF基因有1個變異位點,rps7、rpl23、rpl14、psbK、psbH、psaC、psaJ、atpE、ndhB、petL、pafI、petN、ndhE基因有2個變異位點,atpH基因有3個變異位點,rpl32、rpl33、psbL、ndhC、petA、ndhK、petD基因有4個變異位點,rps11、rpl16、clpP1基因有5個變異位點,rps15、rps12、ndhI、atpB基因有6個變異位點,ndhJ、rps4、rps2、rps16、infA基因有7個變異位點,ndhG、cemA基因有8個變異位點,rps8、psbD、atpI、petB基因有9個變異位點,rpl20、pafII基因有10個變異位點,ndhA基因有11個變異位點,atpF、psaB、psbA基因有12個變異位點,rps19、rps14、rpoA、psbB基因有14個變異位點,rps3、psbC、atpA基因有15個變異位點,ndhH基因有16個變異位點,psaA基因有19個變異位點,accD基因有23個變異位點,rpoC1基因有25個變異位點,rbcL基因有28個變異位點,ccsA基因有29個變異位點,rpl22基因有34個變異位點,ndhD基因有36個變異位點,matK基因有42個變異位點,rpoB基因有44個變異位點,ycf2基因有52個變異位點,rpoC2基因有69個變異位點,ndhF基因有71個變異位點,ycf1基因有254個變異位點。
2.5 葉綠體基因組比對分析
馬家柚及其18個同屬種葉綠體基因組的變異圈圖(圖2)、mVIST結(jié)構(gòu)變異圖(圖3)和Pi多樣性指數(shù)分析圖(圖4)表明,馬家柚及其18個同屬種的葉綠體基因組序列高度保守,LSC和SSC區(qū)中petN、petL、psbI、psbK、psaI、pafII、trnT-GGU、trnR-UCU、trns-GGA、trnL-UAA等基因之間存在較大的序列差異。由圖4可知,馬家柚葉綠體基因組核苷酸多樣性的變化范圍為0~0.006 29;馬家柚葉綠體基因組非編碼區(qū)的變異程度高于基因編碼區(qū),LSC區(qū)的變異性整體較高,其次是SSC區(qū),IR區(qū)變異性最低,為最為保守的區(qū)域;通過Pi(≥0.003 6)篩選出10個高變異區(qū)域,均位于LSC和SSC區(qū),LSC區(qū)有8個高變異區(qū)域:Inter、trnS-GCU_trnG-UCC、trnT-UGU_trnL-UAA、accD-psaI、psbE-petL、rps18、rps3-rpl22、rpl22;SSC區(qū)有2個高變異區(qū)域:rpl32_trnL-UAG、ycf1-2。
2.6 葉綠體基因組的SC/IR/邊界分析
馬家柚及其18個同屬種葉綠體基因組四分體結(jié)構(gòu)的SC/IR邊界收縮擴張情況(圖5)表明:馬家柚及其18個同屬種葉綠體基因組的4個邊界較為保守。LSC/IRb[LSC和IRb之間的結(jié)合點(junction sites),JLB]邊界均位于rps19基因內(nèi),rps19基因在IRb區(qū)內(nèi)長為46 bp,在LSC區(qū)內(nèi)長為233 bp;IRb/SSC(SSC和IRb之間的結(jié)合點,JSB)邊界均位于IRb區(qū)的ycf1基因和SSC區(qū)的ndhF基因之間,ycf1基因距離IRb/SSC邊界均為2 bp。SSC/IR(SSC和IRa之間的結(jié)合點,JSA)邊界均位于ycf1基因內(nèi),ycf1基因在SSC區(qū)長18 264~18 283 bp,ycf1基因在IRa區(qū)長5607~5622 bp。IRa/LSC(LSC和IRa之間的結(jié)合點,JLA)邊界均位于IRa區(qū)的rpl2基因和LSC區(qū)的trnH基因之間,trnH基因距離IRb/SSC邊界均為1 bp。
2.7 馬家柚葉綠體基因組密碼子使用偏好性分析
