国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

巖土高效溶蝕菌株Bt NL-11發(fā)酵條件優(yōu)化及應(yīng)用效果分析

2024-06-16 00:00:00王凌劍賈趙輝張金池唐興港孫昕孟苗婧劉鑫
關(guān)鍵詞:生態(tài)修復(fù)

摘要:【目的】為科學(xué)治理廢棄礦山邊坡,探究土壤細(xì)菌永久綠化法在生態(tài)修復(fù)中的應(yīng)用與推廣,對分離篩選出的高效溶蝕菌株進(jìn)行發(fā)酵條件優(yōu)化及應(yīng)用效果分析?!痉椒ā繌哪暇┠桓斤L(fēng)化巖壁土壤中分離出多種溶蝕微生物,并從中挑選出1種表現(xiàn)突出的溶蝕細(xì)菌菌株NL-11[經(jīng)16S rRNA鑒定為蘇云金芽孢桿菌(Bacillus thuringiensis,Bt)]進(jìn)行發(fā)酵條件優(yōu)化,利用盆栽試驗觀測其應(yīng)用效果。首先利用單因素和Plackett Burman(PB)試驗篩選出影響菌株生長的3個主要因素,即裝液量、培養(yǎng)溫度和時間;在此基礎(chǔ)上使用最陡爬坡路徑逼近最大響應(yīng)區(qū)域;再利用Box-Behnken試驗設(shè)計及響應(yīng)面分析法進(jìn)行回歸分析;最后通過比較預(yù)測值與實測值驗證模型可靠性。利用優(yōu)化結(jié)果制備菌液,將制備好的菌液調(diào)節(jié)為低(10 cfu/mL)、中(1×105 cfu/mL)和高(1×109 cfu/mL)3種菌液濃度拌入基質(zhì)(分別為T1、T2、T3處理)進(jìn)行盆栽試驗,設(shè)置不加菌液的處理為空白對照(CK),研究不同濃度菌液對礦物風(fēng)化、植物和根系生長的促進(jìn)作用?!窘Y(jié)果】模型準(zhǔn)確可靠,菌株NL-11的最佳發(fā)酵培養(yǎng)條件為:裝液量19.51 mL,接種量2%(體積分?jǐn)?shù)),初始pH 7.0,培養(yǎng)溫度30.30 ℃,培養(yǎng)時間22.07 h,在此優(yōu)化條件下發(fā)酵液中活菌數(shù)達(dá)到1.47×1010 cfu/mL,是未優(yōu)化前的2.03倍。盆栽試驗結(jié)果表明,菌株NL-11能夠促進(jìn)礦物風(fēng)化,以高濃度菌液效果最顯著;NL-11能夠促進(jìn)礦質(zhì)養(yǎng)分溶解,以高濃度菌液效果最顯著;NL-11能夠促進(jìn)植物及根系生長,以中濃度效果最顯著。【結(jié)論】通過優(yōu)化試驗顯著提高了菌株NL-11的發(fā)酵活菌產(chǎn)量,為菌株在邊坡治理中的應(yīng)用提供技術(shù)支持,綜合評價菌株的應(yīng)用效果并考慮生產(chǎn)成本等因素,噴播實踐中的合適菌液濃度為1×105 cfu/mL。

關(guān)鍵詞:生態(tài)修復(fù);蘇云金芽孢桿菌;發(fā)酵條件優(yōu)化;Box-Behnken設(shè)計

中圖分類號:X751;S732;Q89 文獻(xiàn)標(biāo)志碼:A開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):

文章編號:1000-2006(2024)03-0071-10

Optimization for fermentation conditions and analysis of application effect for high efficiency dissolution strain Bt NL-11 from Bacillus thuringiensis

WANG Lingjian1,2, JIA Zhaohui1, ZHANG Jinchi1*, TANG Xinggang1, SUN Xin1, MENG Miaojing1, LIU Xin1,2

(1. Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, College of Water and Soil Coservation, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; 2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China)

Abstract:【Objective】This study aimed to scientifically manage abandoned mine slopes, explore the application and promotion of the soil bacteria permanent greening method in restoration, optimize the fermentation conditions, and analyze the application effect of the isolated and screened high-efficiency solubilizing bacteria.【Method】A variety of solubilizing microorganisms were isolated from the weathered rock wall soil in Nanjing Mufu Mountain, and a prominent solubilizing strain, NL-11, identified as Bacillus thuringiensis by 16S rRNA, was selected to optimize fermentation conditions, and its application effect was observed with the potting test. The three main factors affecting the growth of the strain (liquid volume, temperature, and time), were screened using the univariate and Plackett Burman tests; on this basis, the steepest climbing path was used to approximate the maximum response area; then, the Box-Behnken experimental design was used and the response surface analysis method was used for regression analysis. Finally, model reliability was verified by comparing the predicted values with the measured values. The optimized results were used to prepare the bacterial solution, and then adjusted to low (10 cfu/mL), medium (1 × 105 cfu/mL), and high (1 × 109 cfu/mL) concentrations and mixed into the substrate (T1, T2, and T3 treatments, respectively) for the pot experiments, and the treatment without the bacterial solution was set as a blank control (CK) to study the effects of the different bacterial solution concentrations on mineral weathering and plant and root growth.【Result】The model was accurate and reliable, and the optimal fermentation culture conditions for NL-11 were as follows: a liquid volume of 19.51 mL, an inoculum level of 2%, an initial pH of 7.0, a temperature of 30.30 ℃, and a time of 22.07 h. The number of viable bacteria in the fermentation broth under these optimized conditions reached 1.47 × 1010 cfu/mL, which was 2.03 times higher than that before optimization. The results of the pot tests showed that strain NL-11 could promote mineral weathering, and the effect of the high concentration of the bacterial solution was the most significant. Furthermore, strain NL-11 could promote the dissolution of mineral nutrients, and the effect of the high concentration of the bacterial solution was the most significant. Strain NL-11 could also promote plant and root growth, and the effect of the medium concentration was the most significant. 【Conclusion】The optimization test significantly improved the production of fermentation of the live bacteria of strain NL-11 and provided technical support for the application of the strain in the management of slopes. The suitable concentration of the bacterial solution in spraying practice is 1 × 105 cfu/mL by the comprehensive evaluation of the application effect and consideration of the production cost and other factors.

Keywords:ecological restoration; Bacillus thuringiensis; fermentation process optimization; Box-Behnken design

開發(fā)利用礦產(chǎn)資源促進(jìn)了區(qū)域經(jīng)濟(jì)和社會發(fā)展,但同時也產(chǎn)生了一系列環(huán)境和社會問題[1-4],出現(xiàn)了大量的裸露石質(zhì)邊坡。國際上石質(zhì)邊坡復(fù)綠一直是礦山生態(tài)恢復(fù)的重點(diǎn)難題[5-8],噴播綠化法是石質(zhì)邊坡生態(tài)修復(fù)的一種重要方法[9-10],近年來,日本科學(xué)家通過在基質(zhì)中添加有效土壤菌的方式對其進(jìn)行改良,發(fā)明了一種新型護(hù)坡綠化技術(shù)——土壤菌永久綠化法,即利用有效土壤菌對巖石的風(fēng)化作用,加快巖石的土壤化進(jìn)程,人為制造出具高次團(tuán)粒結(jié)構(gòu)并可棲息各種小型土壤動物與微生物的土壤,模擬自然生境,促進(jìn)植物繁育生長,克服了客土噴播技術(shù)綠化效果難以長期維持的缺陷[11-13]。由于缺乏優(yōu)質(zhì)的土壤有效菌和專業(yè)的技術(shù)指導(dǎo),土壤菌永久綠化法在我國的應(yīng)用還存在諸多困難[14-15]。

