朱吉 付猛
摘 ?????要: 以多巴胺鹽酸鹽為碳源,采用原位浸漬活化工藝制備膨脹石墨/碳化聚多巴胺(EG/CPDA)復(fù)合材料,使用掃描電子顯微鏡、氮氣吸脫附儀、傅里葉變換紅外光譜儀等設(shè)備對EG/CPDA復(fù)合材料進行表征,考查CPDA 微孔吸附結(jié)構(gòu)的形成機理,研究醇水比、氨水濃度、KOH比例和碳化活化順序?qū)?fù)合材料微觀結(jié)構(gòu)及對苯氣體吸附性能的影響。結(jié)果表明:EG/CPDA復(fù)合材料,保留了碳化 PDA 的虛體孔道,架構(gòu)出具有通透性微米級大孔和豐富的納米級小孔的分級多孔碳材料;當(dāng)醇水比為1∶2,氨水量0.4 g,800 ℃預(yù)碳化2 h,與 KOH 按1∶4混合,700 ℃活化1 h時,其比表面積和總孔容可達到1?291 m2/g 和1.28 cm3/g,對苯氣體的吸附量可達1?303 mg/g,并且表面富含的sp2?C/N 有望提高苯氣體對水蒸氣的競爭性吸附能力。
關(guān) ?鍵 ?詞:聚多巴胺;膨脹石墨;苯氣體;吸附性能
中圖分類號:TQ424.29;?X701?????文獻標(biāo)識碼: A ????文章編號: 1004-0935(2024)05-0686-05
苯類有機物廣泛用于化學(xué)工業(yè),包括除草劑,殺蟲劑,油漆,溶劑和藥物的制造[1]。這些苯類有機物具有高毒性和致癌性[2-3],即使在極低濃度下也會長期對人類的生命造成威脅[4-6]。吸附是一項完善而有效地去除及回收污染空氣中苯氣體的技術(shù),特別是在苯氣體濃度較低時更為有效[7-10]。EG孔隙結(jié)構(gòu)豐富,通透性良好,吸附容量大,是一種優(yōu)異的吸附劑,然而,它的微米級孔徑對苯的吸附能力非常有限,無法達到工業(yè)應(yīng)用[11]。CPDA孔徑為0.68~0.88 nm,對揮發(fā)性有機污染物有極高的吸附能力[12-13]。其所擁有的鄰二苯酚和氨基官能團的結(jié)構(gòu)可以和有機-無機表面建立共價鍵和非共價鍵的相互作用,從而使多巴胺緊密附著在材料上[14-15],堿性表面和豐富的C=C鍵,可以促進對酸性和非極性氣體的吸附,同時表面富含的sp2?C/N能夠提供優(yōu)異的疏水性[16],這種富含sp2?C/N的結(jié)構(gòu)可以增強π-π相互作用和苯氣體的選擇性吸附。這使得CPDA對苯氣體有著極其優(yōu)異的吸附性能[17]。作者擬采用EG為基體,在其表面和孔道內(nèi)部合成CPDA,利用EG高的孔隙容量和優(yōu)良的通透特性,結(jié)合CPDA的納米級孔徑和對苯氣體的選擇性吸附,開發(fā)EG為基體的復(fù)合材料。
1 ?實驗部分
1.1 ?實驗原料
實驗主要原料包括多巴胺鹽酸鹽(C8H12ClNO2,阿拉?。?、膨脹石墨(EG,自制)、氨水(NH3·H2O,凌峰)、氫氧化鉀(KOH,強盛)、鹽酸(HCl,國藥)、乙醇(C2H5OH,國藥)。
1.2 ?EG/CPDA復(fù)合材料制備
按醇水比為2∶1、1∶1、1?∶2混合配制150 mL反應(yīng)溶液,然后注入不同體積(0.2 mL、0.4 mL、0.8 mL)的氨水。在溫和攪拌30?min后,加入0.5 g的EG,?待EG在溶液中充分分散后,將0.5?g多巴胺鹽酸鹽加入上述混合物中,將混合溶液在室溫下溫和攪拌超過12?h,過濾并收集所得沉淀物。將沉淀物烘干后,放入管式爐中心,在N2氣氛中預(yù)碳化,再按質(zhì)量比1∶3、1∶4、1∶5加入KOH,充分研磨混合后,放入管式爐中心,在N2氣氛中活化,得到EG/CPDA復(fù)合材料。在此實驗中將樣品標(biāo)記為EG/CPDA-N-(K)-(X),其中N為氨水注入體積(mL),K為加入KOH的質(zhì)量比,X為醇水比。
1.3 ?吸附性能測試
