靖吉越 郭新送 朱福軍 楊志峰 范仲卿 張培蘋 劉祿 馬學文 高涵
DOI:10.13925/j.cnki.gsxb.20240001
摘??? 要:鈣是蘋果生長發(fā)育過程中必需的礦質元素之一,缺鈣會導致細胞代謝失調,引發(fā)蘋果苦痘病等生理病害,嚴重影響果實品質。蘋果主要通過根系在土壤中吸收鈣,根系吸收的鈣在蒸騰拉力的帶動下運往地上部,而蒸騰作用弱,導致蘋果果實易發(fā)生生理缺鈣。果實中的鈣含量與樹種、砧木類型等樹體因子和施肥、修剪等農技措施密切相關。綜述了蘋果苦痘病與鈣之間的關系、蘋果鈣吸收轉運、蘋果缺鈣機制和蘋果苦痘病防治的研究進展,以期為提高果樹鈣吸收能力,增加果實鈣含量預防蘋果苦痘病,促進果實生長及改善采后貯藏品質,減輕果農負擔,促進蘋果產業(yè)健康可持續(xù)發(fā)展提供理論依據(jù)及指導方法。
關鍵詞:蘋果;鈣;苦痘??;鈣吸收能力;防治技術
中圖分類號:S661.1?????????? 文獻標志碼:A??????????? 文章編號:1009-9980(2024)05-0990-09
收稿日期:2024-01-08??????? 接受日期:2024-03-11
基金項目:山東省重點研發(fā)計劃(2021CXGC010804);泰安市科技創(chuàng)新發(fā)展項目(2021NS089)
作者簡介:靖吉越,男,助理工程師,碩士,主要從事土壤化學與環(huán)境研究。Tel:0538-3529921,E-mail:JingJy@stu.njau.edu.cn
*通信作者 Author for correspondence. Tel:0538-3529921,E-mail:guoxinsong1028@163.com
果 樹 學 報 2024,41(5): 990-998
Journal of Fruit Science
Research progress in the occurrence and control of bitter pit disorder in apple
JING Jiyue1, GUO Xinsong1*, ZHU Fujun1, YANG Zhifeng2, FAN Zhongqing1, ZHANG Peiping2, LIU Lu1, MA Xuewen1, GAO Han1
(1Key Laboratory of Humic Acid Fertilizer, Ministry of Agriculture and Rural Affairs/Shandong Agricultural University Fertilizer Science Tech. Co. Ltd., Taian 271600, Shandong, China; 2Yantai Agriculture and Rural Bureau, Yantai 264009, Shandong, China)
Abstract: The apple (Malus pumila) is a deciduous fruit crop of the Rosaceae family and one of the four most important fruit species in the world. China ranks first in the world in per capita consumption and exports of apples. The apple industry plays a key role in the national economy, but the apple fruit quality in China is poor and the proportion of high quality fruit is low. As we all know, calcium is one of the essential mineral elements in the process of apple growth and development, and it is an important component of the cell wall, which plays an important role in maintaining cell membrane homeostasis and intracellular signal transduction. Too high or low intracellular calcium ion concentrations have a negative effect on apples. Keeping intracellular calcium homeostasis plays an important role in plant growth and development and response to stress. The lack of calcium leads to disturbances in cell metabolism, causing apple bitter pit and other physiological disorders, which seriously affect the fruit quality. Apple bitter pit is a physiological disorder caused by calcium deficiency in fruit, manifested by the rupture of flesh cells and the formation of small, dark-coloured indentations. Apple bitter pit often occurs when fruit is close to ripening and during the time of storage, and is most common in the distal part of the fruit. In apple cell, low concentrations of intracellular calcium reduce the stability of cell walls, cell membranes and membrane-bound proteins, but high concentrations are also toxic to the cell, with high concentrations of calcium ion leading to the formation of phosphate precipitates that interfere with phosphate-based energy metabolism and compete with magnesium ions for enzyme binding sites. Ensuring intracellular calcium homeostasis is important for healthy growth of apple. Calcium homeostasis in the cytoplasm of apple involves a variety of calcium transporters and organelles, which form a complex regulatory network. Apple mainly absorbs calcium from the soil through the root and transports it to the above-ground part under the drive of transpiration pull. Since the transpiration of fruit is low, apple fruit is susceptible to physiological calcium deficiency. At the cellular level, apple mainly absorbs calcium ions through the apoplastic and symplastic pathways in the root vascular bundles, and the above-ground parts of plants can absorb calcium ion through non-vascular bundles. The root system absorbs and transports calcium ion through calcium channels, the superfamily of calcium ion/cation anti-transporters (CaCAs) and the P-type Ca2+-ATPase, which transports calcium ion in a chelated state through the xylem to the vigorously growing canopy, including young leaves, flowers, fruits and apical meristematic tissues. In general, apple peel calcium concentration is higher than flesh, and phloem calcium content is higher than xylem. In the early stages of apple fruit growth, calcium is evenly distributed throughout the fruit, but as the season progresses there are differences in concentration, with the highest calcium content in the peel, the lowest in the flesh, and the middle in the seed and centre of the fruit. Fruit calcium content is closely related to tree factors such as cultivar, rootstock type and agronomic practices like fertilization and pruning. The calcium content in fruit trees and the distribution of calcium in the fruit are largely controlled by genes, and different stion combinations also have significant effects on apple fruit calcium content. Calcium uptake by apple is also influenced by the balance of calcium with other mineral elements and total salinity. In addition, overgrowth of fruit trees and competition for calcium between branches and fruit lead to low calcium levels in fruit. External application of various types of calcium fertilizer can increase the calcium content in fruit, improve fruit quality and increase fruit shelf life. Although calcium plays an extremely important role in preventing bitter pit in apples, a single calcium deficiency may not the key factor in triggering apple bitter pit. Compared to healthy fruit, symptomatic fruit has lower levels of calcium and boron, while the opposite is true for nitrogen, potassium, phosphorus and magnesium; the lower the calcium content in the fruit, the higher the magnesium and potassium content, and the more severe the apple bitter pit disorder. The improvement and enhancement of the fruit quality and appearance will open up more opportunities for our apple industry and will promote its healthy development. This paper reviews the relationship between apple bitter pit disorder and calcium, calcium absorption and transport in apple, the mechanism of calcium deficiency in apple and the progress in research on the control of apple bitter pit disorder, with a view to improving the calcium absorption capacity of fruit trees, increasing the calcium content in fruits to prevent apple bitter disorder, improving the fruit growth and quality during post-harvest storage, reducing the burden of fruit growers, and promoting the development of the apple industry.