目前,全世界被保藏的蘇云金芽孢桿菌估計有60 000株,分布于世界各地[16],在植物保護(hù)和害蟲防治等方面已得到廣泛應(yīng)用[17-18]。關(guān)于其培養(yǎng)優(yōu)化已有很多研究報道,楊靜等[19]為提高蘇云金芽孢桿菌菌株Ⅸ17的胞外多糖(EPS)產(chǎn)量,通過響應(yīng)面試驗優(yōu)化發(fā)酵培養(yǎng)基和發(fā)酵培養(yǎng)條件,優(yōu)化后的EPS產(chǎn)量與初始發(fā)酵工藝相比,提高了133.3%;宋健等[20]利用單因素和響應(yīng)面法對蘇云金芽孢桿菌菌株JQD117發(fā)酵條件進(jìn)行優(yōu)化,提高其芽孢產(chǎn)量。由于同種菌株的來源和發(fā)酵目的差異對營養(yǎng)的需求不同,最適發(fā)酵條件也有差異[2,21-23]。因此,對菌種發(fā)酵條件的優(yōu)化是獲得最佳生產(chǎn)效率和經(jīng)濟(jì)效益的基礎(chǔ)[24]。

為獲得適應(yīng)性強(qiáng)且安全高效的土壤微生物,研究團(tuán)隊從南京幕府山風(fēng)化巖壁土壤中分離、挑選出1株高效溶蝕細(xì)菌NL-11[經(jīng)16S rRNA鑒定為蘇云金芽孢桿菌(Bacillus thuringiensis,Bt)][15]。此次試驗利用單因素法、PB以及響應(yīng)面設(shè)計,對能夠高效溶蝕碳酸鹽巖的菌株NL-11進(jìn)行發(fā)酵參數(shù)優(yōu)化,以獲得高密度、低成本的菌液。利用優(yōu)化結(jié)果制備菌液進(jìn)行盆栽試驗,探究菌株對基質(zhì)養(yǎng)分及紫穗槐生長的影響,評估其在噴播實踐中作為土壤有效菌的應(yīng)用潛力,為形成并推廣具有中國特色的溶蝕菌種綠化法提供數(shù)據(jù)和理論支持。

1 材料與方法

1.1 供試材料

菌株:蘇云金芽孢桿菌菌株NL-11 分離自南京幕府山風(fēng)化巖壁表層土壤,經(jīng)16S rRNA基因序列分析,鑒定為蘇云金芽孢桿菌(Bacillus thuringiensis,Bt)[15],現(xiàn)保存于中國典型培養(yǎng)物保藏中心(CCTCC NO:M2012453)。

NA培養(yǎng)基:蛋白胨10.0 g/L,牛肉膏3.0 g/L,氯化鈉5.0 g/L,瓊脂18.0 g/L。

NB培養(yǎng)基:蛋白胨10.0 g/L,牛肉膏3.0 g/L,氯化鈉5.0 g/L。

基質(zhì):基礎(chǔ)基質(zhì)由土壤、泥炭土、木纖維、黏結(jié)劑、保水劑按比例配制(質(zhì)量比例為土壤75.82%,泥炭土10%、木纖維14%,保水劑1‰,黏合劑0.8‰),調(diào)節(jié)含水量至50%,攪拌均勻后,121 ℃滅菌40 min,保存?zhèn)溆谩;|(zhì)土壤采自幕府山的林地;基質(zhì)泥炭土、木纖維、黏結(jié)劑、保水劑購自Eco工程綠化公司。

礦物:采自幕府山石質(zhì)邊坡,根據(jù)X射線衍射結(jié)果得出其礦物組成(化學(xué)成分及質(zhì)量占比為:CaO,62.34%;MgO,27.93%;K2O,1.75%;Fe2O3,3%;Al2O3,0.61%;SiO2,1.35%;Na2O,0.04%;其他2.98%)。將礦物洗凈、粉碎過篩(孔徑0.282 mm),滅菌備用。

植物:紫穗槐(Amorpha fruticosa),購于德陽種業(yè)有限公司。

1.2 試驗設(shè)計

1.2.1 種子液制備

將保存良好的蘇云金芽孢桿菌菌株NL-11植于NA培養(yǎng)基,30 ℃培養(yǎng)24~48 h,選擇發(fā)育較好的菌落,轉(zhuǎn)移至NB培養(yǎng)基,30 ℃震蕩(175 r/min)24 h制成種子液,保存?zhèn)溆谩?/p>

1.2.2 菌株NL-11高密度發(fā)酵條件優(yōu)化

1)發(fā)酵條件優(yōu)化單因素試驗。將種子液接入NB培養(yǎng)基,在初始發(fā)酵條件(時間24 h、接種量5%、裝液量20 mL/150 mL、溫度30 ℃、pH 7.0、轉(zhuǎn)速175 r/min)基礎(chǔ)上,分別考察時間(14、16、18、20、22、24、26 h)、接種量(1%、2%、3%、4%、5%、6%、7%,均為體積分?jǐn)?shù))、裝液量(10、20、30、40、50、60、70 mL,裝于150 mL三角瓶中)、培養(yǎng)溫度(26、28、30、32、34、36、38 ℃)、pH(5.5、6.0、6.5、7.0、7.5、8.0、8.5)等發(fā)酵參數(shù)對菌株NL-11生長狀況的影響。

2)Plackett-Burman(PB)試驗設(shè)計。根據(jù)單因素試驗結(jié)果,利用Design-Expert 8.0的PB法對裝液量、pH、時間、接種量、溫度等5個因素進(jìn)行考察,每個因素取兩個水平(試驗設(shè)計見表1),以發(fā)酵液OD600值作為響應(yīng)值篩選出影響菌株NL-11生長狀況的重要因素,進(jìn)行下一步試驗。

3)最陡爬坡試驗。

根據(jù)PB試驗結(jié)果得出對菌株NL-11生長狀況影響最顯著的3個因素,即裝液量、時間和溫度,根據(jù)3個因素效應(yīng)大小的比例設(shè)定它們的變化方向及步長,安排最陡爬坡試驗來確定因素的中心點(diǎn),從而逼近最大響應(yīng)值(發(fā)酵液OD600值)。

4)響應(yīng)面試驗優(yōu)化。

在PB試驗和最陡爬坡試驗基礎(chǔ)上,根據(jù)Box-Behnken試驗設(shè)計原理,以發(fā)酵液OD600值為響應(yīng)值,利用Design-Expert 8.0軟件設(shè)計3因素3水平的響應(yīng)面試驗(試驗設(shè)計見表2),其中包括12個析因試驗和5個中心試驗,并對結(jié)果進(jìn)行響應(yīng)面分析,通過比較預(yù)測值和試驗值驗證模型的有效性。

1.2.3 盆栽試驗及處理

采用優(yōu)化后的發(fā)酵工藝制備菌液,將100 mL菌液與基礎(chǔ)基質(zhì)(3.5 kg)充分混合裝盆(盆底放有100 g礦物),以未添加菌液處理作為對照。試驗設(shè)置4個處理,分別為T1(低濃度,菌液濃度為10 cfu/mL)、T2(中濃度,菌液濃度為1×105 cfu/mL)、T3(高濃度,菌液濃度為1×109 cfu/mL)、CK(未添加菌液),每個處理3個重復(fù)?;|(zhì)放置5 d后栽植紫穗槐,于溫室內(nèi)常規(guī)管理90 d后進(jìn)行樣品采集和指標(biāo)測定。

