摘要:為探究灌漿期旱澇急轉(zhuǎn)對水稻品質(zhì)及產(chǎn)量的影響,以湘早秈6號為研究對象,基于桶栽試驗,采用四因素三水平正交試驗設(shè)計,設(shè)置干旱水平(田間持水量的65%±5%,50%±5%,35%±5%)、干旱歷時(5,7,9 d)、淹澇水平(淹沒株高的50%,75%,100%)、淹澇歷時(5,7,9 d),共計9個旱澇急轉(zhuǎn)處理,以及對照處理(CK),探究灌漿期旱澇急轉(zhuǎn)下各水稻品質(zhì)指標(biāo)及產(chǎn)量的響應(yīng)規(guī)律,并在主成分分析基礎(chǔ)上,通過理想點法技術(shù)(TOPSIS)對產(chǎn)量及品質(zhì)的綜合質(zhì)量進行評價.結(jié)果表明:灌漿期旱澇急轉(zhuǎn)會導(dǎo)致米粒偏短、偏窄,透明度與黃粒米率顯著提高,堊白度與堊白粒率分別較CK提高了13.42%~69.16%和6.14%~48.72%;直鏈淀粉質(zhì)量分?jǐn)?shù)在灌漿期旱澇急轉(zhuǎn)下較CK提高12.39%~34.46%,而膠稠度的降低幅度為25.26%~36.84%;除堿消值外,灌漿期旱澇急轉(zhuǎn)下的水稻品質(zhì)受干旱和淹澇的共同影響,淹澇水平是大部分品質(zhì)指標(biāo)的主要影響因素;與對照相比,灌漿期旱澇急轉(zhuǎn)導(dǎo)致水稻減產(chǎn)67.32%~98.71%,大部分品質(zhì)指標(biāo)與產(chǎn)量呈負(fù)相關(guān),長寬比與產(chǎn)量的負(fù)相關(guān)性最強(r為-0.78***),膠稠度與產(chǎn)量呈正相關(guān)(r為0.68***);灌漿期旱澇急轉(zhuǎn)下水稻產(chǎn)量及品質(zhì)的綜合質(zhì)量最優(yōu)的處理為輕旱輕澇急轉(zhuǎn),綜合質(zhì)量最差的處理為重旱重澇急轉(zhuǎn).研究結(jié)果可為應(yīng)對旱澇急轉(zhuǎn)的水稻品質(zhì)改良以及減災(zāi)策略的制定提供理論依據(jù).
關(guān)鍵詞:水稻;灌漿期;旱澇急轉(zhuǎn);品質(zhì);產(chǎn)量
中圖分類號:S274.1 文獻(xiàn)標(biāo)志碼:A 文章編號:1674-8530(2024)09-0938-10
DOI:10.3969/j.issn.1674-8530.23.0123
龍泓錦,王輝,歐陽贊,等.水稻品質(zhì)及產(chǎn)量對灌漿期旱澇急轉(zhuǎn)的響應(yīng)[J].排灌機械工程學(xué)報,2024,42(9):938-947.
LONG Hongjin, WANG Hui, OUYANG Zan, et al. Response of rice quality and yield to drought-flood abrupt alternation during grain filling period[J].Journal of drainage and irrigation machinery engineering(JDIME),2024,42(9):938-947.(in Chinese)
Response of rice quality and yield to drought-flood abrupt
alternation during grain filling period
LONG Hongjin1, WANG Hui1*, OUYANG Zan1, LI Xiaodong2, HE Cuihua2
(1. College of Water Resources and Civil Engineering, Hunan Agricultural University, Changsha, Hunan 410128, China; 2. Hunan Water Resources and Hydropower Survey, Design, Planning and Research Co., Ltd., Changsha, Hunan 410007, China)
Abstract: To investigate the effect of drought-flood abrupt alternation on rice quality and yield during the grain filling period, Xiangzaoxian 6 was selected as the research object. Based on barrel planting test, a four-factor three-level orthogonal test was designed, four factors were drought level (65%±5%, 50%±5% and 35%±5% field holding), drought time (5, 7 and 9 d), flooding level (50%, 75% and 100% inundation plant height), flooding time (5, 7 and 9 d), a total of 9 drought-flood abrupt alternation treatments, and control treatment (CK) were adopted. The changing pattern of each rice quality index and yield under drought-flood abrupt alternation during the grain filling was investigated, and a comprehensive evaluation of yield and quality by TOPSIS analysis based on the principal component analysis was made. The results show that drought-flood abrupt alternation during the grain filling period will lead to shorter and narrower rice grains, significantly higher transparency and yellow grain rate, and higher chalkiness and chalky grain rate by 13.42%-69.16% and 6.14%-48.72%, respectively, compared with CK. The straight-chain starch content increases by 12.39% to 34.46% compared to CK under drought-flood abrupt alternation during the grain filling period, while the decrease in gum consistency ranges from 25.26% to 36.84%. Except for the alkali extinction value, rice quality under drought-flood abrupt alternation during the grain filling period is affected by both drought and flooding, and the level of flooding is the main influencing factor for most quality indicators. Compared with the control group, drought-flood abrupt alternation during the grain filling period results in 67.32% to 98.71% yield reduction in rice, and most quality indicators are negatively correlated with yield, with the strongest negative correlation between aspect ratio and yield (r=-0.78***) and positive correlation between gum consistency and yield (r=0.68***). The optimum treatments for the comprehensive qua-lity of rice yield and quality under drought-flood abrupt alternation during the grain filling period are light drought-light flood abrupt alternation, and the treatments with the worst comprehensive quality are heavy drought-heavy flood abrupt alternation. The results of the study can provide a theoretical basis for the improvement of rice quality in response to drought-flood abrupt alternation and the development of mitigation strategies.