2.7.1 同義密碼子的偏好性分析 馬家柚及其18個同屬種葉綠體基因組CDS基因密碼子3個位置GC含量的平均值為39.06%,GC1、GC2、GC3含量分別為46.37%、40.02%、30.79%,馬家柚及其18個同屬種葉綠體基因組密碼子3個位置GC含量的變化趨勢為:GC3<GC2<GC1(圖6);馬家柚葉綠體基因組88個CDS基因密碼子的ENC值介于28.311~61.000之間,平均值為48.02,84個基因的ENC值>35,4個基因的ENC值<35,密碼子偏好性較弱;馬家柚18個同屬種葉綠體基因組CDS基因密碼子的ENC值介于26.309~61.000之間,平均值為48.04,1511個基因的ENC值>35,71個基因的ENC值<35,密碼子偏好性同樣較弱。馬家柚葉綠體基因組88個CDS基因序列共有32個RSCU>1的密碼子,在這32個密碼子中,除UGG、UUG、AUG外,其余都以A、U結(jié)尾;馬家柚18個同屬種葉綠體基因組CDS基因序列共有576個RSCU>1的密碼子,在這576個密碼子中,除UGG、UUG、AUG外,其余也均以A、U結(jié)尾,密碼子同樣偏好以A、U結(jié)尾(圖7)。
2.7.2 中性繪圖分析(GC3-GC12分析)、ENC-plot分析和PR2-plot分析 馬家柚及其18個同屬葉綠體基因的GC3含量分布在0.187 5~0.459 5之間,GC12含量分布在0.256 4~0.634 1之間,二者絕大多數(shù)沿對角線上方分布(圖8)。兩者的線性相關系數(shù)r=0.031 6(R2=0.001),相關顯著(p<0.05),說明GC12與GC3相關性不顯著。回歸系數(shù)為0.025,內(nèi)部突變貢獻率僅2.5%,自然選擇貢獻率為97.5%,表明馬家柚及其18個同屬種葉綠體基因組密碼子使用偏好性主要受自然選擇的影響,而受內(nèi)部突變壓力的影響小。馬家柚及其18個同屬種葉綠體基因組大部分基因位于標準曲線的下方(圖8),大部分基因ENC的實際值與預期值存在較大差異,且GC3值分布較為集中,可見自然選擇是影響馬家柚及其18個同屬種葉綠體基因組密碼子使用偏好性的重要因子。從G3/GC3軸看,馬家柚及其18個同屬種葉綠體基因組中較多的基因分布于PR2-plot圖的下部分(圖8),說明4種堿基在同義密碼子第3位上存在C>G現(xiàn)象。從A3/AU3軸看,馬家柚及其18個同屬種葉綠體基因組中較多的基因分布于PR2-plot圖的左部(圖8),說明4種堿基在同義密碼子第3位上存在T>A現(xiàn)象。如密碼子使用存在偏好性只受內(nèi)部突變壓力影響時,C和G以及A和T在第3位上的分布應相等,說明馬家柚及其18個同屬種葉綠體基因組密碼子使用偏好性在受內(nèi)部突變影響的同時也會受到自然選擇的影響。
2.7.3 最優(yōu)密碼子確定 馬家柚葉綠體基因組滿足相對同義密碼子使用度(Relative synonymous codon usage,RSCU)>1(高頻率密碼子)且ΔRSCU(=RSCU高表達-RSCU低表達)≥0.08的最優(yōu)密碼子有AAU、UGU、AAA、UUU、GCU、GGA、CCA、ACU、CGU、AGU(表6),共10個,均以A、U結(jié)尾。說明馬家柚葉綠體基因組密碼子偏好性是以A和U結(jié)尾。
2.8 系統(tǒng)發(fā)育分析
基于馬家柚及其85個同科種(蕓香科柑橘亞科、蕓香亞科和飛龍掌血亞科)和3個外群種(橄欖NC048982、苦樹MW801117、海人樹MK830069)葉綠體基因組構(gòu)建的系統(tǒng)發(fā)育樹(圖9)表明,馬家柚[MJY,C. maxima (L.) Osbeck ‘Majiayou]與柚子(C. maxima,KY055833)、日本夏橙(C. natsudaidai,ON193075)、柚子(C. maxima,MT527726)、柚子(C. maxima,MN782007)單獨聚為一分支。在這個分支中,馬家柚[MJY,C. maxima (L.) Osbeck ‘Majiayou]又單獨成一分支。說明馬家柚[MJY,C. maxima (L.) Osbeck ‘Majiayou]與西雙版納東試早柚(C. maxima,KY055833,來源地:云南)、日本夏橙(C. natsudaidai,ON193075,來源地:韓國)、福建六月早蜜柚(C. maxima ‘Liuyuezao,MT527726,來源地:福建)、福建琯溪蜜柚[C. maxima (Burm.) Merr. ‘Guanximiyou,MN782007,來源地:福建]有親緣關系,是一個柑橘屬中較為獨特的品種。
3 討 論