1.3 測試方法

1.3.1 菌株生長曲線繪制

按照比濁法測定菌體密度,以O(shè)D600值表示;稀釋瓊脂平板計數(shù)法測定菌落總數(shù),繪制菌株NL-11的生長曲線。

1.3.2 礦物表面形貌觀測

收集待測礦物,干燥處理,固定噴金,用掃描電鏡(Quanta 200,F(xiàn)EI公司)觀察表面形貌。

1.3.3 基質(zhì)指標(biāo)測定

參考文獻(xiàn)[25]測定以下指標(biāo):基質(zhì)全鈣、鎂采用消煮-原子吸收分光光度法測定;水溶性鈣、鎂采用振蕩-原子吸收分光光度法測定;交換性鈣、鎂采用乙酸銨振蕩-原子吸收分光光度法測定;基質(zhì)速效氮采用堿解擴(kuò)散吸收法測定;速效磷采用碳酸氫鈉法測定;速效鉀采用醋酸銨-火焰光度法測定;有機(jī)質(zhì)采用重鉻酸鉀氧化法測定。

1.3.4 植物生長指標(biāo)測定

分別利用皮尺、游標(biāo)卡尺和LI-3000C便攜式葉面積儀(哈量605系列,哈量工具有限公司)分別測定幼苗的苗高、地徑和整株葉面積指數(shù);利用Epson perfection V 700根系掃描儀測定根系生長指標(biāo)(根長、根表面積、根直徑、根體積)。

1.4 數(shù)據(jù)處理

使用Excel、SPSS 20.0、Design-Expert 8.0、Origin 8.5,Photoshop CS6等軟件進(jìn)行試驗設(shè)計、數(shù)據(jù)分析和圖件繪制。

2 結(jié)果與分析

2.1 菌株 NL-11培養(yǎng)條件優(yōu)化

2.1.1 菌株 NL-11培養(yǎng)條件單因素試驗

菌株NL-11培養(yǎng)條件單因素試驗結(jié)果如圖1所示。

由圖1可知,初始裝液量為10~70 mL時,最終發(fā)酵液OD600值隨初始裝液量的增加呈先增加后降低,當(dāng)初始裝液量為30 mL時,發(fā)酵液OD600值達(dá)到最大值(發(fā)酵液活菌數(shù)達(dá)到1.00×1010 cfu/mL)。初始pH為5.5~8.5時,隨著pH的增大,最終發(fā)酵液OD600值呈現(xiàn)先增加后減少的趨勢,當(dāng)初始pH為6.5時,發(fā)酵液OD600值達(dá)到最大,活菌數(shù)達(dá)到最大(8.46×109 cfu/mL)。試驗表明菌株NL-11在微酸性環(huán)境中長勢較好,過酸或偏堿性條件均不利于該菌的生長。在發(fā)酵初期,菌株快速生長,發(fā)酵液活菌數(shù)顯著增加;當(dāng)培養(yǎng)至20 h時,該菌液的OD600值達(dá)到最大值,活菌數(shù)量達(dá)到9.87×109 cfu/mL;隨著發(fā)酵時間延長,菌株生長進(jìn)入衰亡期,由于營養(yǎng)的匱乏,以及自身的生長周期限制,發(fā)酵液OD600值顯著降低。當(dāng)接種量為1%~3%(體積分?jǐn)?shù),下同)時,菌株的發(fā)酵液OD600值隨著接種量的增加而升高,當(dāng)接種量為3%時,發(fā)酵液OD600值達(dá)到最大值(活菌數(shù)達(dá)8.85×109 cfu/mL);接種量超過3%,隨著接種量的增加,最終發(fā)酵液OD600值顯著降低。這可能是由于接種量過大,導(dǎo)致菌體前期生長較快,消耗營養(yǎng)物質(zhì)多,同時產(chǎn)生了大量代謝廢物[26-27],從而抑制了菌體的正常生長。隨著培養(yǎng)溫度的升高,發(fā)酵液OD600值先增加后減少,當(dāng)培養(yǎng)溫度為28 ℃時,發(fā)酵液OD600值最大,活菌達(dá)到9.49×109 cfu/mL;當(dāng)溫度高于28 ℃時,發(fā)酵液活菌數(shù)顯著下降。因此,28 ℃為菌株生長的適宜溫度。

2.1.2 Plackett-Burman(PB)及爬坡試驗

PB試驗設(shè)計結(jié)果與回歸分析見表3。對PB試驗結(jié)果進(jìn)行分析可知,回歸模型Plt;0.05,回歸模型顯著。PB試驗結(jié)果的回歸分析表明,因素B、D的P值分別為0.488 8、0.055 1(Pgt;0.05),說明在測試范圍內(nèi),這些因素對響應(yīng)值無顯著影響;因素A、C、E的P值分別為0.0345、lt;0.000 1、0.004 9(Plt;0.05或Plt;0.01),這3個因素對響應(yīng)值有極顯著或顯著影響。各因素對菌株生長狀況影響的重要性排序為:Cgt;Egt;Agt;Dgt;B,因此應(yīng)選擇A、C、E進(jìn)行后續(xù)試驗。

最陡爬坡試驗可以快速確定最佳中心,根據(jù)PB試驗結(jié)果篩選出因素A、C、E作為最陡爬坡試驗的考察對象,固定因素B為7.0,因素D為2%。根據(jù)PB試驗結(jié)果可知,因素C和E對響應(yīng)值有顯著正效應(yīng),應(yīng)增加;因素A有顯著負(fù)效應(yīng),應(yīng)減小。試驗設(shè)計及結(jié)果如表4所示,3個因素的最佳組合因子在第3組試驗附近,即當(dāng)因素A為20 mL,因素C為21 h,因素E為30 ℃時響應(yīng)值最大,故以試驗3的條件為響應(yīng)面試驗的中心點(diǎn)。

2.1.3 響應(yīng)面分析

根據(jù)PB試驗和最陡爬坡試驗結(jié)果,以因素A、C、E為變量,以發(fā)酵液OD600值為響應(yīng)值(Y),進(jìn)行響應(yīng)面試驗,利用Design-Expert 8.0軟件對試驗結(jié)果構(gòu)建回歸模型,并進(jìn)行方差分析(表5)。由表5可知,響應(yīng)值對因素A、C、E的回歸方程為:Y=2.33-0.11A+0.12C+0.15E-0.053AC-0.048AE+0.031CE-0.3A2-0.25C2-0.16E2。模型具有極高的顯著性(Plt;0.01),擬合精度好,可以利用其進(jìn)行后續(xù)的優(yōu)化設(shè)計;失擬項不顯著,試驗可信,誤差小。模型回歸方程決定系數(shù)為R2=0.996 5,且與R2adj的值相近,說明模型擬合度較好,可以很好地模擬不同條件下發(fā)酵液OD600值的理論預(yù)測;變異系數(shù)(C.V.)為1.26%lt;10%,說明二次回歸方程可以很好地對響應(yīng)值進(jìn)行預(yù)測,不需引入更高次項。方差分析結(jié)果表明:因素A、C、E的一次項和二次項均對響應(yīng)值的回歸模型影響極顯著(Plt;0.01);因素A和E、A和C的交互作用對響應(yīng)值影響極顯著(Plt;0.01);因素E和C的交互對響應(yīng)值影響顯著(Plt;0.05)。由F值可知,各因素對發(fā)酵液OD600值的影響次序為Cgt;Egt;A,與PB試驗結(jié)果相同。