Key words: rice;grain filling period;drought-flood abrupt alternation;quality;yield
旱、澇快速轉(zhuǎn)換形成的極端水文事件——旱澇急轉(zhuǎn)已成為中國夏季旱澇異常的一種新特點與新趨勢,尤其在長江中下游地區(qū)表現(xiàn)明顯[1-2],對農(nóng)業(yè)生產(chǎn)造成威脅.中國是全球最大的水稻生產(chǎn)國和消費國,隨著生活水平的提高,農(nóng)戶以及稻米加工企業(yè)等對稻米品質(zhì)提出了更高要求,市場價格和消費需求使米質(zhì)日漸成為稻米市場的強勁競爭力[3].旱澇急轉(zhuǎn)不僅影響水稻生理生長以及產(chǎn)量[4-5],且對水稻品質(zhì)造成影響[6-7],因此研究旱澇急轉(zhuǎn)下水稻品質(zhì)的響應(yīng)規(guī)律對于糧食安全及抗災(zāi)育種具有重要意義.
灌漿期是水稻生殖生長關(guān)鍵期,也是水稻品質(zhì)形成關(guān)鍵期.干旱、淹澇均不利于水稻籽粒淀粉充實過程,從而造成水稻品質(zhì)變劣.灌漿期水稻受旱會縮短籽粒灌漿時間,使稻米堊白度顯著提高[8],直鏈淀粉含量下降[9];淹澇會導(dǎo)致谷粒變軟并發(fā)育裂縫,降低精米粒重與蒸煮品質(zhì)[10];一些研究表明干濕交替灌溉可以改善稻米品質(zhì)[11],但交替程度會影響品質(zhì)的優(yōu)劣偏向[12].而旱澇急轉(zhuǎn)獨特的致災(zāi)過程使其對水稻的影響區(qū)別于單一干旱、淹澇以及干濕交替[5,13].郭相平等[6]研究發(fā)現(xiàn)分蘗期旱澇交替脅迫會降低加工品質(zhì),拔節(jié)期旱澇交替脅迫則會降低堊白度和堊白率;熊強強等[7]通過不同旱澇脅迫處理的桶栽試驗,研究發(fā)現(xiàn)幼穗分化期發(fā)生旱澇急轉(zhuǎn)會顯著降低粒長和膠稠度.目前關(guān)于單一旱、澇脅迫對水稻品質(zhì)的影響研究已有一定進展,而旱澇急轉(zhuǎn)下水稻品質(zhì)的變化規(guī)律研究鮮見報道,同時缺乏多種旱澇急轉(zhuǎn)因素組合下水稻品質(zhì)的對比研究.地處長江中下游的洞庭湖區(qū)旱澇發(fā)生頻繁,旱澇急轉(zhuǎn)頻率與強度較高,且旱澇急轉(zhuǎn)發(fā)生時間與早稻灌漿期重合[14],影響水稻品質(zhì)及產(chǎn)量的形成.文中以湘早秈6號為研究對象,于早稻灌漿期開展桶栽試驗,設(shè)置干旱水平、干旱歷時、淹澇水平、淹澇歷時4個因素,旨在揭示水稻品質(zhì)及產(chǎn)量對旱澇急轉(zhuǎn)的響應(yīng)規(guī)律,對旱澇急轉(zhuǎn)下水稻品質(zhì)及產(chǎn)量進行綜合評價.
1 材料與方法
1.1 研究區(qū)概況
研究區(qū)位于洞庭湖區(qū)的某灌溉試驗站(112° 22′E,28° 51′N),屬于亞熱帶季風(fēng)氣候,年均降水量為1 347 mm,年均蒸發(fā)量為1 285.1 mm,年均氣溫為17.1 ℃,年均日照時數(shù)為1 402 h,年均風(fēng)速為2.7 m/s.試驗土壤取自試驗田耕作層(0~40 cm),土壤類型為水稻土,質(zhì)地為中壤土,干容重為1.21 g/cm3,田間持水量為29.92%,pH為6.61,堿解氮質(zhì)量比為79.32 g/kg,有效磷質(zhì)量比為25.02 mg/kg,速效鉀質(zhì)量比為84.33 mg/kg.
1.2 試驗設(shè)計
參考《旱情等級標(biāo)準(zhǔn)》(SL 424—2008)及前人研究成果[13],干旱脅迫以土壤含水量占田間持水量百分比控制,淹澇脅迫以水稻淹沒深度占株高百分比控制.目前研究中,部分學(xué)者表明干旱、淹澇脅迫對植物的影響不存在交互作用[15];也有學(xué)者表明存在交互作用,但其交互的顯著程度受旱澇脅迫程度及時間等的影響[16],即不同程度和持續(xù)時間的干旱、淹澇脅迫可能存在不顯著的交互作用.據(jù)此,文中研究采用不考慮交互作用的四因素三水平的正交試驗設(shè)計:干旱水平A(田間持水量的65%±5%,50%±5%,35%±5%)、干旱歷時B(5,7,9 d)、淹澇水平C(50%,75%,100%淹沒株高)、淹澇歷時D(5,7,9 d).9個正交處理標(biāo)記為DF1—DF9,另設(shè)置1個常規(guī)淹灌作為對照處理CK,每組處理重復(fù)3次,空白對照重復(fù)6次.正交試驗設(shè)計見表1.
1.3 試驗實施
供試水稻品種為湘早秈6號,種植密度為每桶3穴,每穴6株.于2022年4月26日移栽,6月21日至7月9日進行旱澇急轉(zhuǎn),7月18日分批次收割.參考《灌溉試驗規(guī)范》(SL 13—2015)劃分水稻生育期,分蘗期為5月5日至5月24日,拔節(jié)孕穗期為5月25日至6月12日,抽穗開花期為6月13日至6月19日,灌漿期(乳熟期-完熟期)為6月20日至7月18日.