馬家柚葉綠體基因組全長160 186 bp,與其他柑橘屬植物葉綠體基因組大小差別不大,伍泓昆[44]的研究表明,紅河大翼橙、枳、金柑、莽山野橘、柚和枸櫞葉綠體基因組全長分別為161 419 bp、160 589 bp、160 184 bp、160 152 bp、160 097 bp和159 952 bp;徐世榮等[21]和Xu等[22]的研究也表明,福建六月早蜜柚(C. maxima ‘Liuyuezao)和福建琯溪蜜柚[C. maxima (Burm.) Merr. ‘Guanximiyou]的葉綠體基因組全長均為160 186 bp,與馬家柚葉綠體基因組全長相同,說明在柑橘屬內(nèi)各個種的葉綠體基因組相對保守。福建六月早蜜柚[21]、福建琯溪蜜柚[22]、云南紅河柑橘(C. hongheensis)[23]、阿曼酸橙(Omani lime,C. aurantiifolia)[25]、扁實檸檬(Shiikuwasha,C. depressa Hayata)[26]、C. sinensis (L.) Osbeck ‘Ridge Pineapple[27]、手指檸檬(C. australasic)栽培種[24]和馬家柚(MJY)葉綠體基因組平均GC含量為38%~39%,其中IR區(qū)的GC含量高于LSC區(qū)和SSC區(qū),SSC區(qū)的GC含量最低,究其原因,IR區(qū)的rRNA基因的GC含量高,而SSC區(qū)的GC含量低,與位于SSC區(qū)的NADH基因相關[17]。
SSR又稱微衛(wèi)星,一般是1~6 bp的重復序列,具有高多態(tài)性和廣泛分布的特點,是高等真核生物葉綠體基因組的重要組成部分,成為研究植物遺傳多樣性、植物品種鑒定和植物遺傳穩(wěn)定性的重要工具[17]。在本試驗中,馬家柚葉綠體基因組共檢測到79個SSR,包括單核苷酸重復序列和三核苷酸重復序列2種不同類型,其中A和T重復占98.72%,表明馬家柚葉綠體基因組SSR偏好使用堿基A和T,這與大多數(shù)柑橘屬植物葉綠體SSR序列的組成相似。例如,六月早蜜柚葉綠體基因組的SSR為101個,其中68個A和T單堿基重復[21];阿曼酸橙葉綠體基因組的SSR為109個(多為A和T單堿基重復),大多數(shù)SSR位于基因間區(qū),少數(shù)位于CDS基因(如matK和ycf1)[25]。本研究從馬家柚葉綠體基因組中檢測到的SSR可說明馬家柚的種間多態(tài)性,并獲知ycf1基因有254個變異位點,變異位點最多。ycf1序列是葉綠體基因組內(nèi)的片段,由于其進化速率快,序列變異較大,近年來已被陸續(xù)應用于蘭科[45]等植物的分子鑒定中;且陸地植物物種在PCR成功率、序列位點變異率及物種鑒別率等方面優(yōu)于matK、rbcL及trnH-psbA等常用葉綠體DNA條形碼,因此被認為是最具潛力的陸地植物DNA條形碼序列[46]??蔀轳R家柚品種的道地性的分子鑒定提供可靠的遺傳標記,為后續(xù)對馬家柚種質(zhì)資源的化學成分、抗逆性和其他品質(zhì)性狀進行深入研究,為選育產(chǎn)量高、抗逆性強、品質(zhì)優(yōu)的新品種奠定了分子基礎。
植物的葉綠體基因組的IR/SC邊界時常會發(fā)生收縮和擴張,這些收縮和擴張會導致假基因的產(chǎn)生、基因的重復以及基因的缺失[17]。馬家柚及其18個同屬種葉綠體基因組的變異圈圖、mVIST結(jié)構(gòu)變異圖和Pi多樣性指數(shù)分析圖顯示,LSC區(qū)的變異性整體較高,其次是SSC區(qū),IR區(qū)變異性最低,10個高變異區(qū)域均位于LSC和SSC區(qū),這可能與IR區(qū)進化的保守性有關[17]。IR/SC邊界的收縮和擴張決定在植物葉綠體基因組的演化進程[17]。徐世榮等[21]的研究表明,蕓香科植物的基因結(jié)構(gòu)和基因順序較為相似,只有JLB(LSC與IRb邊界)和JSB(IRb與SSC邊界)2個邊界存在差異。JLB邊界包括2種類型(第1種類型:無基因橫跨邊界;第2種類型:rpl22基因橫跨JLB邊界),JSB邊界包括3種類型(第1種類型:無基因橫跨邊界;第2種類型:ycf1基因橫跨JSB邊界;第3種類型:ndhF基因橫跨JSB邊界)。Su等[25]的研究表明,阿曼酸橙的IR、LSC和SSC區(qū)域之間的連接與血橙(C. sinensis)相似,rpl22基因橫跨JLB邊界。本試驗結(jié)果也證實了這種觀點,在本試驗中,馬家柚及其18個同屬種葉綠體基因組各個結(jié)構(gòu)極為穩(wěn)定,未發(fā)現(xiàn)明顯的IR擴張和收縮,馬家柚及其18個同屬種葉綠體基因組的JLB邊界有rps19基因橫跨邊界,屬于JLB邊界的第2種類型;馬家柚及其18個同屬種葉綠體基因組JSB邊界無基因橫跨邊界,均位于IRb區(qū)的ycf1基因和SSC區(qū)的ndhF基因之間,屬于JSB邊界的第1種類型。