Key words: Apple; Calcium; Bitter pit; Calcium absorption capacity; Control technique
薔薇科落葉果樹蘋果(Malus pumila)是世界四大水果之一,具有較高的營養(yǎng)價值。中國蘋果的栽培面積約232.38萬hm2、平均年產量4 388.23萬t,分別占世界的48%、54%;中國蘋果的人均占有率與出口額均位列世界第一;中國現(xiàn)已發(fā)展為世界上最大的蘋果生產國和消費國[1-3]。黃土高原、渤海灣、黃河故道、秦嶺北麓和西南冷涼高地是中國蘋果的主產區(qū),蘋果產業(yè)是國民經濟的重要組成部分。但中國蘋果果實品質較差,優(yōu)果率低。蘋果苦痘?。╞itter pit,BP)是影響蘋果經濟性狀的主要病害,尤其在實行套袋栽培后發(fā)病日益嚴重[4]。
蘋果苦痘病是由果實缺鈣(Ca)引起的常見的生理病害,一般在果實接近成熟時開始出現(xiàn);多發(fā)于果頂處,具體表現(xiàn)為果肉細胞破裂,形成小的深色凹陷;降低了果品等級與果實耐儲性,嚴重影響了果實的商品率等經濟性狀[4-6]。雖然蘋果苦痘病常常發(fā)現(xiàn)于果實成熟期和儲藏期,但是其發(fā)生可能源于果實生長發(fā)育的整個時期[7-8]。有研究指出,品種、砧木類型、樹齡、生長勢、負載量、營養(yǎng)施肥、果實大小、采收時期和貯藏條件等因素與蘋果苦痘病發(fā)生密切相關[9-11]。筆者從蘋果鈣吸收轉運,蘋果苦痘病與果樹品種、果實生長發(fā)育、鈣和其他元素的關系,以及預防苦痘病措施等方面,論述了蘋果苦痘病發(fā)生規(guī)律及防治方法的研究進展,并對下一步的研究方向進行了展望。
1 鈣與蘋果苦痘病的關系
鈣不僅參與蘋果生長發(fā)育和形態(tài)建成,更重要的是作為胞外信號和胞內生理生化反應的第二信使調控蘋果生長和發(fā)育[12]。鈣對蘋果品質的影響比氮(N)、磷(P)、鉀(K)、鎂(Mg)重要,缺Ca會引起蘋果果實的生理失調,造成蘋果發(fā)生苦痘病等病害[13]。鈣具有穩(wěn)定細胞膜結構、提高蘋果抗逆性和減少果實生理病害等多種功能。鈣離子(Ca2+)/鈣調蛋白參與對谷氨酸脫羧酶的激活,而谷氨酸脫羧酶在調控脫落酸(ABA)對蘋果苦痘病的調控中起著信號轉導的作用[14]。發(fā)生苦痘病的果實中N、P、K和Mg的含量明顯高于正常果,而Ca和硼(B)的含量則要低于正常果[15-17]。Schlegel等[18]在2002年發(fā)現(xiàn),苦痘病果實與正常果實細胞結構差異主要表現(xiàn)在細胞壁、細胞膜和細胞器3個方面。與健康組織相比,苦痘病組織有更高濃度的草酸和檸檬酸,而過多的草酸和檸檬酸會通過溶解細胞壁的中膠層誘發(fā)苦痘??;而鈣可以將多余的草酸和檸檬酸轉化成不溶性的鹽,限制其對細胞壁的破壞[18]。貯藏過程中果實水溶性鈣和果膠鈣向磷酸鈣及草酸鈣的無效化轉變,以及由此引起的細胞膜系統(tǒng)結構損傷和功能紊亂,是缺鈣導致蘋果果實生理失調的重要機制之一[19]。
大量的研究表明,樹體單一的缺鈣并不一定會導致苦痘病的發(fā)生。蘋果苦痘病的發(fā)生率與葉和果實中的Ca含量、K/Ca、(K+Mg)/Ca、N/Ca相關,苦痘病果實K/Ca、(K+Mg)/Ca、N/Ca比值高于未發(fā)病果實[20]。在蘋果栽培過程中,果實著生位置、土壤類型和施肥措施等會通過影響果實鈣含量進而影響苦痘病的發(fā)生[21]。鈣與細胞膜表面的磷脂和蛋白質的羧基相結合,可以提高細胞膜的穩(wěn)定性和疏水性,增強細胞對鉀離子(K+)、鈉離子(Na+)、鎂離子(Mg2+)等離子吸收的選擇性,從而增強蘋果對鹽害、凍害、熱害、干旱和病蟲害等逆境的抗性[22]。蘋果缺鈣,在細胞層面表現(xiàn)為:細胞壁解體,細胞壁和中膠層變軟;細胞膜結構被破壞,透性增大,細胞內養(yǎng)分外滲,使樹體易感染真菌和細菌性病害。外部形態(tài)表現(xiàn)為:根系和枝條生長點壞死,幼葉卷曲,葉邊緣發(fā)黃;果實缺鈣時,呈現(xiàn)水浸狀,缺鈣組織形成凹陷或空腔,果實中多酚氧化物形成的褐色素使缺鈣組織呈現(xiàn)出棕褐色[23]。鈣還在調節(jié)過氧化物酶(POD)、過氧化氫酶(CAT)和超氧化物歧化酶(SOD)等活性以防止膜脂過氧化過程中扮演著重要角色[24-25]。用X射線光譜儀分析鈣定位與苦痘病發(fā)生之間的關系,發(fā)現(xiàn)病果果皮組織中的鈣含量明顯低于健康果實,病斑區(qū)果肉中積累大量的鉀,在果皮細胞中發(fā)生鈣外泄,液泡內鈣明顯減少[10]。可見,Ca含量、K/Ca、(K+Mg)/Ca、N/Ca與蘋果苦痘病的發(fā)生率密切相關。
2 鈣吸收轉運
鈣是土壤中存在的最豐富的礦質元素之一,土壤中的鈣分為無機態(tài)鈣和有機態(tài)鈣兩大類,其中大部分的鈣以無機態(tài)鈣的形式存在于土壤固相中,如:硅酸鈣、硫酸鈣、碳酸鈣等是植物不能直接吸收利用的鈣[26]。在自然條件下,植物主要通過側根發(fā)生部位和尚未木栓化的根尖等幼嫩部分從土壤中獲取鈣,土壤中的鈣離子主要通過質流、擴散和根系截獲等方式到達植物根系表面,再通過質外體和共質體等途徑從表皮細胞轉移到皮層,然后轉移到中柱,最后隨木質部的液流在蒸騰拉力的作用下運輸?shù)街参锏母鱾€部分[27]。內皮層中的凱氏帶和木栓質是質外體運輸?shù)闹饕琳?。質外體中的Ca2+必須通過質膜中的鈣離子通道等方式進入內皮層細胞的細胞質[28-29]。根系對鈣的吸收受外界鈣濃度影響:外界鈣濃度低時,鈣的吸收符合米氏酶動力學曲線,是典型的主動運輸;外界鈣濃度高時,鈣的吸收受濃度影響較大,并與蒸騰速率呈線性關系[30]。