不銹鋼試驗測桶的規(guī)格:直徑35 cm,桶高40 cm,壁厚1 cm;測桶底均勻打孔后墊一層無紡布,再墊鋪一層石英砂,使桶底透水通氣并防止土壤下漏.每桶填裝干土30 kg,每桶施復(fù)合肥[w(N)∶w(P2O5)∶w(K2O)=16%∶12%∶18%]15 g作為底肥,分蘗期每桶追肥10 g.試驗小區(qū)建有移動式透明遮雨棚,正常灌溉及淹澇脅迫階段敞開遮雨棚,干旱脅迫階段關(guān)閉遮雨棚以避雨.淹澇開始前,將測桶放置于試驗基地的測坑中(18桶,6排3列),測坑之間均做好防滲處理,互不影響,所有測桶均進行2~5 cm的淺水層管理.進行干旱脅迫時將測坑底部閥門打開以排除多余水分,并用土壤水分傳感器實時監(jiān)測土壤質(zhì)量含水率情況,等待自然落干,當(dāng)達(dá)到對應(yīng)干旱脅迫水平時,則開始記錄干旱歷時.干旱脅迫期間密切關(guān)注各測桶內(nèi)土壤質(zhì)量含水率變化,及時補充灌溉以維持其土壤質(zhì)量含水率在設(shè)計的干旱脅迫水平5%浮動范圍內(nèi).達(dá)到干旱歷時后,將測桶移至淹澇測坑中待淹,根據(jù)株高確定淹沒水深,期間密切關(guān)注淹澇測坑內(nèi)水位變化,通過智能灌溉系統(tǒng)保持對應(yīng)淹澇水位.達(dá)到淹澇歷時后,回歸正常淺水層管理,水稻全生育期田間管理參考當(dāng)?shù)剞r(nóng)戶管理并保持一致.圖1為不同淹澇水平示意圖.
1.4 觀測項目
于成熟期分批次將各測桶水稻分裝收割,將待測稻谷存放3個月,待理化性質(zhì)穩(wěn)定后,參照《稻米整精米率、粒型、堊白粒率、堊白度及透明度的測定 圖像法》(NY/T 2334—2013)測定稻米長寬比、堊白粒率、堊白度及透明度;參照《優(yōu)質(zhì)稻谷》(GB/T 17891—2017)測定黃粒米率;參照《米質(zhì)測定方法》(NY/T 83—2017)測定堿消值及膠稠度;參照《稻米直鏈淀粉的測定 分光光度法》(NY/T 2639—2014)測定直鏈淀粉質(zhì)量分?jǐn)?shù).
1.5 數(shù)據(jù)處理
采用Excel 2021與DPS 17.10對試驗數(shù)據(jù)進行統(tǒng)計和分析,由Origin 2021軟件進行繪圖.參考前人研究[17],基于主成分分析,結(jié)合隸屬函數(shù)法計算獲得旱澇急轉(zhuǎn)下水稻綜合產(chǎn)量或綜合品質(zhì)的評分,利用熵權(quán)法確定客觀的綜合權(quán)重[18].根據(jù)綜合權(quán)重得到加權(quán)矩陣,通過理想點法技術(shù)(TOPSIS)對旱澇急轉(zhuǎn)下水稻產(chǎn)量及品質(zhì)的綜合質(zhì)量進行排序,以評價其綜合質(zhì)量的優(yōu)劣[18].
2 試驗結(jié)果與分析
2.1 灌漿期旱澇急轉(zhuǎn)對水稻外觀品質(zhì)的影響
圖2為灌漿期旱澇急轉(zhuǎn)對水稻外觀品質(zhì)的影響,圖中GS,GL,T,CD,CRP,X分別為長寬比、粒長、透明度、堊白度、堊白粒率、黃粒米率.由圖可知,灌漿期旱澇急轉(zhuǎn)下,水稻各外觀品質(zhì)存在不同幅度的降低.除輕度旱澇急轉(zhuǎn)處理外(DF1,DF2),其余旱澇急轉(zhuǎn)處理的長寬比較CK提高了1.50%~15.97%;同時各處理下稻米粒長均較CK下降了5.00%~12.34%,綜合圖2a和2b可知,灌漿期旱澇急轉(zhuǎn)下稻米與CK相比,米粒偏短、偏窄.分析圖2c可知,輕旱輕澇急轉(zhuǎn)處理DF1對稻米透明度影響不顯著,其余旱澇急轉(zhuǎn)處理較CK增長了16.67%~66.67%,即灌漿期旱澇急轉(zhuǎn)會導(dǎo)致稻米透明度提高.灌漿期旱澇急轉(zhuǎn)下稻米堊白度與堊白粒率的變化如圖2d和2e所示,旱澇急轉(zhuǎn)下稻米堊白度顯著提高,處理DF2,DF3,DF7,DF9下堊白度較CK上漲了60%以上,即前期較重的干旱或后期較重的淹澇都對旱澇急轉(zhuǎn)下稻米堊白度影響顯著;除處理DF1,DF5的堊白粒率與CK差異不具有統(tǒng)計學(xué)意義外,其余旱澇急轉(zhuǎn)處理的堊白粒率均提高了8.78%~48.72%.分析圖2f可知,各旱澇急轉(zhuǎn)處理的黃粒米率較CK顯著提高,增長幅度為156.89%~261.99%,其中重旱急轉(zhuǎn)處理DF7—DF9下黃粒米率均提高了2倍以上.
對9組旱澇急轉(zhuǎn)處理進行正交試驗方差分析,結(jié)果見表2.
表
干旱水平對長寬比、透明度、堊白粒率、堊白度以及黃粒米率的影響顯著;干旱歷時則顯著影響長寬比、粒長、透明度以及堊白粒率;淹澇水平對所有外觀品質(zhì)的影響均達(dá)顯著水平;除了堊白度外,淹澇歷時對其余指標(biāo)的影響顯著.極差分析見表3.
灌漿期旱澇急轉(zhuǎn)下,稻米長寬比、粒長、堊白粒率以及堊白度主要受控于淹澇水平;黃粒米率主要受淹澇歷時的影響;透明度主要受控于干旱水平、淹澇水平和淹澇歷時.