植物葉綠體基因組第3位堿基的突變?yōu)橥x突變。葉綠體基因組密碼子的偏好性是指植物使用同義密碼子的頻率存在差異,這種差異多是由堿基組成所造成的[17]。中性進化理論認為,氨基酸的改變?nèi)Q于第1位和第2位堿基的非同義突變,不取決于第3位堿基的同義突變,因此,GC3一般作為衡量密碼子偏好性的重要指標[17]。本研究中馬家柚及其18個同屬種葉綠體基因組密碼子3個位置GC含量的平均值為39.06%,表明馬家柚及其18個同屬種葉綠體更傾向于使用A/U密碼子,這與徐世榮等[21]對六月早蜜柚葉綠體基因組的研究結(jié)果一致。馬家柚及其18個同屬種葉綠體基因組密碼子GC3含量較低,這一特征與六月早蜜柚[21]相同,符合Campbll等[47]提出的假設:高等植物的密碼子一般偏好以A/U結(jié)尾。ENC表示密碼子偏離隨機選擇的程度,是衡量密碼子使用偏好性的重要指標[44]。ENC值越大,密碼子使用偏好性越弱,ENC值≤35,密碼子偏好性較強[45]。馬家柚葉綠體基因組88個CDS基因密碼子的ENC值介于28.311~61.000之間,平均值為48.02,84個基因的ENC值>35,4個基因的ENC值<35,密碼子偏好性較弱。馬家柚葉綠體基因組psbM和petG基因ENC值最高(61),說明這兩個基因具有保守的DNA序列,在進化過程中受自然選擇影響??;馬家柚葉綠體基因組中rpl32基因的ENC值最低(28.311),受突變的影響較小,密碼子使用偏好性較強。
植物葉綠體基因組密碼子偏好性的影響因子一般有自然選擇和內(nèi)部突變兩種。在本試驗中,中性繪圖分析(GC3-GC12分析)、ENC-plot分析和PR2-plot分析表明在馬家柚及其18個同屬種在進化過程中,其密碼子偏好性主要受自然選擇而非受內(nèi)部突變的影響,究其原因,可能是葉綠體作為進行光合作用的重要細胞器,其基因演化必然要受到自然選擇的影響[17]。RSCU分析是一種根據(jù)相對密碼子偏好性來分析基因表達水平的方法。本研究采用高表達優(yōu)越密碼子方法確定了馬家柚葉綠體基因組10個最優(yōu)密碼子,3個以A結(jié)尾,7個以U結(jié)尾,由此可見馬家柚葉綠體基因組中密碼子偏好NNA、NNU型。這與徐世榮等[21]對六月早蜜柚葉綠體基因組的研究結(jié)果一致,說明柑橘屬植物的密碼子偏好性存在著一定的相似性,這種密碼子使用模式可能是由于柑橘屬植物葉綠體基因組密碼子的使用偏好性在進化關系上較為保守。一般來說,在正向選擇和突變壓力較強的情況下,最優(yōu)密碼子的數(shù)量較多;而在純化選擇的情況下,最優(yōu)密碼子的數(shù)量較少。不同物種的最優(yōu)密碼子及數(shù)量不同,說明物種受到的進化壓力存在差異[17]。本研究中共確定了10個馬家柚葉綠體基因組的最優(yōu)密碼子,數(shù)量偏少,因此推測馬家柚葉綠體基因組可能處于純化選擇之下。
葉綠體基因組DNA能有效進行物種鑒定和系統(tǒng)親緣關系分析[17]。徐世榮等[21]和Xu等[22]的研究表明,六月早蜜柚與C. platymamma、檸檬和甜橙聚為一小分支,福建琯溪蜜柚與Low acid pummelo(C. maxima,NC034290.1)聚為一小分支;Zhang等[23]的研究表明,云南紅河柑橘與檸檬(C. limon,KY085897.1)、C. platymamma(NC030194.1)、甜橙(C. sinensis,DQ864733.1)和Low acid pummelo(C. maxima,NC034290.1)聚為一分支,但云南紅河柑橘單獨成一小分支,表明福建琯溪蜜柚與云南紅河柑橘存在一定的親緣關系,但也是一個柑橘屬中較為獨特的品種;Cai等[24]的研究表明,手指檸檬栽培種與枸櫞(C. medica,NC050939.1)聚為一分支,表明兩者親緣關系較近。