各因素交互作用影響的顯著性可通過等高線圖的形狀來反映,當(dāng)?shù)雀呔€圖呈橢圓形時,交互作用顯著,而呈圓形時,表示不顯著。因此,可以通過響應(yīng)曲面和等高線圖直觀地觀察到各因素間的交互作用對響應(yīng)值的影響(圖2)。由圖2可知,因素A、C、E均對響應(yīng)指標(biāo)有顯著影響,其中AC、AE的交互作用相對更強(qiáng),對響應(yīng)值的影響更大,響應(yīng)面坡度更陡,等高線呈現(xiàn)的橢圓形角度更大;CE響應(yīng)面坡度相對平緩,等高線所呈橢圓角度相對較小,更趨近于圓形。

由Design-Expert 8.0軟件分析結(jié)果可知,菌株預(yù)測最佳發(fā)酵條件為:初始pH 7.0,接種量2%,裝液量19.51 mL,培養(yǎng)溫度30.30 ℃,培養(yǎng)時間22.07 h,相應(yīng)的發(fā)酵液OD600值為2.404,以此條件進(jìn)行了3組平行試驗,實際測得發(fā)酵液OD600值為2.401(活菌數(shù)為1.472×1010 cfu/mL),與預(yù)測值相接近,證實采用響應(yīng)面優(yōu)化得到的發(fā)酵條件準(zhǔn)確可靠,具有實用價值。

2.2 菌株 NL-11對礦物表面形貌的影響

經(jīng)過細(xì)菌作用的礦石顆粒表面有明顯的溶蝕坑,與基質(zhì)接觸的表面積增加,結(jié)構(gòu)變得疏松;對照的礦石顆粒表面無明顯的溶蝕痕跡(圖3)。添加不同濃度的菌液對礦物表面的溶蝕效果差異明顯,其中T3處理中菌株對礦物的溶蝕作用最強(qiáng),礦物表面大顆粒棱角磨平,數(shù)量減少,小顆粒增多,大顆粒的孔隙逐漸被風(fēng)化殘體或細(xì)小的礦粉顆粒填滿。

2.3 菌株 NL-11對基質(zhì)養(yǎng)分的影響

經(jīng)分析(表6)可知,在基質(zhì)中加入菌液,基質(zhì)的有機(jī)質(zhì)、速效氮、速效磷和速效鉀含量、有效鈣、鎂離子含量與對照相比均有增加,其中, T2、T3處理變化顯著(Plt;0.05),各處理的應(yīng)用效果表現(xiàn)為CKlt;T1lt;T2lt;T3;基質(zhì)的總鈣、鎂含量與對照相比均有減少,其中,T2、T3處理變化顯著(Plt;0.05),各處理應(yīng)用效果表現(xiàn)為T3lt;T2lt;T1lt;CK。綜上,在基質(zhì)中添加菌液有助于基質(zhì)養(yǎng)分的溶解釋放,提高土壤肥力,T3處理的綜合效果最佳。

2.4 菌株 NL-11對紫穗槐生長的影響

經(jīng)分析(表7)可知,在基質(zhì)中加入菌液,紫穗槐的苗高、地徑、葉面積均顯著高于對照(Plt;0.05)。各處理對紫穗槐植生長的促進(jìn)效果表現(xiàn)為T2gt;T3gt;T1gt;CK,且不同處理間各指標(biāo)差異顯著。T2處理促進(jìn)紫穗槐生長效果最佳,其苗高、地徑、葉面積與對照相比,分別提高了62.97%、52.78%、124.07%。在基質(zhì)中加入菌液,紫穗槐的根長、根平均直徑、根表面積、根體積均顯著高于對照(Plt;0.05)。各處理對紫穗槐根系生長的促進(jìn)效果表現(xiàn)為T2gt;T3gt;T1gt;CK。其中T2處理對紫穗槐根系生長的促進(jìn)效果最佳。

3 討 論

近年來,中國大力開展生態(tài)文明建設(shè),為落實碳達(dá)峰、碳中和以及“1+N”的政策體系[28-30],不斷提高重要生態(tài)系統(tǒng)的科學(xué)治理水平。為了科學(xué)修復(fù)巖質(zhì)邊坡,解決邊坡綠化效果難以長期維持的問題,研究團(tuán)隊從南京幕府山巖質(zhì)邊坡風(fēng)化表層土壤中分離出多種微生物用以改良傳統(tǒng)噴播綠化技術(shù),以期形成具有中國特色的溶蝕菌種綠化法。在之前的研究中,利用控制試驗評估了不同菌株的增溶效果[31-33],并鑒定出16株表現(xiàn)較好的菌株,對其中4株申請了專利保護(hù)[15,34-36]。此次研究挑選了表現(xiàn)突出且具有專利保護(hù)的蘇云金芽孢桿菌NL-11進(jìn)行發(fā)酵條件優(yōu)化試驗,為溶蝕菌種綠化法在礦山修復(fù)中的應(yīng)用和推廣提供數(shù)據(jù)支撐和技術(shù)支持。單因素法、正交試驗法和響應(yīng)面優(yōu)化法是微生物發(fā)酵條件優(yōu)化中被廣泛應(yīng)用的方法[37]。但傳統(tǒng)的單因素法試驗次數(shù)多,試驗周期長,且無法分析因素間的交互作用。正交試驗法相較于單因素法有很多優(yōu)越性,但當(dāng)考慮因子的交互作用時,試驗工作量會大大增加;且正交試驗是對各個孤立的試驗點(diǎn)進(jìn)行分析,試驗結(jié)果準(zhǔn)確性較低。響應(yīng)面法(RSM)考慮了試驗的隨機(jī)誤差以及因素間的交互作用,同時,其預(yù)測模型是連續(xù)的,可對試驗各個水平進(jìn)行連續(xù)的分析以得到整個區(qū)域的最優(yōu)值[38-39]。

響應(yīng)面法是近年來應(yīng)用最多的一種優(yōu)化技術(shù),綜合了試驗設(shè)計和數(shù)學(xué)建模,能夠快速有效地確定多因子系統(tǒng)的最佳條件[37,38,40-43]。因此,此次試驗采用響應(yīng)面法對菌株NL-11的發(fā)酵條件進(jìn)行優(yōu)化。裝液量是影響微生物生長和代謝的重要因素,裝液量較小,氧氣有余而營養(yǎng)不足;裝液量較大,則溶氧不足,菌株的生長以及產(chǎn)物的生成受到影響[44-45]。試驗結(jié)果表明,菌株NL-11為好氧細(xì)菌,在裝液量為10~30 mL時,生長狀況較好。發(fā)酵液的pH能夠通過影響酶活性進(jìn)而影響菌種的代謝、生長和繁殖,菌株NL-11表現(xiàn)出了較強(qiáng)的耐酸耐堿性,在偏酸至偏堿環(huán)境中都可存活,但在偏酸環(huán)境中長勢較好。發(fā)酵培養(yǎng)的溫度是影響菌種生長狀況的最重要的因素之一,對菌株體內(nèi)的生物化學(xué)反應(yīng)的影響極為明顯,溫度較低時,細(xì)胞的正常生長受到抑制,隨著發(fā)酵溫度升高,菌種生化反應(yīng)速率增大,代謝速度加快,但溫度過高時,酶易因過熱而變質(zhì),菌種生長代謝受阻,甚至死亡[46-48],與相關(guān)研究相似[49],此次研究中,菌株NL-11表現(xiàn)出一定的耐熱性。