使用干燥劑降低保干器內(nèi)濕度,濕度計測得相對濕度3%,往保干器中加入純苯液體,使其自然揮發(fā)。將M1?(g)樣品置于保干器中,在吸附溫度25 ℃時進行靜態(tài)吸附實驗,密閉保存足夠時間,稱取其質(zhì)量為M2?(g),根據(jù)下式計算樣品對苯氣體的吸附量。
吸附量(mg/g)×1?000
2 ?結(jié)果與討論
2.1 ?FTIR分析
樣品的FTIR光譜如圖1所示。
(a)EG,(b)EG/CPDA,(c)CPDA
從圖中可以看出CPDA在1?713 cm-1處的吸收峰是CO的伸縮振動[18],1?442~1?686 cm-1處的吸收峰是芳環(huán)中C=C /C-N的拉伸振動[19],1?550 cm-1處的吸收峰是N-H鍵的剪切振動[20],1?210 cm-1的吸收峰是C-OH的伸縮振動。EG/CPDA經(jīng)碳化活化反應(yīng)后,在其結(jié)構(gòu)中僅保留了1?542~1?686 cm-1處CC / CN的伸縮振動峰和1?038~1?183 cm-1處C-N的伸縮振動峰[21]。在1?713?cm-1處的CO振動峰和1?210 cm-1處的C-OH伸縮振動峰的消失意味著EG/CPDA消除了表面氧基團。此外,1?550 cm-1的峰隨著煅燒而減少,而在1?038~1?183 cm-1的峰與PDA樣品相比變得更寬。這可能是由于CPDA的NH基團中的N原子部分已嵌入六元環(huán)的缺陷中[22],并且在煅燒過程中在碳骨架中形成CN共價鍵。
2.2 ?SEM分析
圖2為樣品的SEM照片,由圖(a)可知碳化活化同步進行得到的樣品表面呈現(xiàn)出破碎的不規(guī)則形狀,沒有出現(xiàn)文獻報道的微球,這可能是由于碳化活化同時進行,含有大量含氧基團的PDA與KOH發(fā)生劇烈反應(yīng),從而導(dǎo)致了球體破裂。
對比圖(b)、(c)、(d)可以發(fā)現(xiàn),隨著氨水濃度的提高,EG/CPDA復(fù)合上的CPDA粒徑變小,并且有雜質(zhì)生成。Bisaglia等[23]在一項早期DA氧化產(chǎn)物的研究中。發(fā)現(xiàn)動力學(xué)常數(shù)隨著溶液pH值的增加而增加。由于較高pH條件產(chǎn)生的較高動力學(xué)常數(shù)增強了PDA納米顆粒的成核,進而導(dǎo)致較小直徑的顆粒和較高產(chǎn)率。與該發(fā)現(xiàn)相反,當(dāng)反應(yīng)時間延長,超過12?h后,由于DA的氧化和聚合過程中的質(zhì)子釋放,降低了溶液的pH限制了DA的聚合,從而導(dǎo)致PDA的粒徑不變。圖中顯示所得的EG/CPDA表面和孔道覆蓋著一層均勻的球形,與文獻中報道的多巴胺衍生的碳材料一致。
由圖(b)、(e)可知,隨著KOH/ C比的增加,制備的復(fù)合材料表面的CPDA從一開始均勻分散的微球逐漸相互團聚融合變?yōu)闊o定形,表明KOH活化通過蝕刻碳骨架對復(fù)合材料結(jié)構(gòu)有著顯著的轉(zhuǎn)變。
(a) 碳化活化同步進行;(b)EG/CPDA-0.2-(1,4)-(1,2);
(c)EG/CPDA-0.4-(1,4)-(1,2);(d)EG/CPDA-0.8-(1,4)-(1,2);
(e)EG/CPDA-0.2-(1,5)-(1,2);(f)EG/CPDA-0.4-(1,4)-(2,1)
如圖(c)、(f)所示,醇水比為3∶1時,EG/CPDA上只負載了極少的CPDA微球,且粒徑較小,隨著水醇比的增加,EG/CPDA上的CPDA微球數(shù)量增加,并且球的粒徑也增加,當(dāng)醇水比下降到1∶2時,樣品表面密布著一層CPDA微球,樣品繼續(xù)提高水醇比,多巴胺粒徑不再增加,部分微球出現(xiàn)相互連結(jié)的趨勢,并且球體表面有雜質(zhì)生成。此外當(dāng)全部使用乙醇時,制備的復(fù)合材料上沒有CPDA球的存在,這說明在乙醇中DA沒有發(fā)生聚合反應(yīng),由此可知,適量的乙醇可以抑制DA的聚合,因此通過乙醇控制DA的聚合速率,以生成粒徑均勻的PDA微球。