2.2 灌漿期旱澇急轉(zhuǎn)對水稻蒸煮食味品質(zhì)的影響
灌漿期旱澇急轉(zhuǎn)下水稻各蒸煮食味品質(zhì)的變化如圖3所示,圖中ASV,ACR,GC分別為堿消值、直鏈淀粉質(zhì)量分?jǐn)?shù)、膠稠度.分析圖3a可知,旱澇急轉(zhuǎn)下堿消值與CK差異不具有統(tǒng)計學(xué)意義.由圖3b可知,旱澇急轉(zhuǎn)處理下直鏈淀粉質(zhì)量分?jǐn)?shù)均較CK顯著提高,增長幅度為12.39%~34.46%;前期受旱較重的旱澇急轉(zhuǎn)處理DF6—DF9,其直鏈淀粉質(zhì)量分?jǐn)?shù)均提高了20%以上.由圖3c可知,各處理下膠稠度較CK均出現(xiàn)不同程度下降,降低幅度為25.26%~36.84%,其中輕旱輕澇急轉(zhuǎn)處理DF1降低幅度最?。?/p>
對9組旱澇急轉(zhuǎn)處理進行正交試驗方差分析與極差分析,結(jié)果見表4.
干旱水平對膠稠度的影響顯著,而對堿消值和直鏈淀粉質(zhì)量分?jǐn)?shù)的影響未達(dá)顯著水平;干旱歷時和淹澇歷時則顯著影響直鏈淀粉質(zhì)量分?jǐn)?shù);淹澇水平對直鏈淀粉質(zhì)量分?jǐn)?shù)和膠稠度影響顯著.根據(jù)極差分析結(jié)果,直鏈淀粉質(zhì)量分?jǐn)?shù)主要受控于淹澇水平;膠稠度主要受干旱水平的影響.
2.3 灌漿期旱澇急轉(zhuǎn)對水稻產(chǎn)量及其構(gòu)成的影響
灌漿期旱澇急轉(zhuǎn)對水稻產(chǎn)量及產(chǎn)量構(gòu)成的影響見表5,表中Y,EP,NP,SR,GW,EL分別為每桶產(chǎn)量、有效穗數(shù)、每穗粒數(shù)、結(jié)實率、千粒質(zhì)量、穗長.
整體上看,灌漿期旱澇急轉(zhuǎn)極易造成水稻減產(chǎn),減產(chǎn)幅度為67.32%~98.71%,重旱急轉(zhuǎn)(DF7—DF9)下水稻減產(chǎn)均達(dá)90%以上,即前期經(jīng)歷重度干旱脅迫后轉(zhuǎn)入淹澇脅迫會對水稻造成極大損傷,導(dǎo)致產(chǎn)量急劇下降.處理DF8使有效穗數(shù)損傷最大,較CK降低了76.17%.旱后長期重澇(DF3)使每穗粒數(shù)較CK下降26.66%,而輕度旱澇急轉(zhuǎn)(DF1,DF2)則對每穗粒數(shù)影響較小,分別較CK降低了6.69%和7.81%.除輕旱輕澇(DF1)外,其余旱澇急轉(zhuǎn)處理均使結(jié)實率降低幅度較大,其中長期重旱后轉(zhuǎn)澇(DF9)導(dǎo)致結(jié)實率較CK降低了92.85%.千粒質(zhì)量受極端脅迫的影響較大,前期長時間重旱急轉(zhuǎn)(DF9)以及后期長時間重澇急轉(zhuǎn)(DF3)均使千粒質(zhì)量較CK下降30%以上.穗長整體上受旱澇急轉(zhuǎn)影響較小,僅旱后長期重澇(DF3)使其較CK下降21.39%.
2.4 基于主成分分析與TOPSIS法的旱澇急轉(zhuǎn)下水稻產(chǎn)量與品質(zhì)的綜合評價
灌漿期旱澇急轉(zhuǎn)下水稻產(chǎn)量與品質(zhì)的相關(guān)性如圖4所示.產(chǎn)量與大部分品質(zhì)指標(biāo)呈強度不一的負(fù)相關(guān)關(guān)系,產(chǎn)量與長寬比的負(fù)相關(guān)性最強(r達(dá)到-0.78***),與膠稠度則呈顯著正相關(guān)(r為0.68***).
分析各品質(zhì)指標(biāo)間的相關(guān)性,可知長寬比與粒長、透明度、堊白粒率、黃粒米率及直鏈淀粉質(zhì)量分?jǐn)?shù)呈顯著正相關(guān);粒長與透明度及長寬比呈顯著正相關(guān),與膠稠度呈顯著負(fù)相關(guān);透明度、堊白粒率與直鏈淀粉質(zhì)量分?jǐn)?shù)的正相關(guān)性最強;堊白度僅與堊白粒率呈顯著正相關(guān);黃粒米率僅與長寬比呈顯著正相關(guān);堿消值與各品質(zhì)指標(biāo)間的相關(guān)性均未達(dá)顯著水平;膠稠度與長寬比、粒長及透明度均呈顯著負(fù)相關(guān).
由圖4可知灌漿期旱澇急轉(zhuǎn)下水稻產(chǎn)量與品質(zhì)各指標(biāo)間存在不同程度的相關(guān)性,通過某一指標(biāo)對水稻產(chǎn)量及品質(zhì)進行評價并不客觀且會產(chǎn)生信息重復(fù),因此采用主成分分析法分別得到灌漿期旱澇急轉(zhuǎn)下水稻綜合產(chǎn)量及綜合品質(zhì)的評分.為保持各指標(biāo)優(yōu)劣方向的一致性,將堊白度、堊白粒率等逆向指標(biāo)的數(shù)據(jù)進行同趨化處理后進行分析.