目前,馬家柚的種植區(qū)主要集中在江西上饒,現(xiàn)有研究的取樣范圍和分子標記選擇受限,使得馬家柚的屬內(nèi)進化關系仍模糊。劉勇[48]通過SSR和AFLP分子鑒定,認為馬家柚與廣豐周邊地區(qū)的信木柚親緣關系較近;徐宸宇等[49]對江西46份柚資源進行了SSR分子鑒定,認為馬家柚可能是由廣豐本地土柚衍變而成的變異株系。筆者在本試驗中,為了進一步揭示馬家柚在柑橘屬種間的親緣關系,選取了馬家柚及其85個同科種(蕓香科柑橘亞科、蕓香亞科和飛龍掌血亞科)和3個外群種(橄欖NC048982、苦樹MW801117、海人樹MK830069),利用FastTree軟件GTR模型(Generalized time-reversible model)構(gòu)建ML系統(tǒng)發(fā)育樹。結(jié)果表明,馬家柚(MJY,C. maxima (L.) Osbeck ‘Majiayou)與西雙版納東試早柚(C. maxima,KY055833,來源地:云南)、日本夏橙(C. natsudaidai,ON193075,來源地:韓國)、福建六月早蜜柚(C. maxima ‘Liuyuezao,MT527726,來源地:福建)、福建琯溪蜜柚[C. maxima (Burm.) Merr. ‘Guanximiyou,MN782007,來源地:福建]有親緣關系,是一個柑橘屬中較為獨特的品種。
4 結(jié) 論
馬家柚葉綠體基因組全長160 186 bp,共注釋到133個功能基因,共檢測到79個SSR和34個Longrepeat。馬家柚葉綠體基因組SC/IR邊界較為保守,密碼子偏好性較弱(主要受自然選擇的影響),最優(yōu)密碼子有10個(AAU、UGU、AAA、UUU、GCU、GGA、CCA、ACU、CGU、AGU)。馬家柚與西雙版納東試早柚、日本夏橙、福建六月早蜜柚、福建琯溪蜜柚有親緣關系,是柑橘屬中一個較為獨特的品種。
參考文獻 References:
[1]?? 林濤,何麗云,王帆,李炳根,阿提克穆·麥麥提,周仁輝,程薪宇. 馬家柚花部特征及其訪花昆蟲種類調(diào)查[J]. 環(huán)境昆蟲學報,2023,45(1):101-113.
LIN Tao,HE Liyun,WANG Fan,LI Binggen,Atikemu·Maimaiti,ZHOU Renhui,CHENG Xinyu. The floral characteristics and its flower-visiting insects species investigation of Citrus maxima (L.) Osbeck cv. ‘Majiayou[J]. Journal of Environmental Entomology,2023,45(1):101-113.
[2]?? 毛桑隱,路志浩,張祥,葉俊麗,伊華林,柴利軍,鄧秀新,吳方方,徐強. 花粉直感對馬家柚果實品質(zhì)的影響[J]. 果樹學報,2023,40(11):2391-2402.
MAO Sangyin,LU Zhihao,ZHANG Xiang,YE Junli,YI Hualin,CHAI Lijun,DENG Xiuxin,WU Fangfang,XU Qiang. Effect of xenia on fruit quality of Majiayou[J]. Journal of Fruit Science,2023,40(11):2391-2402.
[3]?? 謝婧蘅,楊莉,旦世浩,邱麗,張王妮,劉德春,胡威,劉勇. 套袋對馬家柚果實外觀及內(nèi)在品質(zhì)的影響[J]. 核農(nóng)學報,2021,35(1):229-237.
XIE Jingheng,YANG Li,DAN Shihao,QIU Li,ZHANG Wangni,LIU Dechun,HU Wei,LIU Yong. Effect of bagging on fruit appearance and inner quality of Majia pomelo[J]. Journal of Nuclear Agricultural Sciences,2021,35(1):229-237.