鈣在組織中有兩種運輸途徑,一是通過質外體途徑(包括細胞壁、細胞間隙及木質部導管等部分)擴散,或通過與細胞壁結合位點結合運輸鈣,其動力是擴散和離子交換作用[31];二是共質體運輸,一部分鈣以游離態(tài)的形式通過鈣離子通道、Ca2+/陽離子反向轉運體(CaCA超家族)和P型Ca2+-ATPase等鈣轉運體吸收和轉運鈣離子[32-33]。鈣是不易移動的元素,當鈣到達這些組織或器官后多數(shù)會被固定下來,幾乎不再分配。在細胞水平,植物通過鈣離子轉運系統(tǒng)控制胞質對Ca2+的吸收和轉運,維持細胞質內游離Ca2+的靜息濃度,既能使細胞質中游離Ca2+濃度迅速升高以響應環(huán)境變化,又能使其維持低濃度狀態(tài)以防止其對細胞代謝的毒性[26,34]。
3 蘋果缺鈣機制
3.1 品種和砧木類型與果實鈣含量的關系
果樹中的鈣含量和鈣在果實中的分布很大程度上受遺傳調控,不同品種果實成熟時的鈣濃度由高到低依次為:新紅星>珊夏>粉紅女士>千秋>嘎拉>紅富士>紅將軍>新世界[21]。推測不同品種果實成熟時鈣濃度與鈣轉運蛋白基因表達有關。李寶江等[35]通過對22個蘋果品種的研究發(fā)現(xiàn),不同品種之間的鈣含量存在極顯著差異,其中鈣含量最低的品種(紅玉)與最高的品種(富士)相差10.4倍。果梗是連接結果枝與果實的唯一通道,隨著果實生長,果梗木質部結構逐漸被薄壁細胞擠壓破壞,且果梗維管束的結構和功能逐漸衰退,影響果實鈣吸收。斗南蘋果果實維管束隨著果實生長比富士蘋果更早被破壞,功能更早喪失,影響了果實鈣積累,導致斗南蘋果果實鈣含量低于富士蘋果[17]。與富士蘋果相比,卡塔琳娜蘋果和蜜脆蘋果的鈣含量低,導致果實易得苦痘病。即使是相同品種,不同的砧穗組合,鈣含量的差別也很大:以B9為砧木的富士新梢葉片、短枝葉和果實中的鈣含量比以M9、M26、M27為砧木的高[9]。關軍鋒等[36]通過對以山丁子為根砧,以M26、MM106、M9為中間砧的金冠蘋果鈣含量進行分析,發(fā)現(xiàn)在果實采收初期MM106上的蘋果果肉鈣含量最高。
3.2 樹體因子與果實鈣含量的關系
與中庸樹相比,樹體生長過旺,枝條會與果實競爭鈣,導致果實中的鈣含量降低[37]。保持果樹合理的負載量是控制果實生理病害的一條重要途徑:與高負載量樹相比,低負載量果樹的果實中鈣含量較低,包會英等[38]運用多元分析法研究了秦脆蘋果苦痘病的發(fā)生規(guī)律,發(fā)現(xiàn)苦痘病發(fā)病率與強營養(yǎng)枝(0.54)、長秋梢數(shù)(0.43)呈極顯著正相關,與掛果量(-0.43)呈極顯著負相關。
蘋果幼樹的果實體積偏大,鈣含量低,易發(fā)生鈣稀釋現(xiàn)象,果實易發(fā)生生理病害[39-40]。一般情況下,在蘋果中,果柄鈣濃度高于果肉鈣濃度,且韌皮部鈣含量高于木質部[41]。蘋果果實生長初期,鈣在果實中均勻分布,但隨季節(jié)推移出現(xiàn)濃度差異,果皮中鈣含量最高,果肉最低,種子與果心居中[42]。
3.3 施肥與果實鈣含量的關系
施肥量、肥料元素的配比和施肥時期等施肥技術均與果實鈣含量有重要關系。眾所周知,肥料的使用提高了蘋果的產量和商品率[43];然而不合理施肥會給蘋果生產帶來嚴重后果:施肥量低,不能充分發(fā)揮果樹的潛力;施肥量過高會導致燒根等現(xiàn)象,影響蘋果產量[44]。氮是蛋白質重要的組成成分,對提高果實品質有重要作用,生產過程中與施用硝態(tài)氮相比,施用銨態(tài)氮時,富士蘋果苦痘病發(fā)生率較高[40];鉀是果糖激酶、蘋果酸脫氫酶等酶的激活劑,但過量使用鉀肥會抑制果樹對鈣的吸收[45];鎂是三磷酸腺苷(ATP)酶的激活劑,但鎂與鈣有拮抗作用,大量使用鎂肥同樣會抑制果樹對鈣的吸收,具有類似現(xiàn)象的還有鋅[46]。而施硼肥不僅能促進果樹對鈣的吸收與運輸,提高鈣含量,而且能減少果實生理病害和貯藏期間的腐爛[47]。
3.4 果樹修剪、果實套袋與果實鈣含量的關系
果樹修剪可以增強樹勢,延緩樹體衰老,平衡生長勢,提升優(yōu)果率。在冬季對枝條更新修剪可以提高果實、葉片和枝條中的氮、磷、鉀、鈣含量[48]。樹勢過旺會降低花芽形成率、坐果率,導致果實品質下降。夏季修剪能通過去除生長旺盛的枝條,緩解植株郁閉來提高光合效率,合理夏剪還能通過減少枝條生長與果實對有效鈣的競爭,促進果實鈣積累,降低蘋果苦痘病的發(fā)生率[49]。環(huán)剝能抑制地上部的光合同化物向地下部轉運,促進生殖生長,且有利于花芽形成和提高坐果率,但環(huán)剝會抑制地下部生長,阻礙根系對鈣等營養(yǎng)元素的吸收,最終導致果實鈣含量降低[50]。蘋果套袋可以極大地提高果實的外觀品質,降低農藥的用量,但會抑制蘋果的蒸騰作用,減少果實鈣積累[51]。此外,果實套袋后會影響鈣在果實中的分布:套袋果實果皮中鈣含量明顯低于未套袋果實,而果肉和果心的鈣含量卻高于未套袋果實[52]。
4 預防苦痘病的措施
4.1 合理施肥