2.3 ?EG/CPDA復(fù)合材料的孔結(jié)構(gòu)
由表1可知,EG/CPDA復(fù)合材料具有比EG更大的比表面積和總孔容,這是因為CPDA在700 ℃以下的活化過程中,反應(yīng)生成的H2、H2O、CO、CO2、氧化鉀(K2O)和碳酸鉀(K2CO3)制造了孔隙[24]。該過程由(1)-(4)幾個反應(yīng)組成,KOH在400 ℃脫水轉(zhuǎn)化為K2O(1),然后H2O和C反應(yīng)生成的CO、CO2、H2(2)(3)逸散后生成孔隙,在約400 ℃時K2O和CO2反應(yīng)生成K2CO3(4)。KOH在約600 ℃時完成反應(yīng),K2CO3在700 ℃以上時再次分解成K2O和CO2(5),K化合物再次被碳還原生成金屬K(6)?[25]。
2KOH → K2O + H2O??????????(1)
C + H2O → CO + H2(2)
CO + H2O → CO2+ H2(3)
CO2+ K2O → K2CO3(4)
K2CO3+ 2C → 2K + 3CO????????(5)
C + K2O → 2K + CO??????????(6)
因此通過不同K化合物與碳的氧化還原反應(yīng)刻蝕碳骨架,生成孔隙[26],活化過程中生成的H2O和CO2,通過與C碳反應(yīng),促進孔隙的進一步形成[27],在活化過程中還原的金屬K,嵌入到碳基質(zhì)的碳晶格中,導(dǎo)致碳晶格膨脹,通過洗滌去除插入的金屬K和其他K化合物后,膨脹的碳晶格不能恢復(fù)到原來的非多孔結(jié)構(gòu),從而獲得高比表面積和高孔容[28]。
圖3顯示樣品對苯氣體的靜態(tài)吸附-時間曲線。從圖中可以看出,隨著吸附時間的增加,樣品對苯氣體的吸附量先增加后趨于平衡狀態(tài),最大吸附量為1?302 mg/g,一方面CPDA的加入修飾了復(fù)合材料的孔徑,引入了能與苯氣體相互作用的官能團,提高了對苯氣體的吸附效率,另一方面EG作為碳骨架提高了復(fù)合材料總的吸附量。
2.4 ?孔徑分布和氮氣吸脫附等溫線
圖4為樣品在77 K下的孔徑分布和氮氣吸脫附等溫線。EG/CPDA表現(xiàn)出典型的I型等溫線特征,在較低壓力下急劇上升,達到拐點后趨于平緩,在相對壓力低于0.1時,是典型的微孔結(jié)構(gòu)吸附作用。EG/CPDA孔徑分布集中在1.2 nm左右,納米級的微孔對苯氣體有極好的吸附能力,樣品表現(xiàn)出小的滯后現(xiàn)象(通常出現(xiàn)在微介孔分子篩中),這說明樣品含有部分介孔。
4 ?結(jié) 論
以DA為炭源,采用原位浸漬活化法制備EG/CPDA復(fù)合材料,其孔結(jié)構(gòu)由作為骨架的EG的大孔和提供微孔和介孔結(jié)構(gòu)的CPDA組成,最終形成具有通透性微米級大孔和豐富的納米級小孔的分級多孔碳材料。結(jié)果表明碳化活化順序、氨水濃度、KOH比例和水醇比對EG/CPDA復(fù)合材料的孔結(jié)構(gòu)和吸附性能有很大的影響。當(dāng)醇水比為1∶2、氨水加入量為0.4 mL、先800 ℃預(yù)碳化2 h,再與KOH按1∶4混合后,700 ℃活化1 h時,EG/CPDA比表面積和總孔容達到1?291 m2/g和1.28 cm3/g,對苯氣體的吸附量為1?303 mg/g。
參考文獻:
[1]LIU H , YU Y , SHAO Q,et al.?Porous polymeric resin for adsorbing low concentration of VOCs: Unveiling adsorption mechanism and effect of VOCs' molecular properties?[J].?Separation and Purification Technology, 2019, 228:?115755.
