国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

康普茶細(xì)菌纖維素的形成途徑及其在廢棄茶葉資源高效利用中的應(yīng)用

2024-11-08 00:00徐晴晴聶晴劉助生郭青劉仲華蔡淑嫻
茶葉科學(xué) 2024年5期

摘要:廢棄茶葉資源和夏秋茶用于生產(chǎn)康普茶和細(xì)菌纖維素,不僅有助于減少環(huán)境污染和資源浪費,還能開發(fā)高市場價值的產(chǎn)品。細(xì)菌纖維素作為一種高晶度、可再生的多糖,廣泛應(yīng)用于生物醫(yī)療、環(huán)保包裝、紡織、新能源電池、護(hù)膚品等領(lǐng)域。綜述了近年來細(xì)菌纖維素膜的應(yīng)用研究,重點分析了不同發(fā)酵環(huán)境和茶葉種類對細(xì)菌纖維素膜品質(zhì)的影響,證實了通過調(diào)整發(fā)酵參數(shù)可獲得具有特定結(jié)晶結(jié)構(gòu)的纖維素。進(jìn)一步探討了茶葉成分在菌膜形成中的作用,并提出了提高康普茶細(xì)菌纖維素膜產(chǎn)量和質(zhì)量的新思路。文章強調(diào)了康普茶細(xì)菌纖維素膜的保健功效及其在可持續(xù)產(chǎn)品開發(fā)中的重要作用,并指出了進(jìn)一步研究以促進(jìn)其工業(yè)化應(yīng)用的必要性。

關(guān)鍵詞:康普茶細(xì)菌纖維素;廢棄茶葉資源利用;生物可降解材料;膳食多糖

中圖分類號:S571.1;TS272 文獻(xiàn)標(biāo)識碼:A 文章編號:1000-369X(2024)05-707-11

Review on the Formation Pathway of Kombucha Bacterial Cellulose and Its Application in Efficient Utilization of Tea Waste

XU Qingqing1,3, NIE Qing1,3, LIU Zhusheng2*, GUO Qing1,3, LIU Zhonghua1,3, CAI Shuxian1,3*

1. National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China;

2. Guangxi Research Institute of Tea Science, Guilin 541004, China;

3. Key Lab of Education Ministry of Hunan Agricultural University for Tea Science, Changsha 410128, China

Abstract: Tea waste and summer-autumn tea can be used to produce Kombucha and bacterial cellulose, helping to reduce environmental pollution and resource waste while developing high market value products. Bacterial cellulose, as a highly crystalline and sustainably renewable polysaccharide, has a wide range of potential applications in biomedicine, eco-friendly packaging, textiles, new energy batteries, skincare products, and other fields. This paper reviewed recent research on the applications of bacterial cellulose membranes, focusing on the effects of different fermentation environments and tea types on the quality of bacterial cellulose membranes. It confirmed that adjusting fermentation parameters can produce cellulose with specific crystalline structures. The paper also discussed the role of tea components in the formation of bacterial cellulose membranes and proposed new ideas for improving the yield and quality of Kombucha bacterial cellulose membranes. The health benefits of Kombucha bacterial cellulose membranes and their significant role in sustainable product development were emphasized. The paper highlighted the need for further research to promote their industrial application.

Keywords: Kombucha bacterial cellulose, tea waste utilization, biodegradable materials, dietary polysaccharide

多糖是生物體常見的一類生物大分子,主要分為儲能多糖和結(jié)構(gòu)多糖。細(xì)菌纖維素(Bacterial cellulose,BC)是一種典型的結(jié)構(gòu)多糖,是細(xì)菌細(xì)胞壁和生物膜的重要組成部分[1]。BC由葡萄糖單元通過β-1,4糖苷鍵連接而成,具有高晶度和可持續(xù)再生的特點(圖1)[2]。農(nóng)業(yè)副產(chǎn)品的焚燒和填埋處理方式常導(dǎo)致環(huán)境污染,而這些廢料富含纖維素、果膠、酚類物質(zhì)和類黃酮,具有廣泛的應(yīng)用潛力[3]。因此,開發(fā)這些副產(chǎn)品的可持續(xù)利用策略對工業(yè)應(yīng)用具有重要意義。