蘋果的產量和品質直接影響果農的收入,而鈣作為植物必需的礦質元素在蘋果生產中扮演著重要角色,外施不同種類的鈣肥均能夠提高果實鈣含量、改善果實品質[53]。王樹桐等[54]指出:每生產1000 kg蘋果,果樹需要吸收氮2.5 kg、磷0.4 kg、鉀3.2 kg、鈣3.7 kg。果實中85%的鈣來自于土壤,只有15%的鈣從根外追肥中獲得[55]。通過土壤施肥補鈣是最為傳統(tǒng)的辦法,蘋果園土壤在春、夏、秋3次施肥能顯著增加土壤中總鈣、交換性鈣含量,顯著提高成熟果實鈣的濃度和鈣積累量[56]。楊蘭蘭等[57]通過土施硝酸鈣研究長富2號最佳的補鈣措施,結果表明,在花前、落花后和果實膨大期分3次將硝酸鈣(0.72 kg·株-1·次-1)施于果樹根下的效果最佳。
不利的土壤因素,如土壤鹽漬化、土壤溫度過低會導致根系活力降低,影響蘋果根系的鈣吸收[58]。運輸?shù)侥举|部的鈣離子在蒸騰拉力的帶動下運往地上部,而植物幼嫩部位及果實的蒸騰速率較低,對鈣的競爭小于葉片,加之鈣在韌皮部中移動性較差,難以再運輸和分配到新生部位及果實,因此果實容易發(fā)生缺鈣現(xiàn)象[59]。葉面補鈣作為一種快速、高效的補鈣措施,對提高蘋果品質和產量具有重要作用[60]。外源噴鈣能有效抑制果實變軟,維持細胞壁結構的穩(wěn)定,提高果樹的品質和抗逆性[43,61]。幼果期(落花后3~4周)葉面噴鈣,蘋果樹對鈣的吸收效率最高[62];Kalcsits等[63]通過44Ca示蹤試驗證實了幼果期蜜脆蘋果果實對鈣的吸收效率最高,隨著果實生長,鈣的吸收效率逐漸降低。雖然外施不同種類的鈣肥能夠提高果實鈣含量,但不同鈣肥應用效果不同,Ranjbar等[53]發(fā)現(xiàn),與氯化鈣(CaCl2)處理相比,納米碳酸鈣(CaCO3-nano)處理在改善蘋果儲藏期果實品質方面效果顯著;杜英俊[64]研究表明糖醇鈣800倍液補鈣效果優(yōu)于氨基酸鈣;此外,在果實采收后使用2%糖醇鈣浸泡果實15 min能顯著提高果實硬度,延長蘋果貨架期[65]。在果實發(fā)育過程中使用氯化鈣、納米碳酸鈣和糖醇鈣等鈣肥對提高果實中鈣含量有積極作用。
近些年,越來越多的研究發(fā)現(xiàn)植物生長調節(jié)劑會影響果實鈣積累。鈣作為第二信使,廣泛參與生長素(IAA)、赤霉素(GA)和ABA信號轉導,調節(jié)果實發(fā)育和果實軟化;而果實發(fā)育過程中的激素調節(jié)又可以影響鈣在果實中的分布[37,66]。鈣主要依靠木質部運輸,生長素能改善植物木質部的功能和維管束的數(shù)量,增強蘋果對鈣的運輸[67]。蘋果花后噴施GA3會促進植物營養(yǎng)生長,導致營養(yǎng)器官與果實競爭鈣,增加蘋果患BP的風險,盛花后噴施GA抑制劑,抑制營養(yǎng)生長,則會降低果實中K、Mg、N含量,增加果實中Ca含量,從而降低發(fā)生BP的風險[68]。ABA可以通過降低植物的蒸騰作用效率和維持木質部功能促進果實的鈣積累[69-70]。因此,在補鈣同時添加IAA、ABA或GA抑制劑等激素會增加果實中鈣含量。
4.2 農技措施
改善園區(qū)的栽培條件:通過秋季果園深耕、種植綠肥作物、增施有機肥等途徑改善土壤理化性質,能促進團粒結構形成,還能改善根系通風透水性,保證根系正常的呼吸作用,促進根系對鈣的吸收[71]。及時排灌:遇到旱情及時澆水,雨季注意排水,防止樹下積水成澇,有利于提高養(yǎng)分有效性,還能保證根系正常生長,提高果實鈣含量和品質[72-73]。合理修剪有利于保持良好的樹體結構,改造過密園,減少枝量,能改善樹體通風透光條件,同時可緩解生長過盛的營養(yǎng)器官與果實競爭養(yǎng)分,以免導致鈣養(yǎng)分浪費[74]。
5 總結與展望
蘋果苦痘病成為中國蘋果產業(yè)發(fā)展的一大限制因素,降低蘋果苦痘病的發(fā)生率、提高果實品質是果樹學研究的一大熱點問題。隨著科技的發(fā)展,基因組學已經成為研究果樹鈣吸收轉運機制的重要手段,而隨著鈣吸收轉運機制的揭示,專家學者可以通過轉基因、分子育種等途徑促進鈣轉運蛋白基因表達,增強果樹鈣吸收,促進鈣分配。微生物在土壤養(yǎng)分活化、促進植物生長等方面有重要作用,借助微生物菌或其分泌物來提高蘋果鈣含量是一項具有應用前景的科學研究課題[75]。果樹中的鈣主要依賴根系從土壤中獲得,不同的砧穗組合對提升果樹鈣含量有顯著差異[9]。未來的研究可通過搭配不同的砧穗組合來促進蘋果鈣吸收,提高鈣利用率,降低蘋果苦痘病發(fā)生率。激素對蘋果鈣吸收有重要影響,然而植物生長調節(jié)劑與鈣肥復配對蘋果鈣積累的研究較少[67-70]。蘋果對不同種類鈣肥的吸收利用率不同,可進一步研發(fā)蘋果吸收利用率高的肥料;套袋可以提高果實的品質,但果實套袋會通過影響果實蒸騰作用影響果實鈣吸收,應進一步研究果實套袋的種類,減少因果實套袋對蘋果鈣吸收的影響[76]。筆者在本文中綜述了鈣與蘋果苦痘病的關系、蘋果苦痘病發(fā)生規(guī)律及防治策略的最新進展,為降低蘋果苦痘病發(fā)生率與提高蘋果果實品質提供理論支撐。綜合治理、系統(tǒng)防控以獲得最優(yōu)的蘋果鈣營養(yǎng),能更好地避免果實生理失調,改善果實采收期的物理性狀。
參考文獻References:
[1]?? 王金政,毛志泉,叢佩華,呂德國,馬鋒旺,任小林,束懷瑞,李保華,郭玉蓉,郝玉金,姜遠茂,張新忠,楊欣,曹克強,趙政陽,韓振海,霍學喜,魏欽平. 新中國果樹科學研究70年:蘋果[J]. 果樹學報,2019,36(10):1255-1263.