通過主成分分析,提取出3個綜合產(chǎn)量的PC(主成分),見表6,表中λ,CR,CCR,W分別為特征值、貢獻(xiàn)率、累積貢獻(xiàn)率、權(quán)重.3個PC的特征值分別為4.34,0.86和0.69,且累積貢獻(xiàn)率已達(dá)98.18%,即已包含了原始數(shù)據(jù)的大部分變異信息,具有良好的代表性,故可用于水稻綜合產(chǎn)量評分.PC1的方差貢獻(xiàn)率為72.31%,主要綜合了產(chǎn)量、結(jié)實率和千粒質(zhì)量等指標(biāo)的變異信息;PC2的方差貢獻(xiàn)率為14.29%,主要綜合了產(chǎn)量和有效穗數(shù)等指標(biāo)的變異信息;PC3的方差貢獻(xiàn)率為11.58%,主要綜合了穗長和有效穗數(shù)等指標(biāo)的變異信息.
不同旱澇急轉(zhuǎn)處理下水稻產(chǎn)量的綜合指標(biāo)值、隸屬函數(shù)值、綜合評分和排名見表7,表中P,U,D分別為綜合指標(biāo)值、隸屬函數(shù)值、綜合評分.對于PC1而言,DF1的u(x1)為最大值1,即DF1在PC1上表現(xiàn)出的綜合產(chǎn)量最優(yōu),而DF3的u(x1)為最小值0,則表明DF3在PC1上表現(xiàn)出的綜合產(chǎn)量最差,其余PC同理.
由表6可知PC1—PC3對應(yīng)的綜合指標(biāo)權(quán)重分別為0.74,0.15和0.12,計算得出各旱澇急轉(zhuǎn)處理下水稻綜合產(chǎn)量評分按處理排序從高到低依次為DF1,DF2,DF5,DF4,DF6,DF9,DF3,DF8,DF7.
通過主成分分析,提取出4個綜合品質(zhì)的PC,見表8. 4個PC的特征值分別為4.58,1.86,1.12和0.60,且累積貢獻(xiàn)率已達(dá)90.72%,故可用于后續(xù)水稻綜合品質(zhì)評分.
PC4的方差貢獻(xiàn)率為50.84%,主要綜合了透明度、堊白粒率和膠稠度等指標(biāo)的變異信息;PC5的方差貢獻(xiàn)率為20.72%,主要綜合了堊白度和堿消值等指標(biāo)的變異信息;PC6的方差貢獻(xiàn)率為12.48%,主要綜合了堊白粒率和直鏈淀粉質(zhì)量分?jǐn)?shù)等指標(biāo)的變異信息;PC7的方差貢獻(xiàn)率為6.68%,主要綜合了長寬比和黃粒米率等指標(biāo)的變異信息.
由表8可以看出,4個主成分PC4—PC7對應(yīng)的綜合指標(biāo)權(quán)重分別為0.56,0.23,0.14和0.07,計算得出各旱澇急轉(zhuǎn)處理下水稻的綜合品質(zhì)評分按處理排序從高到低依次為DF1,DF6,DF4,DF5,DF8=DF9,DF2,DF7,DF3.
不同旱澇急轉(zhuǎn)處理水稻品質(zhì)的綜合指標(biāo)值、隸屬函數(shù)值、綜合評分和排名見表9.
由表7和9可知,基于主成分分析及隸屬函數(shù)法分別得到灌漿期旱澇急轉(zhuǎn)下水稻綜合產(chǎn)量及綜合品質(zhì)的評分.為使最終評價結(jié)果更客觀合理,利用熵權(quán)法計算得出客觀權(quán)重:綜合產(chǎn)量為0.615,綜合品質(zhì)為0.385.通過TOPSIS法完成灌漿期旱澇急轉(zhuǎn)下水稻產(chǎn)量及品質(zhì)的綜合質(zhì)量評價,評價結(jié)果發(fā)現(xiàn),各處理產(chǎn)量及品質(zhì)的綜合質(zhì)量優(yōu)劣按處理排序由高到低為DF1,DF2,DF5,DF6,DF4,DF9,DF8,DF3,DF7.即灌漿期旱澇急轉(zhuǎn)下,綜合考慮產(chǎn)量及品質(zhì)的質(zhì)量優(yōu)劣,確定綜合質(zhì)量最優(yōu)的處理為DF1,即干旱水平為65%±5%田間持水量,干旱歷時為5 d,淹澇水平為50%株高,淹澇歷時為5 d;綜合質(zhì)量最差的處理為DF7,該處理的干旱水平為35%±5%田間持水量,干旱歷時為5 d,淹澇水平為100%株高,淹澇歷時7 d.
3 討 論
水稻品質(zhì)是一種綜合性狀,由遺傳基因和環(huán)境因素共同決定[19],水分、光照、CO2濃度和溫度,都會影響稻米品質(zhì).光合作用活性組織在水稻灌漿過程中進行蔗糖—淀粉的轉(zhuǎn)運、合成,此過程會受到逆境的干擾,導(dǎo)致籽粒重量下降,且降低稻米品質(zhì)[20].旱澇急轉(zhuǎn)是一種轉(zhuǎn)折劇烈且相對迅速的極端水文事件[1],現(xiàn)有研究表明旱澇急轉(zhuǎn)對水稻存在損害[4-5],旱澇急轉(zhuǎn)過程中水分環(huán)境的劇烈變化對水稻灌漿期品質(zhì)的形成造成威脅.