[4]?? 毛小濤,陳凱,孫志鋒,樊海敏,張?zhí)幤? 馬家柚光合特性研究[J]. 上饒師范學院學報,2023,43(3):73-78.
MAO Xiaotao,CHEN Kai,SUN Zhifeng,F(xiàn)AN Haimin,ZHANG Chuping. Study on photosynthetic characteristics of Citrus grandis (L.) Osbeck[J]. Journal of Shangrao Normal University,2023,43(3):73-78.
[5]?? 姜啟航,朱凱杰,吳方方,徐娟,徐強,柴利軍,鄧秀新,葉俊麗. 套袋處理對‘馬家柚果實揮發(fā)性物質(zhì)積累的影響[J]. 果樹學報,2020,37(11):1701-1710.
JIANG Qihang,ZHU Kaijie,WU Fangfang,XU Juan,XU Qiang,CHAI Lijun,DENG Xiuxin,YE Junli. Effects of fruit bagging on the accumulation of volatile compounds in ‘Majiayou pumelo[J]. Journal of Fruit Science,2020,37(11):1701-1710.
[6]?? 邱麗,楊莉,旦世浩,劉德春,胡威,張王妮,劉勇. 套袋對‘馬家柚果肉主要類胡蘿卜素積累及相關基因表達的影響[J]. 果樹學報,2020,37(2):153-163.
QIU Li,YANG Li,DAN Shihao,LIU Dechun,HU Wei,ZHANG Wangni,LIU Yong. Effects of bagging on the accumulation of main carotenoids and the related gene expression in ‘Majiayou pomelo[J]. Journal of Fruit Science,2020,37(2):153-163.
[7]?? 易明亮,張王妮,楊莉,匡柳青,劉德春,劉勇,胡威. ‘馬家柚果實發(fā)育期有機酸含量變化及檸檬酸代謝相關基因的表達分析[J]. 江西農(nóng)業(yè)大學學報,2022,44(4):841-851.
YI Mingliang,ZHANG Wangni,YANG Li,KUANG Liuqing,LIU Dechun,LIU Yong,HU Wei. Analysis of organic acid content and expression of citric acid metabolism related genes during fruit development of ‘Majia pomelo[J]. Acta agriculturae universitatis Jiangxiensis,2022,44(4):841-851.
[8]?? 周麗明,韓金多. 馬家柚果酒發(fā)酵工藝及其抗氧化作用分析[J]. 南方農(nóng)業(yè)學報,2018,49(2):348-353.
ZHOU Liming,HAN Jinduo. Fermentation process and antioxidant effects of Majia pummelo wine[J]. Journal of Southern Agriculture,2018,49(2):348-353.
[9]?? 楊莉,張涓涓,劉德春,劉山蓓,徐炳星,周施清,毛衛(wèi)平,劉勇. 馬家柚粗皮果形成過程的解剖學觀察[J]. 經(jīng)濟林研究,2017,35(3):152-155.
YANG Li,ZHANG Juanjuan,LIU Dechun,LIU Shanbei,XU Bingxing,ZHOU Shiqing,MAO Weiping,LIU Yong. Anatomically observation on forming process of rough fruits in Citrus grandis[J]. Nonwood Forest Research,2017,35(3):152-155.
[10] 張涓涓,楊莉,劉德春,劉山蓓,徐炳星,周施清,毛衛(wèi)平,劉勇. 土壤養(yǎng)分狀況與馬家柚果實品質(zhì)相關性的多元分析[J]. 經(jīng)濟林研究,2015,33(4):25-31.
ZHANG Juanjuan,YANG Li,LIU Dechun,LIU Shanbei,XU Bingxing,ZHOU Shiqing,MAO Weiping,LIU Yong. Multivariate analysis of relationship between soil nutrient status and fruit quality of Majia shaddock[J]. Nonwood Forest Research,2015,33(4):25-31.
[11] SLOAN D B,TRIANT D A,F(xiàn)ORRESTER N J,BERGNER L M,WU M,TAYLOR D R. A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae)[J]. Molecular Phylogenetics and Evolution,2014,72:82-89.
[12] NAZARENO A G,CARLSEN M,LOHMANN L G. Complete chloroplast genome of Tanaecium tetragonolobum:The first Bignoniaceae plastome[J]. PLoS One,2015,10(6):e0129930.
[13] LI D M,LI J,WANG D R,XU Y C,ZHU G F. Molecular evolution of chloroplast genomes in subfamily Zingiberoideae (Zingiberaceae)[J]. BMC Plant Biology,2021,21(1):558.