菌株NL-11通過風(fēng)化作用溶解釋放基質(zhì)及礦物中的礦質(zhì)養(yǎng)分。菌株對礦物的溶蝕和基質(zhì)養(yǎng)分的釋放作用隨著添加菌液濃度的升高而逐漸增強(qiáng),T3處理(高濃度,菌液濃度為1×109 cfu/mL)的影響最顯著?;|(zhì)中速效氮含量隨著添加菌液濃度升高而顯著增加,T3處理下比對照分別增長了58.17%,這可能是由于菌種對基質(zhì)中氮素的活化作用,將氮元素轉(zhuǎn)化為可以植物吸收的形式,或菌種直接從環(huán)境中吸收氮元素以合成體內(nèi)的生命物質(zhì)、轉(zhuǎn)移給基質(zhì)及植物體[50];菌株能夠顯著促進(jìn)紫穗槐的生長,T2處理(中濃度,菌液濃度為1×105 cfu/mL)的促生效果最佳。菌株能夠促進(jìn)紫穗槐及其根系的生長可能是由于菌株產(chǎn)生了某些植物激素[51-53]、維生素[54-56],或菌株促進(jìn)了植物對營養(yǎng)物質(zhì)的吸收(溶蝕分解、固氮等作用)[53,57-58],亦或是菌株提高了植物的抗性(抗病性、抗逆性)等[59-67],這有待進(jìn)一步研究。

本研究明確了實際應(yīng)用中蘇云金芽孢桿菌NL-11菌液添加的大致范圍,為進(jìn)一步研究其噴播應(yīng)用中最適添加濃度提供了數(shù)據(jù)支持。微生物是土壤養(yǎng)分轉(zhuǎn)化、傳輸過程中的重要一環(huán),目前,菌株 NL-11作為有效溶蝕菌種在噴播應(yīng)用推廣中還存在如下問題:①菌株的穩(wěn)定性、保存及運(yùn)輸方式仍有待改進(jìn);②菌株對植物的促生機(jī)制尚未明確;③菌株在噴播應(yīng)用中添加的合適濃度暫未確定等。因此,今后的研究中需深入探究菌株對基質(zhì)養(yǎng)分、結(jié)構(gòu)和植物形態(tài)、生理的影響及其機(jī)制,力求探索出植物-土壤-微生物間養(yǎng)分的動態(tài)平衡以及互作機(jī)理,加強(qiáng)技術(shù)攻關(guān),改進(jìn)工藝流程、優(yōu)化菌種保存及運(yùn)輸方式,在綜合考慮應(yīng)用效果和生產(chǎn)成本的基礎(chǔ)上確定合適的添加濃度,進(jìn)一步改進(jìn)土壤菌噴播綠化技術(shù),推動溶蝕菌種噴播綠化技術(shù)在中國的應(yīng)用和推廣。

參考文獻(xiàn)(reference):

[1]關(guān)軍洪,郝培堯,董麗,等.礦山廢棄地生態(tài)修復(fù)研究進(jìn)展[J].生態(tài)科學(xué),2017,36(2):193-200.GUAN J H,HAO P Y,DONG L,et al.Review on ecological restoration of mine wasteland[J].Ecol Sci,2017,36(2):193-200.DOI:10.14108/j.cnki.1008-8873.2017.02.028.

[2]許曉明,胡國峰,邵雁,等.我國礦山生態(tài)修復(fù)發(fā)展?fàn)顩r及趨勢分析[J].礦產(chǎn)勘查,2022,13(S1):309-314.XU X M,HU G F,SHAO Y,et al.Analysis on the development status and trend of mine ecological restoration in China[J].Miner Explor,2022,13(S1):309-314.DOI:10.20008/j.kckc.202203018.

[3]李海東,沈渭壽,賈明,等.大型露天礦山生態(tài)破壞與環(huán)境污染損失的評估[J].南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版),2015,39(6):112-118.LI H D,SHEN W S,JIA M,et al.Economic losses assessment for ecological destruction and environmental pollution in large-scale opencast mine[J].J Nanjing For Univ (Nat Sci Ed),2015,39(6):112-118.

[4]周躍,WATTS D.坡面生態(tài)工程及其發(fā)展現(xiàn)狀[J].生態(tài)學(xué)雜志,1999,18(5):68-73,79.ZHOU Y,WATTS D.Lope eco-engineering andits current developing state[J].Chin J Ecol,1999,18(5):68-73,79.

[5]謝建華.廢棄采石場石質(zhì)邊坡植被重建與關(guān)鍵技術(shù)試驗研究[J].亞熱帶水土保持,2018,30(3):11-13,70.XIE J H.Experimental study on vegetation reconstruction and key technologies of stone slopes in abandoned Quarries[J].Subtrop Soil Water Conserv,2018,30(3):11-13,70.

[6]孫其河.高陡石質(zhì)邊坡植被修復(fù)技術(shù)應(yīng)用與效益評價[D].蘭州:蘭州大學(xué),2020.SUN Q H.Application and benefit evaluation of vegetation restoration technology for high and steep rock slope[D].Lanzhou:Lanzhou University,2020.

[7]CHEN Z,CHEN W L,LI C J,et al.Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects[J].Sci Total Environ,2016,554/555:26-33.DOI:10.1016/j.scitotenv.2016.02.173.

[8]ZHANG W J,LI R R,AI X Y,et al.Enzyme activity and microbial biomass availability in artificial soils on rock-cut slopes restored with outside soil spray seeding (OSSS):influence of topography and season[J].J Environ Manag,2018,211:287-295.DOI:10.1016/j.jenvman.2018.01.005.

[9]王世杰,季宏兵,歐陽自遠(yuǎn),等.碳酸鹽巖風(fēng)化成土作用的初步研究[J].中國科學(xué)(D輯:地球科學(xué)),1999,29(5):441-449.WANG S J,JI H B,OUYANG Z Y,et al.Preliminary study on weathering and soil formation of carbonate rocks[J].Sci Sin (Terrae),1999,29(5):441-449.DOI:10.3321/j.issn:1006-9267.1999.05.008.

[10]李國保,王秀英.客土噴播技術(shù)在水庫壩肩石質(zhì)邊坡處理中的應(yīng)用[J].低碳世界,2019,9(7):69-70.LI G B,WANG X Y.Application of guest soil spray seeding technology in the treatment of rock slope of reservoir abutment[J].Low Carbon World,2019,9(7):69-70.DOI:10.16844/j.cnki.cn10-1007/tk.2019.07.041.

[11]王廣林,黃玲玲,張明,等.基于菌土技術(shù)的溫濕地區(qū)困難立地快速綠化法[J].安徽林業(yè)科技,2016,42(3):7-9.WANG G L,HUANG L L,ZHANG M,et al.A rapid greening method based on microorganism soil techniques for difficult sites in warm and humid Areas[J].Anhui For Sci Technol,2016,42(3):7-9.