[2]HE C, CHENG J, ZHANG X,?et al.?Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources[J].?Chemical Reviews,?2019, 119?(7)?:?4471-4568.
[3]WOLKOFF?P. Indoor air pollutants in office environments: assessment of comfort, health, and performance[J]. International Journal of Hygiene and Environmental Health, 2013, 216?(4): 371-394.
[4]YE F, MIAO G, WU L, et al. [O]-induced reactive adsorptive desulfurization of liquid fuel over Ag X O@SBA-15 under ambient conditions[J]. Chemical Engineering Science, 2017,168:225-234.
[5]宋艷會.污水處理場VOCs揮發(fā)性有機氣體的治理[J].當(dāng)代化工,2019,48(7):1542-1545.
[6]MEEHAN-ATRASH J, LUO W, MCWHIRTER K J, et al. The influence of terpenes on the release of volatile organic compounds and active ingredients to cannabis vaping aerosols[J]. RSC Advances, 2021, 11(19):11714-11723.
[7]YANG, CUI?TING?MIAO, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review[J].?Chemical engineering journal, 2019, 370:?1128-1153.
[8]SINAN K, ORHAN?B,??MER, ?AHIN. Equilibrium, Kinetic and Thermodynamic Studies for Dynamic Adsorption of Benzene in Gas Phase onto Activated Carbon Produced from Elaeagnus Angustifolia Seeds[J].Journal of Environmental Chemical Engineering, 2019:?102947.
[9]馮宇,劉平,張立.?VOCs高效吸附材料研究進展[J].?當(dāng)代化工,2022,51(03):671-676.
[10]王旭,吳玉帥,楊欣,等. 沸石分子篩用于VOCs吸附脫除的應(yīng)用研究進展[J]. 化工進展,2021,40(5):2813-2826.
[11]QIN J X , TAN P , JIANG Y,?et al.?Functionalization of metal–organic frameworks with cuprous sites using vapor-induced selective reduction: efficient adsorbents for deep desulfurization[J]. Green Chemistry, 2016, 18 (11): 3210-3215.
[12]XIAN S, XU F, ZHAO Z, et?al. A novel carbonized polydopamine (C-PDA) adsorbent with high CO2Adsorption capacity and water vapor resistance [J]. AIChE Journal,2016,62 (10):3730-3738.
[13]WANG X, WU Y, ZHOU X, et?al. Novel C-PDA adsorbents with high uptake and preferential adsorption of ethane over ethylene[J]. Chem. Eng. Sci. 2016,155:338-347.
[14]LIU W Q, XU D Y, LI X J. Self-Assembly Synthesis of Mulberry-Like Fe/N/S-Doped Highly Porous Carbon Materials: Efficient and Stable Catalysts for Oxygen Reduction Reaction[J]. Chem Nano Mat, 2019, 5 (2): 201-207.
[15]CHENG W, LI Y, LI X, et al. Preparation and characterization of PDA/SiO2?nanofilm constructed macroporous monolith and its application in lipase immobilization[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104: 351-359.
[16]ZHU M, ZHOU K, SUN X, et al. Hydrophobic N-doped porous biocarbon from dopamine for high selective adsorption of p-Xylene under humid conditions[J]. Chemical Engineering Journal, 2017, 317(Complete): 660-672.
[17]LEE H, DELLATORE S M, MILLER W M, et al. Mussel-Inspired Surface Chemistry for Multifunctional Coatings[J]. Science, 2007, 318 (5849): 426-430.
[18]LI L, LI B, ZHANG J. Dopamine-mediated fabrication of ultralight graphene aerogels with low volume shrinkage[J].?Journal of Materials Chemistry,?A. Materials for energy and sustainability,?2016, 4(2):512-518.