[14] LIANG H,ZHANG Y,DENG J B,GAO G,DING C B,ZHANG L,YANG R W. The complete chloroplast genome sequences of 14 Curcuma species:Insights into genome evolution and phylogenetic relationships within Zingiberales[J]. Frontiers in Genetics,2020,11:802.
[15] KATHRIARACHCHI H,HOFFMANN P,SAMUEL R,WURDACK K J,CHASE M W. Molecular phylogenetics of Phyllanthaceae inferred from five genes (plastid atpB,matK,3'ndhF,rbcL,and nuclear PHYC))[J]. Molecular Phylogenetics and Evolution,2005,36(1):112-134.
[16] DANIELL H,LIN C S,YU M,CHANG W J. Chloroplast genomes:Diversity,evolution,and applications in genetic engineering[J]. Genome Biology,2016,17(1):134.
[17] 朱強龍,朱子成,王鵬飛,呂慧玲,崔浩楠,欒非時. 葫蘆科作物線粒體和葉綠體基因組研究進展[J]. 中國瓜菜,2016,29(8):1-8.
ZHU Qianglong,ZHU Zicheng,WANG Pengfei,L? Huiling,CUI Haonan,LUAN Feishi. Advances on mitochondria and chloroplast genomes of cucurbit crop[J]. China Cucurbits and Vegetables,2016,29(8):1-8.
[18] ABDULLAH,MEHMOOD F,RAHIM A,HEIDARI P,AHMED I,POCZAI P. Comparative plastome analysis of Blumea,with implications for genome evolution and phylogeny of Asteroideae[J]. Ecology and Evolution,2021,11(12):7810-7826.
[19] LIU H,HUANG Y,DU X,CHEN Z,ZENG X,CHEN Y,ZHANG H. Patterns of synonymous codon usage bias in the model grass Brachypodium distachyon[J]. Genetics and Molecular Research,2012,11(4):4695-4706.
[20] QI Y Y,XU W J,XING T,ZHAO M M,LI N N,YAN L,XIA G M,WANG M C. Synonymous Codon usage bias in the plastid genome is unrelated to gene structure and shows evolutionary heterogeneity[J]. Evolutionary Bioinformatics Online,2015,11:65-77.
[21] 徐世榮,陳燕瓊,潘東明,潘鶴立. 六月早蜜柚葉綠體基因組及其特征分析[J]. 熱帶作物學報,2021,42(5):1223-1230.
XU Shirong,CHEN Yanqiong,PAN Dongming,PAN Heli. Chloroplast genome sequence and characteristics analysis of Citrus maxima ‘Liuyuezao[J]. Chinese Journal of Tropical Crops,2021,42(5):1223-1230.
[22] XU S R,HUANG C Y,DENG Y T,ZHOU L L,PAN D M,PAN H L. The complete chloroplast genome sequence of Citrus maxima (Burm.) Merr. ‘Guanximiyou[J]. Mitochondrial DNA. Part B,Resources,2020,5(1):482-483.
[23] ZHANG Z H,LONG C R,JIANG Y,BEI X J,WANG S H. Characterization of the complete chloroplast genome of Citrus hongheensis,a key protected wild plant in Yunnan Province of China[J]. Mitochondrial DNA. Part B,Resources,2020,5(3):3514-3515.
[24] CAI Q N,WANG H X,CHEN D J,KE X R,ZHU Z X,WANG H F. The complete chloroplast genome sequence of a Citrus australasica cultivar (Rutaceae)[J]. Mitochondrial DNA. Part B,Resources,2021,7(1):54-55.
[25] SU H J,HOGENHOUT S A,AL-SADI A M,KUO C H. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia) and comparative analysis within the rosids[J]. PLoS One,2014,9(11):e113049.
[26] ISHIKAWA R,BADENOCH N,MIYAGI K,MEDORUMA K,OSADA T,ONISHI M. Multi-lineages of Shiikuwasha (Citrus depressa Hayata) evaluated by using whole chloroplast genome sequences and its bio-diversity in Okinawa,Japan[J]. Breeding Science,2016,66(4):490-498.
[27] BAUSHER M G,SINGH N D,LEE S B,JANSEN R K,DANIELL H. The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck ‘Ridge Pineapple:Organization and phylogenetic relationships to other angiosperms[J]. BMC Plant Biology,2006,6:21.
[28] DOYLE J J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochemical Bulletin,1987,19(1):11-15.
[29] CHEN S F,ZHOU Y Q,CHEN Y R,GU J. Fastp:An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics,2018,34(17):i884-i890.