[12]郎煜華.土壤菌綠化法與普通噴播綠化的對比試驗研究[C]//第二屆全國水土保持生態(tài)修復(fù)學(xué)術(shù)研討會論文集.貴陽,2010:211-237.LANG Y H. Comparative experimental study of soil fungus greening method and ordinary spraying greening[C]//Proceedings of the Second National Symposium on Soil and Water Conservation and Ecological Restoration. Guiyang,2010:211-237.

[13]姚正學(xué),楊軍.巖石坡面土壤菌永久綠化法原理[J].甘肅科學(xué)學(xué)報,2005,17(4):37-39.YAO Z X,YANG J.The principle of perpetual greening by the action of soil fungi on rock slopes[J].J Gansu Sci,2005,17(4):37-39.DOI:10.16468/j.cnki.issn1004-0366.2005.04.011.

[14]郎煜華,邱茂國.噴播綠化工程的失敗經(jīng)驗與對策[J].建筑,2011(17):73-74.LANG Y H,QIU M G.Failure experience and countermeasures of spray seeding greening project[J].Constr Archit,2011(17):73-74.

[15]張金池,王廣林,張波,等.一種石灰?guī)r高效侵蝕細(xì)菌蘇云金芽孢桿菌NL-11及其應(yīng)用:CN103087954A[P].2013-05-08.ZHANG J C,WANG G L,ZHANG B,et al.Bacillus thuringiensis NL-11 bacterium capable of efficiently eroding limestone and application thereof:CN103087954A[P].2013-05-08.

[16]關(guān)雄.蘇云金芽孢桿菌研究回顧與展望[J].中國農(nóng)業(yè)科技導(dǎo)報,2006,8(6):5-11.GUAN X.Progress in the studies and application of Bacillus thuringiensis[J].Rev China Agric Sci Technol,2006,8(6):5-11.

[17]AKHTAR M,MIZUTA K,SHIMOKAWA T,et al.Enhanced insecticidal activity of Bacillus thuringiensis using a late embryogenesis abundant peptide co-expression system[J].J Microbiol Methods,2021,188:106207.DOI:10.1016/j.mimet.2021.106207.

[18]ISAYAMA S,SUZUKI T,NAKAI M,et al.Influence of tannic acid on the insecticidal activity of a Bacillus thuringiensis serovar aizawai formulation against Spodoptera litura Fabricius (Lepidoptera:Noctuidae)[J].Biol Control,2021,157:104558.DOI:10.1016/j.biocontrol.2021.104558.

[19]楊靜,高澤鑫,朱莉,等.產(chǎn)胞外多糖的蘇云金芽孢桿菌的篩選及發(fā)酵工藝優(yōu)化[J].食品與發(fā)酵工業(yè),2021,47(24):124-131.YANG J,GAO Z X,ZHU L,et al.Screening of an extracellular polysaccharides producing Bacillus thuringiensis strain and its fermentation optimization[J].Food Ferment Ind,2021,47(24):124-131.DOI:10.13995/j.cnki.11-1802/ts.027440.

[20]宋健,張海劍,豐碩,等.對韭菜遲眼蕈蚊高活性的蘇云金芽胞桿菌JQD117發(fā)酵培養(yǎng)基及搖瓶發(fā)酵條件優(yōu)化[J].中國生物防治學(xué)報,2022,38(2):333-341.SONG J,ZHANG H J,F(xiàn)ENG S,et al.Optimization of fermentation culture medium and flask fermentation conditions for Bacillus thuringiensis strain JQD117 with high toxicity against Bradysia odoriphaga[J].Chin J Biol Control,2022,38(2):333-341.DOI:10.16409/j.cnki.2095-039x.2021.07.013.

[21]閆洪雪,劉露,李麗,等.一株蘇云金桿菌Bt02發(fā)酵條件的優(yōu)化研究[J].現(xiàn)代農(nóng)業(yè)科技,2015(23):127-128,130.YAN H X,LIU L,LI L,et al.Study on optimization of fermentation conditions of a strain of Bacillus thuringiensis Bt02[J].Mod Agric Sci Technol,2015(23):127-128,130.

[22]張路路,朱朝華,郭剛.蘇云金芽孢桿菌A322菌株發(fā)酵培養(yǎng)基和發(fā)酵條件的優(yōu)化[J].熱帶生物學(xué)報,2014,5(3):253-259.ZHANG L L,ZHU C H,GUO G.Optimization of Bacillus thuringiensis A322 strain fermentation medium and cultural conditions[J].J Trop Biol,2014,5(3):253-259.DOI:10.15886/j.cnki.rdswxb.2014.03.009.

[23]申燁華,孫君,周茂林,等.蘇云金芽孢桿菌HD-1發(fā)酵工藝研究[J].西北大學(xué)學(xué)報(自然科學(xué)版),2001,31(5):396-398.SHEN Y H,SUN J,ZHOU M L,et al.A study on fermentation process of Bt-HD-1 in annulus-ailift reactor[J].J Northwest Univ (Nat Sci Ed),2001,31(5):396-398.

[24]梁艷瓊,黃興,吳偉懷,等.解淀粉芽孢桿菌TWC2發(fā)酵條件的優(yōu)化[J].中國糖料,2017,39(6):17-22.LIANG Y Q,HUANG X,WU W H,et al.Optimizing fermentation condition for Bacillus amyloliquefaciens TWC2[J].Sugar Crops China,2017,39(6):17-22.DOI:10.13570/j.cnki.scc.2017.06.005.

[25]鮑士旦.土壤農(nóng)化分析[M].3版.北京:中國農(nóng)業(yè)出版社,2000.BAO S D.Soil and agricultural chemistry analysis[M].3rd ed.Beijing:China Agriculture Press,2000.

[26]馬欣娟,呂慧威,孫玉梅.接種量對草莓酒發(fā)酵特性的影響[J].中國釀造,2019,38(5):123-126.MA X J,LV H W,SUN Y M.Effect of inoculum on fermentation characteristics of strawberry wine[J].China Brew,2019,38(5):123-126.DOI:10.11882/j.issn.0254-5071.2019.05.024.

[27]閆建芳,趙柏霞,劉秋,等.鏈霉菌組合ST-2發(fā)酵條件優(yōu)化及對黃瓜枯萎病的防治效果[J].中國生物防治學(xué)報,2016,32(4):531-538.YAN J F,ZHAO B X,LIU Q,et al.Optimization of Streptomyces combination ST-2 fermentation conditions and control effect on cucumber Fusarium wilt[J].Chin J Biol Control,2016,32(4):531-538.DOI:10.16409/j.cnki.2095-039x.2016.04.016.

[28]MALLAPATY S.How China could be carbon neutral by mid-century[J].Nature,2020,586(7830):482-483.DOI:10.1038/d41586-020-02927-9.

[29]WU P,GUO F,CAI B,et al.Co-benefits of peaking carbon dioxide emissions on air quality and health,a case of Guangzhou,China[J].J Environ Manage,2021,282:111796.DOI:10.1016/j.jenvman.2020.111796.

[30]ZHANG S F,XIANG X W,MA Z L,et al.Carbon neutral roadmap of commercial building operations by mid-century:lessons from China[J].Buildings,2021,11(11):510.DOI:10.3390/buildings11110510.

[31]WU Y W,ZHANG J C,GUO X P.An indigenous soil bacterium facilitates the mitigation of rocky desertification in carbonate mining Areas[J].Land Degrad Develop,2017,28(7):2222-2233.DOI:10.1002/ldr.2749.