粒型影響稻米的外觀和食味品質(zhì),直接影響稻米的市場需求[21].熊強強等[7]研究發(fā)現(xiàn)旱澇急轉(zhuǎn)會使粒長較CK下降,這與文中研究結(jié)果一致.結(jié)合長寬比及粒長數(shù)據(jù)發(fā)現(xiàn),灌漿期旱澇急轉(zhuǎn)會導(dǎo)致稻米粒型改變,與對照相比偏短、偏窄.這可能是由于灌漿期旱澇急轉(zhuǎn)脅迫影響水稻光合作用,灌漿進程受阻從而影響籽粒的形成[22].全球?qū)τ诘久琢P偷钠貌町愝^大,歐美、東南亞以及中國南部的人們喜歡長而細(xì)的稻米,而日本、朝鮮以及中國北部的人們更偏向于短而圓的稻米[23],可見旱澇急轉(zhuǎn)下的短而細(xì)的稻米粒型是品質(zhì)下降的表現(xiàn).稻米胚乳異常發(fā)育會導(dǎo)致堊白粒產(chǎn)生,堊白粒的淀粉間隙大、含水量不均,直接影響稻米的外觀品質(zhì)[24].
文中研究結(jié)果表明灌漿期旱澇急轉(zhuǎn)使稻米堊白度、堊白粒率及黃粒米率提高,這與郭相平等[6]研究發(fā)現(xiàn)的拔節(jié)孕穗期旱澇急轉(zhuǎn)降低稻米堊白度這一結(jié)果不同.這可能是由于試驗旱澇急轉(zhuǎn)處理時期不同導(dǎo)致的.文中研究旱澇急轉(zhuǎn)開始于灌漿期,正處于水稻生殖生長關(guān)鍵階段,而堊白度、堊白粒率與籽粒灌漿程度密切相關(guān),實粒率越低,堊白越多.前期缺水可能降低了穎花的充實,后續(xù)轉(zhuǎn)入淹澇環(huán)境中導(dǎo)致光照強度降低,影響光合產(chǎn)物形成及稻米淀粉結(jié)構(gòu),造成堊白度與堊白粒率提高.同時,淹沒過程中的高濕環(huán)境易使稻米營養(yǎng)成分發(fā)生成色反應(yīng),導(dǎo)致黃粒米率升高.
直鏈淀粉質(zhì)量分?jǐn)?shù)及膠稠度是評價蒸煮食味品質(zhì)的重要指標(biāo),影響稻米市場價值與消費者購買欲望.直鏈淀粉質(zhì)量分?jǐn)?shù)高的稻米質(zhì)地偏硬,外表粗糙無光澤.稻米淀粉流體長度越長,膠稠度越高,流動性和延展性就越好.文中研究結(jié)果表明灌漿期旱澇急轉(zhuǎn)下直鏈淀粉質(zhì)量分?jǐn)?shù)升高、膠稠度下降,這與前人[6-7]研究結(jié)果一致.分析其原因,可能是由于干旱脅迫降低了籽粒中有關(guān)碳代謝的關(guān)鍵酶活性[25],影響胚乳結(jié)構(gòu)成分,同時淹澇會提高直鏈淀粉和灰分質(zhì)量分?jǐn)?shù),受澇后水稻的蒸煮時間較低,且粥固體物質(zhì)損失較高[10].
旱澇急轉(zhuǎn)對水稻產(chǎn)量的影響研究已有一定進展[5,13],大多結(jié)果表明旱澇急轉(zhuǎn)影響水稻產(chǎn)量形成,尤其重旱重澇急轉(zhuǎn)造成的減產(chǎn)幅度最大,這與文中研究結(jié)果基本一致.經(jīng)對比發(fā)現(xiàn),文中研究減產(chǎn)幅度相較部分學(xué)者研究結(jié)果更大,這可能是由于洞庭湖區(qū)“馬蹄形”盆地格局及不穩(wěn)定的氣候系統(tǒng),造成極端氣候事件頻發(fā),季節(jié)性干旱易導(dǎo)致重、特大旱災(zāi),故試驗設(shè)置的干旱脅迫水平較前人研究更低;據(jù)《湖南省洞庭湖保護與治理水利工作年報(2022年)》,文中研究開展的年份屬于重旱年,自然長期干旱后的旱澇急轉(zhuǎn)具有一定的代表性,同時氣候的影響也是研究結(jié)果同前人略有出入的原因之一[13].旱澇急轉(zhuǎn)下的前期干旱導(dǎo)致葉片水勢下降、光合作用降低,從而影響水分與營養(yǎng)物質(zhì)的輸運;轉(zhuǎn)入淹澇環(huán)境下會使水稻缺氧、還原反應(yīng)劇烈,旱澇快速轉(zhuǎn)換可能影響水稻灌漿期籽粒的正常發(fā)育,造成減產(chǎn).文中研究結(jié)果表明大部分品質(zhì)指標(biāo)與產(chǎn)量呈負(fù)相關(guān),尤其是長寬比與產(chǎn)量的負(fù)相關(guān)性最強.胚乳的異常發(fā)育,通常使較高的堊白粒率伴隨著較低的稻米粒重一同出現(xiàn)[24].同時旱澇急轉(zhuǎn)下稻米長寬比與粒長的改變,也會直接影響水稻結(jié)實率與千粒質(zhì)量,導(dǎo)致產(chǎn)量下降.
TOPSIS法可對多個目標(biāo)進行綜合評價,現(xiàn)已廣泛應(yīng)用于多個領(lǐng)域[18].文中研究利用TOPSIS法綜合產(chǎn)量及品質(zhì)指標(biāo)對各旱澇急轉(zhuǎn)處理下的水稻進行評價,輕旱輕澇(DF1)由于其致災(zāi)程度最低,故綜合質(zhì)量排名第一.而重旱重澇(DF7)由于經(jīng)歷重度干旱脅迫后又迅速轉(zhuǎn)入沒頂淹澇環(huán)境中,且淹澇持續(xù)時間為7 d,故而對水稻造成極大損傷,使其產(chǎn)量及品質(zhì)的綜合質(zhì)量最差.