[30] DIERCKXSENS N,MARDULYN P,SMITS G. NOVOPlasty:De novo assembly of organelle genomes from whole genome data[J]. Nucleic Acids Research,2017,45(4):e18.
[31] HUANG X,MADAN A. CAP3:A DNA sequence assembly program[J]. Genome Research,1999,9(9):868-877.
[32] TILLICH M,LEHWARK P,PELLIZZER T,ULBRICHT-JONES E S,F(xiàn)ISCHER A,BOCK R,GREINER S. GeSeq-versatile and accurate annotation of organelle genomes[J]. Nucleic Acids Research,2017,45(W1):W6-W11.
[33] LOWE T M,EDDY S R. tRNAscan-SE:A program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research,1997,25(5):955-964.
[34] LOHSE M,DRECHSEL O,BOCK R. OrganellarGenomeDRAW (OGDRAW):A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes[J]. Current Genetics,2007,52(5/6):267-274.
[35] GRANT J R,STOTHARD P. The CGView Server:A comparative genomics tool for circular genomes[J]. Nucleic Acids Research,2008,36(Web Server issue):W181-W184.
[36] THIEL T,MICHALEK W,VARSHNEY R,GRANER A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.)[J]. Theoretical and Applied Genetics,2003,106(3):411-422.
[37] KURTZ S,CHOUDHURI J V,OHLEBUSCH E,SCHLEIERMACHER C,STOYE J,GIEGERICH R. REPuter:The manifold applications of repeat analysis on a genomic scale[J]. Nucleic Acids Research,2001,29(22):4633-4642.
[38] SHARP P M,LI W H. Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘Rare codons[J]. Nucleic Acids Research,1986,14(19):7737-7749.
[39] PETKAU A,STUART-EDWARDS M,STOTHARD P,VAN DOMSELAAR G. Interactive microbial genome visualization with GView[J]. Bioinformatics,2010,26(24):3125-3126.
[40] AMIRYOUSEFI A,HYV?NEN J,POCZAI P. IRscope:An online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics,2018,34(17):3030-3031.
[41] ROZAS J,ROZAS R. DnaSP,DNA sequence polymorphism:An interactive program for estimating population genetics parameters from DNA sequence data[J]. Bioinformatics,1995,11(6):621-625.
[42] KATOH K,STANDLEY D M. MAFFT multiple sequence alignment software version 7:Improvements in performance and usability[J]. Molecular Biology and Evolution,2013,30(4):772-780.
[43] PRICE M N,DEHAL P S,ARKIN A P. FastTree 2:Approximately maximum-likelihood trees for large alignments[J]. PLoS One,2010,5(3):e9490.
[44] 伍泓昆. 基于DArT芯片及葉綠體基因組分析的柑橘屬植物進化與分類研究[D]. 重慶:西南大學,2016.
WU Hongkun. Evaluation and phylogenetic relationship of Citrus L. based on DArT markers and chloroplast genomes analyses[D]. Chongqing:Southwest University,2016.
[45] NEUBIG K M,WHITTEN W M,CARLSWARD B S,BLANCO M A,ENDARA L,WILLIAMS N H,MOORE M. Phylogenetic utility of ycf1 in orchids:A plastid gene more variable than matK[J]. Plant Systematics and Evolution,2009,277(1/2):75-84.
[46] DONG W P,XU C,LI C H,SUN J H,ZUO Y J,SHI S,CHENG T,GUO J J,ZHOU S L. ycf1,the most promising plastid DNA barcode of land plants[J]. Scientific Reports,2015,5:8348.
[47] CAMPBELL W H,GOWRI G. Codon usage in higher plants,green algae,and cyanobacteria[J]. Plant Physiology,1990,92(1):1-11.
[48] 劉勇. 柚類資源分子系統(tǒng)學及其核心種質(zhì)構(gòu)建研究[D]. 武漢:華中農(nóng)業(yè)大學,2005.
LIU Yong. Molecular phylogenetic analysis and core collection construction using SSR and AFLP markers in pummelo[D]. Wuhan:Huazhong Agricultural University,2005.
[49] 徐宸宇,曹立新,唐啟正,吳巨勛,伊華林. 馬家柚遺傳來源鑒定與適宜授粉品種篩選[J]. 華中農(nóng)業(yè)大學學報(自然科學版),2022,41(2):124-135.
XU Chenyu,CAO Lixin,TANG Qizheng,WU Juxun,YI Hualin. Identification of Majia pomelo germplasm and screening of varieties with suitable pollination[J]. Journal of Huazhong Agricultural University (Natural Science Edition),2022,41(2):124-135.