WANG Jinzheng,MAO Zhiquan,CONG Peihua,L? Deguo,MA Fengwang,REN Xiaolin,SHU Huairui,LI Baohua,GUO Yurong,HAO Yujin,JIANG Yuanmao,ZHANG Xinzhong,YANG Xin,CAO Keqiang,ZHAO Zhengyang,HAN Zhenhai,HUO Xuexi,WEI Qinping. Fruit scientific research in New China in the past 70 years:Apple[J]. Journal of Fruit Science,2019,36(10):1255-1263.
[2]?? 高仁生. 氮素對寒富蘋果苦痘病發(fā)病率的影響[D]. 沈陽:沈陽農業(yè)大學,2020:2-20.
GAO Rensheng. Effect of nitrogen on the incidence of bitter pit of Hanfu apples[D]. Shenyang:Shenyang Agricultural University,2020:2-20.
[3]?? 秦永鳳. ‘瑞陽蘋果苦痘病發(fā)生與鈣素營養(yǎng)關系研究[D]. 楊凌:西北農林科技大學,2021:3-16.
QIN Yongfeng. Study on the relationship between bitter pit of ‘Ruiyang apple and calcium nutrition[D]. Yangling:Northwest A & F University,2021:3-16.
[4]?? 楊蘭蘭,盧凱政,鄒平,齊國輝,張雪梅,李寒,郭素萍. 蘋果苦痘病與果實品質及礦質元素含量的相關性分析[J]. 經濟林研究,2019,37(2):134-140.
YANG Lanlan,LU Kaizheng,ZOU Ping,QI Guohui,ZHANG Xuemei,LI Han,GUO Suping. Correlation analysis of apple bitter pit with fruit quality and mineral element contents in fruits[J]. Non-wood Forest Research,2019,37(2):134-140.
[5]?? WANG G P,WANG J Z,HAN X P,CHEN R,XUE X M. Effects of spraying calcium fertilizer on photosynthesis,mineral content,sugar-acid metabolism and fruit quality of Fuji apples[J]. Agronomy,2022,12(10):2563.
[6]?? 秦永鳳,梁俊,韓明明,何肖肖,趙政陽. ‘瑞陽蘋果苦痘病的發(fā)生與主要營養(yǎng)元素含量的關系[J]. 果樹學報,2020,37(12):1907-1913.
QIN Yongfeng,LIANG Jun,HAN Mingming,HE Xiaoxiao,ZHAO Zhengyang. A study on the relationship between occurrence of bitter pit and contents of main nutritional elements in ‘Ruiyang apple[J]. Journal of Fruit Science,2020,37(12):1907-1913.
[7]?? VAL J,F(xiàn)ERN?NDEZ V,L?PEZ P,PEIR? J M,BLANCO A. Low oxygen treatment prior to cold storage decreases the incidence of bitter pit in ‘Golden Reinders apples[J]. Journal of the Science of Food and Agriculture,2010,90(3):536-540.
[8]?? TORRES E,RECASENS I,LORDAN J,ALEGRE S. Combination of strategies to supply calcium and reduce bitter pit in ‘Golden Delicious apples[J]. Scientia Horticulturae,2017,217:179-188.
[9]?? CHUN I J,F(xiàn)ALLAHI E,COLT W M,SHAFII B,TRIPEPI R R. Effects of rootstocks and microsprinkler fertigation on mineral concentrations,yield,and fruit color of ‘BC-2 Fuji apple[J]. Journal of the American Pomological Society,2002,56(1):4-13.
[10] 董宇,馮云霄,關軍鋒. ‘富士蘋果痘斑病與Ca營養(yǎng)、分布和定位[J]. 中國農業(yè)科學,2013,46(18):3834-3841.
DONG Yu,F(xiàn)ENG Yunxiao,GUAN Junfeng. Lenticel blotch pit and Ca nutrition,distribution and localization in ‘Fuji apple fruit[J]. Scientia Agricultura Sinica,2013,46(18):3834-3841.
[11] JEMRI? T,F(xiàn)RUK I,F(xiàn)RUK M,RADMAN S,SINKOVI? L,F(xiàn)RUK G. Bitter pit in apples:Pre- and postharvest factors:a review[J]. Spanish Journal of Agricultural Research,2016,14(4):e08R01.
[12] KUDLA J,BATISTI? O,HASHIMOTO K. Calcium signals:The lead currency of plant information processing[J]. The Plant Cell,2010,22(3):541-563.
[13] DO AMARANTE C V T,CHAVES D V,ERNANI P R. Composi??o mineral e severidade de ‘Bitter pit em ma??s ‘Catarina[J]. Revista Brasileira De Fruticultura,2006,28(1):51-54.
[14] LARRIGAUDI?RE C,GIN?-BORDONABA J. Oxidative stress and physiological disorders[M]//DE FREITAS S T,PAREEK S. Postharvest physiological disorders in fruits and vegetables. Boca Raton:Taylor & Francis,CRC Press,2019:29-60.
[15] ZHANG D,GE S F,WANG C,JIANG Y M,LI X L,XIA S J,HE J Z,YAO J,ZHANG J N,WANG X Y. The relationship between soil bacteria and metal nutrient availability for uptake of apple trees in Chinese orchards[J]. Plant Growth Regulation,2020,92(2):181-193.
[16] MIQUELOTO A,DO AMARANTE C V T,STEFFENS C A,DOS SANTOS A,MITCHAM E. Relationship between xylem functionality,calcium content and the incidence of bitter pit in apple fruit[J]. Scientia Horticulturae,2014,165:319-323.
[17] JING J Y,XU X,F(xiàn)U W H,ZHANG H,QU S C,WANG S H. Difference in calcium accumulation in the fruit of two apple varieties and its relationship with vascular bundle development in the pedicel[J]. Plant Physiology and Biochemistry,2023,201:107833.
[18] SCHLEGEL T K,SCH?NHERR J. Stage of development affects penetration of calcium chloride into apple fruits[J]. Journal of Plant Nutrition and Soil Science,2002,165(6):738-745.