[19]ZHOU Z, WANG Q, LIN J, et al. Nucleophilic addition-triggered lanthanide luminescence allows detection of amines by Eu(thenoyltrifluoroacetone)3[J]. Photochemistry and Photobiology, 2012, 88 (4): 840-843.
[20]QU K, WANG J, REN J, et al. Carbon Dots Prepared by Hydrothermal Treatment of Dopamine as an Effective Fluorescent Sensing Platform for the Label-Free Detection of Iron(III) Ions and Dopamine[J]. Chemistry - A European Journal, 2013, 19 (22): 7243-7249.
[21]YU F, CHEN S, CHEN Y, et al. Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 Stainless Steel[J]. Journal of Molecular Structure, 2010, 982 (1-3): 152-161.
[22]CHEN A, YU Y.?Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors[J].Journal of Materials Chemistry A,?2013,1 (4):1045-1047.
[23]BISAGLIA?M, MAMMI?S, BUBACCO?L.?Kinetic and structural analysis of the early oxidation products of dopamine: Analysis of the interactions with alpha-synuclein[J]. Journal of Biological Chemistry, 2007, 282?(21): 15597-15605.
[24]OTOWA?T, TANIBATA?R, ITOH M. Production and adsorption characteristics of MAXSORB: High-surface-area active carbon[J]. Gas Separation and Purification, 1993, 7?(4): 241-245.
[25]RAYMUNDO-PI?ERO?E, AZA?S P, CACCIAGUERRA?T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43?(4): 786-795.
[26]WANG H, GAO Q, HU J. High Hydrogen Storage Capacity of Porous Carbons Prepared by Using Activated Carbon[J]. Journal of the American Chemical Society, 2009, 131?(20): 7016-7022.
[27]BAUMAN?L D, FINN J E, KLISS?M. Adsorption Processes in Spacecraft Environmental Control and Life Support Systems[J]. Studies in Surface Science and Catalysis, 1999, 120:?455-471.
[28]ROMANOS J, BECKNER?M, RASH T, et al. Nanospace engineering of KOH activated carbon[J]. Nanotechnology,?2012,?23?(1): 15401-?15406.
Preparation of EG/CPDA Composites and Their
Adsorption of?Benzene Gas
ZHU Jia,?FU Mengb
(a. School of Petroleum and Chemical Engineering; b. School of Materials Science and Engineering, Changzhou University, Changzhou Jiangsu 213164,?China)
Abstract:?Expanded graphite/carbonated polydopamine (EG/CPDA) composites were prepared by an in situ impregnation activation process using dopamine hydrochloride as the carbon source, and the EG/CPDA composites were characterized using scanning electron microscopy, nitrogen adsorption and desorption apparatus, Fourier transform infrared spectroscopy, etc. The formation mechanism of CPDA microporous adsorption structure was investigated, and the effects of alcohol-to-water ratio, ammonia concentration, The effects of alcohol-water ratio, ammonia concentration, KOH ratio and carbonization activation sequence on the microstructure and the adsorption performance of benzene gas were investigated. The results showed that the EG/CPDA composites retained the virtual pore channels of carbonized PDA, architected a graded porous carbon material with permeable micron-level macropores and abundant nanometer-level micropores; when the alcohol-to-water ratio was 1∶2, ammonia amount was 0.4 g, it?was?pre-carbonated at 800 ℃?for 2 h, mixed with KOH at 1∶4 and activated at 700 ℃?for 1 h, the specific surface area and total pore volume could reach 1 291 m2·g-1and 1.28 cm3·g-1, and the adsorption capacity of benzene gas could reach 1 303 mg·g-1. Moreover, the sp2C/N enriched surface was?expected to improve the competitive adsorption of benzene gas to?water vapor.
Key words:?Polydopamine; Expanded graphite; Benzene gas; Adsorption properties
收稿日期: 2023-08-15
作者簡介: 朱吉( 1993-),男,江蘇省揚州市人,助理實驗師,碩士,2019年畢業(yè)于常州大學(xué)材料工程專業(yè),研究方向:新型炭炭復(fù)合材料。
通信作者: 付猛( 1973-),男,副教授,博士,研究方向:碳質(zhì)吸附材料。