[32]WU Y W,ZHANG J C,GUO X P,et al.Isolation and characterisation of a rock solubilising fungus for application in mine-spoil reclamation[J].Eur J Soil Biol,2017,81:76-82.DOI:10.1016/j.ejsobi.2017.06.011.

[33]WU Y W,ZHANG J C,WANG L J,et al.A rock-weathering bacterium isolated from rock surface and its role in ecological restoration on exposed carbonate rocks[J].Ecol Eng,2017,101:162-169.DOI:10.1016/j.ecoleng.2017.01.023.

[34]張金池,王廣林,莊家堯,等.一種石灰?guī)r高效侵蝕細(xì)菌巨大芽孢桿菌NL-7及其應(yīng)用:CN103087953A[P].2013-05-08.ZHANG J C,WANG G L,ZHUANG J Y,et al.Efficient limestone eroded Bacillus megaterium NL-7 and application thereof:CN103087953A[P].2013-05-08.

[35]張金池,王廣林,王麗,等.一種石灰?guī)r高效侵蝕放線菌嗜熱一氧化碳鏈霉菌NL-1及其應(yīng)用:CN103103151A[P].2013-05-15.ZHANG J C,WANG G L,WANG L,et al.Streptomyces thermocarboxydus NL-1 as actinomycete capable of efficiently eroding limestone and application of Streptomyces thermocarboxydus NL-1:CN103103151A[P].2013-05-15.

[36]王廣林,張金池,林杰,等.一種石灰?guī)r高效侵蝕真菌卵形孢球托霉NL-15及其應(yīng)用:CN103087926A[P].2013-05-08.WANG G L,ZHANG J C,LIN J,et al.Gongronellabutleri NL-15 fungus capable of efficiently eroding limestone and application thereof:CN103087926A[P].2013-05-08.

[37]李莉,張賽,何強(qiáng),等.響應(yīng)面法在試驗設(shè)計與優(yōu)化中的應(yīng)用[J].實驗室研究與探索,2015,34(8):41-45.LI L,ZHANG S,HE Q,et al.Application of response surface methodology in experiment design and optimization[J].Res Explor Lab,2015,34(8):41-45.

[38]楊津,楊霰霜,段中余,等.化學(xué)試驗設(shè)計及優(yōu)化方法的發(fā)展與應(yīng)用[J].廣東化工,2010,37(10):67-68.YANG J,YANG X S,DUAN Z Y,et al.Development and application of studies on method of experiment design and optimization[J].Guangdong Chem Ind,2010,37(10):67-68.DOI:10.3969/j.issn.1007-1865.2010.10.035.

[39]范玲,王鑫,胡風(fēng)華,等.正交試驗與響應(yīng)面法優(yōu)選六月雪-葎草藥對提取工藝比較[J].中國藥業(yè),2021,30(10):40-44.FAN L,WANG X,HU F H,et al.Comparison of orthogonal test and response surface methodology in optimizing the extraction process of Serissa japonica-Humulus scandens[J].China Pharm,2021,30(10):40-44.DOI:10.3969/j.issn.1006-4931.2021.10.010.

[40]王瑞君,袁欣.響應(yīng)面法優(yōu)化產(chǎn)木聚糖酶耐熱菌株的發(fā)酵條件[J].宜春學(xué)院學(xué)報,2022,44(3):83-89.WANG R J,YUAN X.Response surface optimization of fermentation conditions for xylanase production by a thermotolerant strain[J].J Yichun Univ,2022,44(3):83-89.

[41]袁輝林,康麗華,馬海濱.響應(yīng)曲面法及其在微生物發(fā)酵工藝優(yōu)化中的應(yīng)用[J].安徽農(nóng)業(yè)科學(xué),2011,39(16):9498-9500,9502.YUAN H L,KANG L H,MA H B.Response surface method and its application in the microbial fermentation process optimization[J].J Anhui Agric Sci,2011,39(16):9498-9500,9502.DOI:10.13989/j.cnki.0517-6611.2011.16.046.

[42]田泱源,李瑞芳.響應(yīng)面法在生物過程優(yōu)化中的應(yīng)用[J].食品工程,2010(2):8-11,53.TIAN Y Y,LI R F.Application of response surface method on biological process optimization[J].Food Eng,2010(2):8-11,53.

[43]石子林, 李軍喬, 王雅瓊, 等. 密花香薷總皂苷提取工藝優(yōu)化及其生物活性[J]. 江蘇農(nóng)業(yè)學(xué)報, 2021,37 (1): 185-191. SHI Z L, LI J Q, WANG Y Q, et al. Optimization on the extraction process of total saponins from the Elsholtzia densa Benth. and its biological activity[J]. Jiangsu J of Agr Sci, 2021,37(1): 185-191. DOI:10.3969/j.issn.1000-4440.2021.01.024.

[44]白云洲,趙前程,呂東,等.納豆芽孢桿菌發(fā)酵海參條件的響應(yīng)面優(yōu)化[J].農(nóng)產(chǎn)品加工,2022(5):7-11,15.BAI Y Z,ZHAO Q C,LV D,et al.Optimization of fermentation process of sea cucumber with Bacillus natto by response surface methodology[J].Farm Prod Process,2022(5):7-11,15.DOI:10.16693/j.cnki.1671-9646(X).2022.05.034.

[45]徐宇飛,張曉敏,朱佳美,等.具有殺線蟲活性的郭霍氏芽孢桿菌發(fā)酵條件優(yōu)化及穩(wěn)定性評價[J].微生物學(xué)通報,2022,49(7):2612-2624.XU Y F,ZHANG X M,ZHU J M,et al.Optimization of fermentation conditions and evaluation of stability of Bacillus kochii[J].Microbiol China,2022,49(7):2612-2624.DOI:10.13344/j.microbiol.china.211099.

[46]孫承文,賴迎迢,鞏華,等.基于響應(yīng)面法的維氏氣單胞菌滅活疫苗菌液發(fā)酵工藝優(yōu)化及免疫效力比較[J].大連海洋大學(xué)學(xué)報,2021,36(4):546-553.SUN C W,LAI Y S,GONG H,et al.Optimization of fermentation process by response surface methodology and comparison of immune efficacy of inactivated vaccine of Aeromonas veronii[J].J Dalian Ocean Univ,2021,36(4):546-553.DOI:10.16535/j.cnki.dlhyxb.2020-238.

[47]樊丹,鄧福容,李紹戊,等.一株虹鱒源枯草芽孢桿菌產(chǎn)胞外蛋白發(fā)酵條件優(yōu)化[J].江西農(nóng)業(yè)大學(xué)學(xué)報,2022,44(2):452-460.FAN D,DENG F R,LI S W,et al.Fermentation condition optimization for extracellular protein of Bacillus subtilis from rainbow trout(Oncorhynchus mykiss)[J].Acta Agric Univ Jiangxiensis,2022,44(2):452-460.DOI:10.13836/j.jjau.2022047.

[48]白長勝.禽用乳酸菌SR1發(fā)酵條件優(yōu)化[J].發(fā)酵科技通訊,2022,51(1):15-18.BAI C S.Optimization of fermentation conditions of lactic acid bacterium SR1 as poultry[J].Bull Ferment Sci Technol,2022,51(1):15-18.DOI:10.16774/j.cnki.issn.1674-2214.2022.01.005.