[19] 陳見暉,周衛(wèi). 蘋果缺鈣對果實鈣組分、亞細胞分布與超微結構的影響[J]. 中國農業(yè)科學,2004,37(4):572-576.
CHEN Jianhui,ZHOU Wei. Effect of calcium deficiency in apple (Malus pumila) fruits on calcium fractions,subcelluar distribution and ultrastructure of pulp cells[J]. Scientia Agricultura Sinica,2004,37(4):572-576.
[20] TAHIR I. Control of pre-and postharvest factors to improve apple quality and storability[D]. Sverige:Swedish University of Agricultural Sciences,2006:38-40.
[21] 鄭偉尉,陳鋒,翟衡,徐月華,張靜. 幾種因素對富士蘋果鈣組分的影響[J]. 果樹學報,2006,23(3):317-321.
ZHENG Weiwei,CHEN Feng,ZHAI Heng,XU Yuehua,ZHANG Jing. Effects of several factors on calcium compounds of Fuji apple[J]. Journal of Fruit Science,2006,23(3):317-321.
[22] 王建國,宋宇琴,吳國良. 蘋果樹的鈣營養(yǎng)及補鈣技術綜述[J]. 中國農學通報,2006,22(8):373-376.
WANG Jianguo,SONG Yuqin,WU Guoliang. The calcium nutrition and calcium treatments of apple tree[J]. Chinese Agricultural Science Bulletin,2006,22(8):373-376.
[23] WATKINS C B. Postharvest physiological disorders of fresh crops[M]// THOMAS B,MURRAY B G,MURPHY D J. Encyclopedia of applied plant sciences. 2nd Ed. New York,USA:Academic Press,2017:315-322.
[24] 汪良駒,姜衛(wèi)兵,何岐峰,范黃斌. 蘋果苦痘病的發(fā)生與鈣、鎂離子及抗氧化酶活性的關系[J]. 園藝學報,2001,28(3):200-205.
WANG Liangju,JIANG Weibing,HE Qifeng,F(xiàn)AN Huangbin. Studies on the relationship of the development of bitter pit in apple fruits with the contents of calcium and magnesium and the activities of antioxidant enzymes[J]. Acta Horticulturae Sinica,2001,28(3):200-205.
[25] 王曉燕,杭波,劉成連,原永兵,李培環(huán),王永章. 套袋蘋果果實中鈣素分布及抗氧化酶活性與苦痘病關系的研究[J]. 安徽農業(yè)科學,2010,38(4):2197-2199.
WANG Xiaoyan,HANG Bo,LIU Chenglian,YUAN Yongbing,LI Peihuan,WANG Yongzhang. Study on the distribution of Ca in bagged apple fruit and relationship between antioxidant enzyme activity and bitter pit disease[J]. Journal of Anhui Agricultural Sciences,2010,38(4):2197-2199.
[26] 靖吉越,王三紅. 園藝植物細胞內鈣穩(wěn)態(tài)調控機制研究進展[J]. 植物生理學報,2023,59(1):13-20.
JING Jiyue,WANG Sanhong. Research progress on the regulation mechanism of intracellular calcium homeostasis in horticultural plants[J]. Plant Physiology Journal,2023,59(1):13-20.
[27] WHITE P J. The pathways of calcium movement to the xylem[J]. Journal of Experimental Botany,2001,52(358):891-899.
[28] MOORE C A,BOWEN H C,SCRASE-FIELD S,KNIGHT M R,WHITE P J. The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling[J]. The Plant Journal,2002,30(4):457-465.
[29] ALCOCK T D,THOMAS C L,LOCHLAINN S ?,PONGRAC P,WILSON M,MOORE C,REYT G,VOGEL-MIKU? K,KELEMEN M,HAYDEN R,WILSON L,STEPHENSON P,?STERGAARD L,IRWIN J A,HAMMOND J P,KING G J,SALT D E,GRAHAM N S,WHITE P J,BROADLEY M R. Magnesium and calcium overaccumulate in the leaves of a schengen 3 mutant of Brassica rapa[J]. Plant Physiology,2021,186(3):1616-1631.
[30] 楊洪強,張連忠,戚金亮,接玉玲. 蘋果砧木根系鈣素吸收動力學研究[J]. 園藝學報,2003,30(3):253-257.
YANG Hongqiang,ZHANG Lianzhong,QI Jinliang,JIE Yuling. The kinetics of calcium uptake in apple rootstock roots[J]. Acta Horticulturae Sinica,2003,30(3):253-257.
[31] XING Y,DU X,XU X X,WANG F,JIANG Y,TIAN G,ZHU Z L,GE S F,JIANG Y M. A balance between calcium and nitrate promotes the growth of M9T337 apple rootstocks[J]. Scientia Horticulturae,2022,300:111063.
[32] YANG H,JIE Y,SHAO X. Regulation of calcium uptake and translocation in plants[C]//ROBINSON T. Ⅸ International symposium on integrating canopy,rootstock and environmental physiology in orchard systems 903,ISHS,2008:1011-1016.
[33] YANG J,LI W H,GUO X,CHEN P H,CHENG Y P,MAO K,MA F W. Cation/Ca2+ exchanger 1 (MdCCX1),a plasma membrane-localized Na+ transporter,enhances plant salt tolerance by inhibiting excessive accumulation of Na+ and reactive oxygen species[J]. Frontiers in Plant Science,2021,12:746189.
[34] LOGAN D C,KNIGHT M R. Mitochondrial and cytosolic calcium dynamics are differentially regulated in plants[J]. Plant Physiology,2003,133(1):21-24.
[35] 李寶江,林桂榮,劉鳳君. 礦質元素含量與蘋果風味品質及耐貯性的關系[J]. 果樹科學,1995,12(3):141-145.
LI Baojiang,LIN Guirong,LIU Fengjun. Relationship between fruit quality,storability and mineral composition of apples[J]. Journal of Fruit Science,1995,12(3):141-145.
[36] 關軍鋒,SAURE M. 果樹鈣素營養(yǎng)與生理[M]. 北京:科學出版社,2005.
GUAN Junfeng,SAURE M. Calcium nutrition and physiology of fruit trees[M]. Beijing:Science Press,2005.
[37] SAURE M C. Calcium translocation to fleshy fruit:Its mechanism and endogenous control[J]. Scientia Horticulturae,2005,105(1):65-89.
[38] 包會英,張瑞,李露露,郝心茹,姚嘉麗,周會玲. ‘秦脆蘋果苦痘病發(fā)生規(guī)律研究[J/OL].西北農業(yè)學報,2023,1-7(2023-10-12) [2024-01-08]. https://link.cnki.net/urlid/61.1220.S.20231010.1051.002.