4 結(jié) 論
通過早稻灌漿期旱澇急轉(zhuǎn)的桶栽試驗,分析了不同旱澇急轉(zhuǎn)處理下水稻品質(zhì)及產(chǎn)量的響應(yīng)規(guī)律并將其量化,基于主成分分析與TOPSIS法對水稻品質(zhì)及產(chǎn)量進行綜合評價,研究成果可為應(yīng)對旱澇急轉(zhuǎn)的水稻品質(zhì)改良以及減災(zāi)策略的制定提供理論依據(jù).所得結(jié)論如下:
1) 灌漿期旱澇急轉(zhuǎn)會導(dǎo)致米粒偏短、偏窄,同時提高透明度與黃粒米率,堊白度和堊白粒率分別較CK提高了13.42%~69.16%和6.14%~48.72%.蒸煮食味品質(zhì)方面,堿消值對灌漿期旱澇急轉(zhuǎn)并不敏感;稻米直鏈淀粉質(zhì)量分?jǐn)?shù)在旱澇急轉(zhuǎn)下顯著提高;灌漿期旱澇急轉(zhuǎn)導(dǎo)致膠稠度較CK降低25.26%~36.84%.
2) 除堿消值受灌漿期旱澇急轉(zhuǎn)的影響不顯著外,其余水稻品質(zhì)受干旱和淹澇的共同影響,淹澇水平是大部分品質(zhì)指標(biāo)的主要影響因素.
3) 灌漿期旱澇急轉(zhuǎn)導(dǎo)致水稻與CK相比減產(chǎn)67.32%~98.71%,大部分品質(zhì)指標(biāo)與產(chǎn)量呈負(fù)相關(guān),膠稠度與產(chǎn)量呈正相關(guān).各旱澇急轉(zhuǎn)處理下水稻綜合產(chǎn)量評分按處理排序從高到低依次為DF1,DF2,DF5,DF4,DF6,DF9,DF3,DF8,DF7;水稻的綜合品質(zhì)評分按處理排序從高到低依次為DF1,DF6,DF4,DF5,DF8=DF9,DF2,DF7,DF3.
4) 灌漿期旱澇急轉(zhuǎn)下各處理產(chǎn)量及品質(zhì)的綜合質(zhì)量優(yōu)劣按處理排序從高到低依次為DF1,DF2,DF5,DF6,DF4,DF9,DF8,DF3,DF7.綜合質(zhì)量最優(yōu)的處理為輕旱輕澇急轉(zhuǎn)(DF1),綜合質(zhì)量最差的處理為重旱重澇急轉(zhuǎn)(DF7).
致謝:文中研究的野外試驗得到了湖南省益陽市灌溉試驗站的大力支持與幫助,在此表示感謝.
參考文獻(xiàn)(References)
[1]閃麗潔,張利平,張艷軍,等. 長江中下游流域旱澇急轉(zhuǎn)事件特征分析及其與ENSO的關(guān)系[J]. 地理學(xué)報,2018,73(1):25-40.
SHAN Lijie, ZHANG Liping, ZHANG Yanjun, et al. Characteristics of dry-wet abrupt alternation events in the middle and lower reaches of the Yangtze River Basin and their relationship with ENSO[J]. Acta geographica sinica, 2018,73(1):25-40. (in Chinese)
[2]CASE J L. From drought to flooding in less than a week over South Carolina[J]. Results in physics, 2016, 6: 1183-1184.
[3]BUTARDO V M, SREENIVASULU N, JULIANO B O. Improving rice grain quality: state-of-the-art and future rrospects[M]. SREENIVASULU N. Rice Grain Quality. Methods in Molecular Biology. New York: Humana Press, 2019,1892:19-55.
[4]王振昌,郭相平,楊靜晗,等. 旱澇交替脅迫對水稻干物質(zhì)生產(chǎn)分配及倒伏性狀的影響[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(24):114-123.
WANG Zhenchang, GUO Xiangping, YANG Jinghan, et al. Effect of alternate flooding and drought stress on biomass production, distribution and lodging characteris-tic of rice[J]. Transactions of the CSAE, 2016,32(24):114-123. (in Chinese)
[5]熊強強,鐘蕾,沈天花,等. 穗分化期旱澇急轉(zhuǎn)對雙季超級雜交稻物質(zhì)積累和產(chǎn)量形成的影響[J]. 中國農(nóng)業(yè)氣象,2017,38(9):597-608.
XIONG Qiangqiang, ZHONG Lei, SHEN Tianhua, et al. Effects of drought-floods abrupt alternation during panicle differentiation stage on matter accumulation and yield formation in double-season super hybrid rice[J]. Chinese journal of agrometeorology, 2017,38(9):597-608. (in Chinese)
[6]郭相平,楊骕,王振昌,等. 旱澇交替脅迫對水稻產(chǎn)量和品質(zhì)的影響[J]. 灌溉排水學(xué)報,2015,34(1):13-16.
GUO Xiangping, YANG Xiao, WANG Zhenchang, et al. Effects of alternative stress of drought and waterlog-ging on rice yield and quality[J]. Journal of irrigation and drainage, 2015, 34(1):13-16. (in Chinese)
[7]熊強強,沈天花,鐘蕾,等. 分蘗期和幼穗分化期旱澇急轉(zhuǎn)對超級雜交早稻產(chǎn)量和品質(zhì)的影響[J]. 灌溉排水學(xué)報,2017,36(10):39-45.
XIONG Qiangqiang, SHEN Tianhua, ZHONG Lei, et al. Effect of a sudden change from drought to waterlog-ging at the tilleringor young spiking stage on yield and grain of hybrid rice[J]. Journal of irrigation and drai-nage, 2017, 36(10):39-45. (in Chinese)
[8]楊曉龍,程建平,汪本福,等. 灌漿期干旱脅迫對水稻生理性狀和產(chǎn)量的影響[J]. 中國水稻科學(xué),2021,35(1):38-46.
YANG Xiaolong, CHENG Jianping, WANG Benfu, et al. Effects of drought stress at grain filling stage on rice physiological characteristics and yield[J]. Chinese journal of rice science, 2021, 35(1):38-46. (in Chinese)
[9]高煥曄,王三根,宗學(xué)鳳,等. 灌漿結(jié)實期高溫干旱復(fù)合脅迫對稻米直鏈淀粉及蛋白質(zhì)含量的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2012,20(1):40-47.