[49]白雪,李運(yùn)杰,孟冬冬,等.解纖維素?zé)崴峋鷣碓吹哪蜔崃姿崦傅拿笇W(xué)性質(zhì)與應(yīng)用[J].生物加工過程,2021,19(2):123-129. BAI X,LI Y J,MENG D D,et al.Characterization and application of thermostable sugar phosphatase from Acidothermus cellulolyticus[J].Chi J Bio Eng,2021,19(2):123-129.DOI:10.3969/j.issn.1672-3678.2021.02.002.

[50]王金萍.肥料配施對微生物及土壤養(yǎng)分的影響研究[D].長春:吉林農(nóng)業(yè)大學(xué),2014.WANG J P.The effect research of fertilizer combined application for microorganisms and soil nutrient[D].Changchun:Jilin Agricultural University,2014.

[51]RANI R,KUMAR V,GUPTA P,et al.Potential use of Solanum lycopersicum and plant growth promoting rhizobacterial (PGPR) strains for the phytoremediation of endosulfan stressed soil[J].Chemosphere,2021,279:130589.DOI:10.1016/j.chemosphere.2021.130589.

[52]HUSSAIN A,ARSHAD M,HUSSAIN A,et al.Response of maize (Zea mays) to Azotobacter inoculation under fertilized and unfertilized conditions[J].Biol Fert Soils,1987,4(1):73-77.DOI:10.1007/BF00280354.

[53]FERREIRA N S,MATOS G F,MENESES C H S G,et al.Interaction of phytohormone-producing rhizobia with sugarcane mini-setts and their effect on plant development[J].Plant Soil,2020,451(1):221-238.DOI:10.1007/s11104-019-04388-0.

[54]DA SILVA R R,SANTOS A C M D,DA SILVA C J S,et al.Biostimulants based on humic acids,amino acids and vitamins increase growth and quality of lettuce seedlings[J].J Agric Sci,2019,11(6):235.DOI:10.5539/jas.v11n6p235.

[55]PALACIOS O A,BASHAN Y,DE-BASHAN L E.Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview[J].Biol Fertil Soils,2014,50(3):415-432.DOI:10.1007/s00374-013-0894-3.

[56]MAREK-KOZACZUK M,SKORUPSKA A.Production of B-group vitamins by plant growth-promoting Pseudomonas fluorescens strain 267 and the importance of vitamins in the colonization and nodulation of red clover[J].Biol Fertil Soils,2001,33(2):146-151.DOI:10.1007/s003740000304.

[57]MD RASHEDUL ISLAM,SULTANA T,JOE M M,et al.Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper[J].J Basic Microbiol., 2013,53(12):1004-1015. DOI:10.1002/jobm.201200141.

[58]SALIH S A, MASRI E A N, BARAKA A M. Effect of rhizobium inoculation, phosphorus and potassium fertilization on growth, nodulation and yield of faba bean cultivated in the newly reclaimed soils of Middle Egypt[J]. Bulletin of Faculty of Agriculture Cairo Univ, 1998, 36(10):2547-2555. DOI:10.1023/A:1017954720772.

[59]王琦.一株耐鹽促生菌對植物的促生機(jī)制探討[J].長治學(xué)院學(xué)報,2021,38(2):47-51.WANG Q.Study on the growth-promoting mechanism of salt-tolerant growth-promoting bacteria on plants[J].J Chang Univ,2021,38(2):47-51.

[60]王鷹翔.不同土壤菌配置對紫穗槐幼苗生理生態(tài)學(xué)特性的影響[D].南京:南京林業(yè)大學(xué),2017.WANG Y X.Effects of soil bacteria inoculation in spray seeding matrix on physiological and ecological character of Amorpha fruticose[D].Nanjing:Nanjing Forestry University,2017.

[61]王鷹翔,張金池,吳雁雯,等.噴播基質(zhì)中土壤菌施用對紫穗槐幼苗光合特性和葉綠素?zé)晒鈪?shù)的影響[J].環(huán)境科學(xué)研究,2017,30(6):902-910.WANG Y X,ZHANG J C,WU Y W, et al.Effects of soil bacteria inoculation in spray seeding matrix on photosynthesis characteristics and chlorophyll fluorescence parameters of Amorpha fruticose[J].Res Environ Sci,2017,30(6):902-910.DOI:10.13198/j.issn.1001-6929.2017.01.82.

[62]劉晶晶,孫合美,岳勝天,等.不同溶磷菌菌液對盛花期大豆生長的影響[J].大豆科學(xué),2016,35(2):275-279.LIU J J,SUN H M,YUE S T,et al.Effect of different phosphate-solubilizing bacteria liquid on the growth of soybean in florescence stage[J].Soybean Sci,2016,35(2):275-279.DOI:10.11861/j.issn.1000-9841.2016.02.0275.

[63]蔣曉玲.解淀粉芽孢桿菌Y19微生物菌肥的研制及其生物效益研究[D].昆明:云南農(nóng)業(yè)大學(xué),2015.JIANG X L.Development of microbial fertilizer and biological effect of Bacillus amyloliquefaciens Y19[D].Kunming:Yunan Agricultural University,2015.

[64]占新華,蔣延惠,徐陽春,等.微生物制劑促進(jìn)植物生長機(jī)理的研究進(jìn)展[J].植物營養(yǎng)與肥料學(xué)報,1999,5(2):97-105. ZHAN X H,JIANG Y H,XU Y C,et al.Advances in researches on mechanism of microbial inoculants on promoting plant growth[J].Plant Natrition Fertil Sci,1999,5(2):97-105. DOI:10.11674/zwyf.1999.0201.

[65]ZHANG Q,GAO X,REN Y,et al.Improvement of Verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions[J].Int J Mol Sci,2018,19(1):E241.DOI:10.3390/ijms19010241.

[66]AIT RAHOU Y,AIT-EL-MOKHTAR M,ANLI M,et al.Use of mycorrhizal fungi and compost for improving the growth and yield of tomato and its resistance to Verticillium dahliae[J].Arch Phytopathol Plant Prot,2021,54(13/14):665-690.DOI:10.1080/03235408.2020.1854938.

[67]BENJAMIN L.Arbuscular mycorrhizal fungi pre-colonisation for improving the growth and health of strawberry (Fragaria × ananassa)[D].York, UK:University of York,2017.

(責(zé)任編輯 王國棟)

猜你喜歡
生態(tài)修復(fù)
貴州石漠化生態(tài)修復(fù)進(jìn)程中的生態(tài)道德問題各因子相關(guān)性分析
遼河生態(tài)廊道景觀恢復(fù)之路
景觀都市主義思想下的“廢棄景觀”修復(fù)研究
濱水駁岸景觀生態(tài)修復(fù)及空間藝術(shù)設(shè)計策略
天津海域牡蠣礁區(qū)生態(tài)修復(fù)示范區(qū)域調(diào)查分析
遼西青龍河水生態(tài)系統(tǒng)保護(hù)治理技術(shù)①
科技資訊(2015年18期)2015-10-09 21:32:06
濉溪县| 阳新县| 双鸭山市| 万盛区| 苏尼特左旗| 桑植县| 县级市| 上林县| 镇平县| 同江市| 西畴县| 南昌县| 迭部县| 文登市| 郴州市| 剑川县| 米林县| 锡林浩特市| 金阳县| 灵武市| 怀远县| 溧阳市| 桐庐县| 阜新市| 阿拉善右旗| 涞源县| 龙门县| 崇仁县| 宣化县| 彭山县| 眉山市| 佛学| 陆良县| 石城县| 察隅县| 新源县| 吴江市| 福贡县| 宜宾市| 西畴县| 手游|