BAO Huiying,ZHANG Rui,LI Lulu,HAO Xinru,YAO Jiali,ZHOU Huiling. Study on the occurrence pattern of bitter pox disease in ‘Qin Cui apple[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2023,1-7(2023-10-12) [2024-01-08]. https://link.cnki.net/urlid/61.1220.S.20231010.1051.002.
[39] WATKINS C,SCHUPP J,ROSENBERGER D. Calcium nutrition and control of calcium-related disorders[J]. New York Fruit Quarterly,2004,12(2):15-21.
[40] WOJCIK P P. Nutrition and calcium fertilization of apple trees[M]//DRIS R,JAIN S M. Production practices and quality assessment of food crops. Dordrecht,Netherlands:Kluwer Academic Publishers,2005:111-128.
[41] 宋雯佩. 果實攝取鈣的規(guī)律、途徑及調控機理的研究[D]. 廣州:華南農業(yè)大學,2018.
SONG Wenpei. The study of fruit calcium uptake pattern,pathways and regulatory mechanisms[D]. Guangzhou:South China Agricultural University,2018.
[42] WILSDORF R. Evaluating the seasonal changes in calcium concentration and distribution in apple fruit after application of different calcium fertilisation strategies[D]. Stellenbosch:Stellenbosch University,2011:1-13.
[43] 趙佐平,同延安,高義民,付瑩瑩. 不同肥料配比對富士蘋果產量及品質的影響[J]. 植物營養(yǎng)與肥料學報,2009,15(5):1130-1135.
ZHAO Zuoping,TONG Yanan,GAO Yimin,F(xiàn)U Yingying. Effect of different fertilization on yield and quality of Fuji apple[J]. Plant Nutrition and Fertilizer Science,2009,15(5):1130-1135.
[44] PAHALVI H N,RAFIYA L,RASHID S,NISAR B,KAMILI A N. Chemical fertilizers and their impact on soil health[M]//DAR G H,BHAT R A,MEHMOOD M A,HAKEEM K R,HAKEEM K R. Microbiota and Biofertilizers,Vol 2. Cham:Springer International Publishing,2021:1-20.
[45] DILMAGHANI M R,MALAKOUTI M J,NEILSEN G H,F(xiàn)ALLAHI E. Interactive effects of potassium and calcium on K/Ca ratio and its consequences on apple fruit quality in calcareous soils of Iran[J]. Journal of Plant Nutrition,2005,27(7):1149-1162.
[46] BRUNETTO G,DE MELO G W B,TOSELLI M,QUARTIERI M,TAGLIAVINI M. The role of mineral nutrition on yields and fruit quality in grapevine,pear and apple[J]. Revista Brasileira De Fruticultura,2015,37(4):1089-1104.
[47] NEILSEN G H,NEILSEN D,PERYEA F J,F(xiàn)ALLSHI E,F(xiàn)ALLAHI B. Effects of mineral nutrition on fruit quality and nutritional disorders in apples[C]//PESTANA M,CORREIA P J. Ⅵ International Symposium on Mineral Nutrition of Fruit Crops 868,ISHS,2008:49-60.
[48] 李明霞,白崗栓,閆亞丹,耿桂俊,杜社妮. 山地蘋果樹更新修剪對樹體營養(yǎng)及生長的影響[J]. 園藝學報,2011,38(1):139-144.
LI Mingxia,BAI Gangshuan,YAN Yadan,GENG Guijun,DU Sheni. Effects of renewal pruning on mountain apple trees nutrition and growth[J]. Acta Horticulturae Sinica,2011,38(1):139-144.
[49] NAIRA A,MOIEZA A. Summer pruning in fruit trees[J]. African Journal of Agricultural Research,2014,9(2):206-210.
[50] ELIWA G I,ASHOER N E,ALI M M. Effect of girdling and foliar application with some sources of potassium and calcium on fruit drop,yield and fruit quality of persimmon trees[J]. Egyptian Journal of Horticulture,2003,30(3/4):239-251.
[51] 趙同生,于麗辰,焦蕊,許長新,郝寶鋒. 鈣素營養(yǎng)與套袋蘋果苦痘病的關系[J]. 果樹學報,2007,24(5):649-652.
ZHAO Tongsheng,YU Lichen,JIAO Rui,XU Changxin,HAO Baofeng. Study on the relationship between calcium nutrition and bitter pit in bagged apples[J]. Journal of Fruit Science,2007,24(5):649-652.
[52] 李方杰,王磊,劉成連,原永兵,李培環(huán),王永章. 套袋對蘋果果實鈣素吸收與分布的影響[J]. 果樹學報,2007,24(4):517-520.
LI Fangjie,WANG Lei,LIU Chenglian,YUAN Yongbing,LI Peihuan,WANG Yongzhang. Effects of bagging on calcium absorption and distribution in apple fruit[J]. Journal of Fruit Science,2007,24(4):517-520.
[53] RANJBAR S,RAHEMI M,RAMEZANIAN A. Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in apple cv. Red Delicious[J]. Scientia Horticulturae,2018,240:57-64.
[54] 王樹桐,王亞南,曹克強. 近年我國重要蘋果病害發(fā)生概況及研究進展[J]. 植物保護,2018,44(5):13-25.
WANG Shutong,WANG Yanan,CAO Keqiang. Occurrence of and research progress in important apple diseases in China in recent years[J]. Plant Protection,2018,44(5):13-25.
[55] 李鵬,李春越,王益權,焦彩強. 施肥方式和園齡對洛川蘋果園土壤鈣素退化的影響[J]. 應用生態(tài)學報,2017,28(5):1611-1618.
LI Peng,LI Chunyue,WANG Yiquan,JIAO Caiqiang. Effects of fertilizing regime and planting age on soil calcium decline in Luochuan apple orchards[J]. Chinese Journal of Applied Ecology,2017,28(5):1611-1618.
[56] 陳鋒,秦棟,厲恩茂,翟衡. 分期施肥對富士蘋果鈣素吸收的影響[J]. 果樹學報,2008,25(5):630-634.
CHEN Feng,QIN Dong,LI Enmao,ZHAI Heng. Effects of repeated fertilization on the absorption of calcium of Fuji apple tree[J]. Journal of Fruit Science,2008,25(5):630-634.
[57] 楊蘭蘭,盧凱政,齊國輝,張雪梅,李寒,郭素萍. 提高蘋果品質并抑制苦痘病發(fā)生的鈣肥最佳施用量和次數(shù)[J]. 植物營養(yǎng)與肥料學報,2020,26(4):765-772.