GAO Huanye, WANG Sangen, ZONG Xuefeng, et al. Effects of combined high temperature and drought stress on amylose and protein contents at rice grain-filling stage[J]. Chinese journal of eco-agriculture, 2012, 20(1):40-47. (in Chinese)
[10]PANDEY A, KUMAR A, PANDEY D S, et al. Rice quality under water stress[J]. Indian journal of advances in plant research, 2014, 1 (2): 23-26.
[11]張榮萍,馬均,王賀正,等. 不同灌水方式對水稻結(jié)實期一些生理性狀和產(chǎn)量的影響[J]. 作物學(xué)報,2008,34(3):486-495.
ZHANG Rongping, MA Jun, WANG Hezheng, et al. Effects of different irrigation regimes on some physiology characteristics and grain yield in paddy rice during grain filling[J]. Acta agronomica sinica, 2008,34(3):486-495. (in Chinese)
[12]黃冬芬,奚嶺林,王志琴,等. 結(jié)實期灌溉方式對水稻品質(zhì)和不同器官鎘濃度與分配的影響[J]. 作物學(xué)報,2008,34(3):456-464.
HUANG Dongfen, XI Linglin, WANG Zhiqin, et al. Effects of irrigation regimes during grain filling on grain quality and the concentration and distribution of cadmium in different organs of rice[J]. Acta agronomica sinica, 2008,34(3):456-464. (in Chinese)
[13]GAO Yun, HU Tiesong, WANG Qin, et al. Effect of drought-flood abrupt alternation on rice yield and yield components[J]. Crop science, 2019,59(1):280-292.
[14]胡毅鴻, 李景保. 1951—2015年洞庭湖區(qū)旱澇演變及典型年份旱澇急轉(zhuǎn)特征分析[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(7):107-115.
HU Yihong, LI Jinbao. Analysis on evolution of drought-flood and its abrupt alternation in typical year from 1951 to 2015 in Dongting Lake area[J]. Transactions of the CSAE, 2017, 33(7):107-115. (in Chinese)
[15]韓文嬌,白林利,李昌曉,等. 前期水淹對牛鞭草后期干旱脅迫光合生理響應(yīng)的影響[J]. 生態(tài)學(xué)報,2016,36(18):5712-5724.
HAN Wenjiao, BAI Linli, LI Changxiao, et al. Effects of flooding on the photosynthetic response of Hemarthria altissima to drought[J]. Acta ecologica sinica, 2016, 36(18):5712-5724. (in Chinese)
[16]DICKIN E, WRIGHT D. The effects of winter waterlogging and summer drought on the growth and yield of winter wheat (Triticum aestivum L.)[J]. European journal of agronomy, 2008, 28 (3): 234-244.
[17]荊瑞勇,衛(wèi)佳琪,王麗艷,等. 基于主成分分析的不同水稻品種品質(zhì)綜合評價[J]. 食品科學(xué),2020,41(24):179-184.
JING Ruiyong, WEI Jiaqi, WANG Liyan, et al. Comprehensive quality evaluation of different rice varieties based on principal component analysis[J]. Food science, 2020,41(24):179-184. (in Chinese)
[18]張帆,陳夢茹,邢英英,等. 基于熵權(quán)法和TOPSIS對馬鈴薯施肥和滴灌量組合的優(yōu)化[J]. 植物營養(yǎng)與肥料學(xué)報,2023,29(4):732-744.
ZHANG Fan, CHEN Mengru, XING Yingying, et al. Optimization of fertilizer and drip irrigation levels for efficient potato production based on entropy weight method and TOPSIS[J]. Journal of plant nutrition and fertilizers, 2023, 29(4):732-744. (in Chinese)
[19]XIA Duo, WANG Yipei, SHI Qingyun, et al. Effects of Wx genotype, nitrogen fertilization, and temperature on rice grain quality[J]. Frontiers in plant science, 2022,13: 901541.
[20]CHEN T, LI G, ISLAM M R, et al. Abscisic acid synergizes with sucrose to enhance grain yield and quality of rice by improving the source-sink relationship[J]. BMC plant biology, 2019, 19 (1): 525.
[21]MENG B, WANG T, LUO Y, et al. Identification and allele combination analysis of rice grain shape-related genes by genome-wide association study[J]. Internatio-nal journal of molecular sciences, 2022,23(3):1065.
[22]曹睿哲, 高世凱. 不同生育期旱澇交替脅迫對水稻產(chǎn)量及構(gòu)成的影響[J]. 排灌機械工程學(xué)報,2019,37(7):639-644.
CAO Ruizhe, GAO Shikai. Influence of drought and flood alternation stress in different growth stages on rice yield and components[J]. Journal of drainage and irrigation machinery engineering, 2019,37(7):639-644. (in Chinese)
[23]REDONA E D, MACKILL D J. Quantitative trait locus analysis for rice panicle and grain characteristics[J]. Theoretical and applied genetics, 1998,96:957-963.
[24]WANG Hong, ZHANG Yingxin, SUN Lianping, et al. WB1, a regulator of endosperm development in rice, is identified by a modified MutMap method[J]. Internatio-nal journal of molecular sciences, 2018, 19 (8):2159.
[25]劉凱,張耗,張慎鳳,等. 結(jié)實期土壤水分和灌溉方式對水稻產(chǎn)量與品質(zhì)的影響及其生理原因[J]. 作物學(xué)報,2008,34(2):268-276.
LIU Kai, ZHANG Hao, ZHANG Shenfeng, et al. Effects of soil moisture and irrigation patterns during grain filling on grain yield and quality of rice and their physiological mechanism[J]. Acta agronomica sinica, 2008,34(2):268-276. (in Chinese)
(責(zé)任編輯 張文濤)