YANG Lanlan,LU Kaizheng,QI Guohui,ZHANG Xuemei,LI Han,GUO Suping. Optimum application amount and times of calcium nitrate for better fruit quality and lower incidence of apple bitter pit[J]. Journal of Plant Nutrition and Fertilizers,2020,26(4):765-772.
[58] 查仁明,許雪峰. NaCl脅迫對蘋果屬植物礦質營養(yǎng)吸收的影響[J]. 中國果樹,2001(4):11-14.
ZHA Renming,XU Xuefeng. Effect of NaCl stress on mineral nutrient uptake in apple plants[J]. China Fruits,2001(4):11-14.
[59] WHITE P J,BROADLEY M R. Calcium in plants[J]. Annals of Botany,2003,92(4):487-511.
[60] SALA F,IORDANESCU O,DOBREI A,JIVAN C. Contribution of foliar fertilization and calcium supplement in achieving apple production[J]. Journal of Horticulture,F(xiàn)orestry and Biotechnology,2014,18(2):151-157.
[61] CYBULSKA J,ZDUNEK A,KONSTANKIEWICZ K. Calcium effect on mechanical properties of model cell walls and apple tissue[J]. Journal of Food Engineering,2011,102(3):217-223.
[62] 周衛(wèi),汪洪,趙林萍,林葆. 蘋果(Malus pumila)幼果鈣素吸收特性與激素調控[J]. 中國農業(yè)科學,1999,32(3):52-58.
ZHOU Wei,WANG Hong,ZHAO Linping,LIN Bao. Characteristics of calcium absorption and hormone regulation in young apple (Malus pumila) fruit[J]. Scientia Agricultura Sinica,1999,32(3):52-58.
[63] KALCSITS L,VAN DER HEIJDEN G,REID M,MULLIN K. Calcium absorption during fruit development in ‘Honeycrisp apple measured using 44Ca as a stable isotope tracer[J]. HortScience,2017,52(12):1804-1809.
[64] 杜英俊. 不同蘋果品種鈣含量差異及‘蜜脆蘋果補鈣方法研究[D]. 楊凌:西北農林科技大學,2021.
DU Yingjun. Study on the difference of calcium content in apples varieties and the method of supplementing calcium in ‘Honeycrisp[D]. Yangling:Northwest A & F University,2021.
[65] 裴健翔,李燕青,程存剛,李壯. 不同鈣制劑對‘寒富蘋果果實硬度及相關細胞壁代謝物質的影響[J]. 果樹學報,2018,35(9):1059-1066.
PEI Jianxiang,LI Yanqing,CHENG Cungang,LI Zhuang. Effects of different calcium agents on fruit firmness and related cell wall metabolites in ‘Hanfu apple[J]. Journal of Fruit Science,2018,35(9):1059-1066.
[66] HOCKING B,TYERMAN S D,BURTON R A,GILLIHAM M. Fruit calcium:transport and physiology[J]. Frontiers in Plant Science,2016,7:569.
[67] GRIFFITH C,EINHORN T C. The effect of plant growth regulators on xylem differentiation,water and nutrient transport,and bitter pit susceptibility of apple[J]. Scientia Horticulturae,2023,310:111709.
[68] AMARANTE C V T,STEFFENS C A,DE FREITAS S T,SILVEIRA J P G,DENARDI V,KATSURAYAMA J M. Post bloom spraying apple trees with prohexadione-calcium and gibberellic acid affects vegetative growth,fruit mineral content and bitter pit incidence[J]. Acta Horticulturae,2020,1275:193-200.
[69] KALCSITS L,VAN DER HEIJDEN G,WALIULLAH S,GIORDANI L. S-ABA-induced changes in root to shoot partitioning of root-applied 44Ca in apple (Malus domestica Borkh.)[J]. Trees,2019,33(2):433-442.
[70] ANGMO T S,REHMAN M U,MIR M M,BHAT B H,AHMAD BHAT S,KOSSER S,AHAD S,SHARMA A. Abscisic acid application regulates vascular integrity and calcium allocation within apple fruits[J]. Canadian Journal of Plant Science,2022,102(5):964-972.
[71] 李會科,張廣軍,趙政陽,李凱榮. 生草對黃土高原旱地蘋果園土壤性狀的影響[J]. 草業(yè)學報,2007,16(2):32-39.
LI Huike,ZHANG Guangjun,ZHAO Zhengyang,LI Kairong. Effects of interplanted herbage on soil properties of non-irrigated apple orchards in the Loess Plateau[J]. Acta Prataculturae Sinica,2007,16(2):32-39.
[72] 王進鑫,張曉鵬,高保山,王健. 渭北旱塬矮化富士蘋果幼樹N,K營養(yǎng)狀況分析[J]. 西北農林科技大學學報(自然科學版),2004,32(10):20-24.
WANG Jinxin,ZHANG Xiaopeng,GAO Baoshan,WANG Jian. N and K nutrient status of dwarfing Red Fuji apple young tree under different fertilizer and irrigation conditions[J]. Journal of Northwest A & F University (Natural Science Edition),2004,32(10):20-24.
[73] 穆家壯,徐孫霞,薄海豐,陳家偉,王三紅,渠慎春. 土壤水分對富士蘋果果實外觀品質的影響[J]. 西北植物學報,2023,43(1):88-96.
MU Jiazhuang,XU Sunxia,BO Haifeng,CHEN Jiawei,WANG Sanhong,QU Shenchun. Effect of soil moisture on the fruit appearance quality of Fuji apple[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(1):88-96.
[74] 白崗栓,杜社妮. 陜北丘陵溝壑區(qū)蘋果優(yōu)質豐產栽培體系研究[J]. 水土保持通報,2000,20(2):32-35.
BAI Gangshuan,DU Sheni. Apple cultivation system for top quality and high production in loess hilly-gully region of northern Shaanxi Province[J]. Bulletin of Soil and Water Conservation,2000,20(2):32-35.
[75] FU W H,YAN M Y,ZHAO L,ZENG X Q,CAI B H,QU S C,WANG S H. Inoculation with arbuscular mycorrhizal fungi increase calcium uptake in Malus robusta[J]. Scientia Horticulturae,2023,321:112295.
[76] 文穎強,馬鋒旺. 我國蘋果套袋技術應用與研究進展[J]. 西北農林科技大學學報(自然科學版),2006,34(2):100-104.
WEN Yingqiang,MA Fengwang. An advance in application and study of apple bagging technology in China[J]. Journal of Northwest A & F University (Natural Science Edition),2006,34(2):100-104.