康普茶(Kombucha)歷史悠久,通常以紅茶和綠茶為發(fā)酵基底,并加入蔗糖作為碳源[4]。在發(fā)酵過程中,酵母菌和醋酸菌共生,形成一種漂浮于液面的凝膠狀BC膜[5]。研究顯示,康普茶發(fā)酵法生產(chǎn)BC,不僅效益高且原料來源廣泛,適合工業(yè)化大規(guī)模生產(chǎn)。這種方法不僅降低生產(chǎn)成本,還能創(chuàng)造高附加值產(chǎn)品,符合可持續(xù)生產(chǎn)和環(huán)保的要求[6-7]。

本文綜述了茶葉廢料和夏秋茶的利用、康普茶發(fā)酵方法的優(yōu)化,以及不同茶類對BC膜質(zhì)量的影響。同時探討了BC作為膳食多糖在

生物醫(yī)藥、紡織、包裝和電池等領(lǐng)域的應(yīng)用前景??灯詹鐱C的開發(fā)不僅增加了康普茶的附加值,也為生物材料領(lǐng)域開辟了新的研究方向。隨著科技進(jìn)步和市場需求的增加,康普茶BC膜在未來將發(fā)揮越來越重要的作用。

1 康普茶BC膜

在康普茶的發(fā)酵過程中,通過酵母菌和醋酸菌等微生物的共生作用,會形成一層漂浮在液面上的凝膠狀膜(圖1A),其主要成分為BC。這種纖維素由納米級的細(xì)小纖維組成,這些纖維相互纏繞,形成具有高比表面積和孔隙率的三維網(wǎng)絡(luò)結(jié)構(gòu),其分子結(jié)構(gòu)如圖1B所示??灯詹璋l(fā)酵過程以茶水、蔗糖和特定菌種為基礎(chǔ)進(jìn)行培養(yǎng),對原料的要求相對較低,且培養(yǎng)方法簡單、操作方便。由于BC具有巨大的潛在商業(yè)價值和市場吸引力,采用康普茶發(fā)酵法生產(chǎn)BC成為一種成本效益高、原料來源廣泛的生產(chǎn)方式,非常適合工業(yè)化大規(guī)模生產(chǎn)。這種方法不僅能夠降低生產(chǎn)成本,還可以創(chuàng)造高附加值的產(chǎn)品,符合當(dāng)前可持續(xù)生產(chǎn)和環(huán)保要求的工業(yè)趨勢。

2 康普茶發(fā)酵形成BC膜的過程

在康普茶的發(fā)酵過程中,醋酸菌和酵母菌共生,形成一個相對穩(wěn)定的微生物生態(tài)系統(tǒng)。酵母菌通過分泌轉(zhuǎn)化酶將蔗糖分解成單糖和葡萄糖,并利用糖酵解途徑產(chǎn)生乙醇;同時,醋酸菌將乙醇轉(zhuǎn)化為乙酸,并將葡萄糖氧化,最終生成D-葡萄糖二酸-1,4-內(nèi)酯(D-saccharic acid 1,4-lactone,DSL),這一系列反應(yīng)形成了一個復(fù)雜的代謝鏈[9-10]。

此外,酵母菌產(chǎn)生的乙醇能刺激細(xì)菌纖維素合酶的活性,從而促進(jìn)纖維素膜的生成。在發(fā)酵過程中,適當(dāng)濃度的乙醇有助于纖維素膜的形成[11]。唐水佳等[12]研究表明,康普茶發(fā)酵生產(chǎn)的纖維素量是木葡糖酸醋桿菌的3倍以上,這得益于康普茶發(fā)酵體系中酵母菌、醋酸菌和乳酸菌之間高度共生的關(guān)系及其協(xié)同代謝作用,這些互動顯著促進(jìn)了纖維素的生產(chǎn)[13]。

纖維素的生物合成過程涉及多個酶的參與(圖2)。首先,葡萄糖被轉(zhuǎn)化為6-磷酸-葡萄糖,隨后轉(zhuǎn)化為1-磷酸-葡萄糖;在尿苷二磷酸葡萄糖(Uridine diphosphate glucose,UDPG)焦磷酸化酶的催化作用下,1-磷酸-葡萄糖形成UDPG分子,這是纖維素分子的前體。纖維素合酶隨后作用于UDPG,促使更多的UDPG單元相互連接,迅速形成每秒約20萬個單元的聚合物鏈,最終形成β-1,4葡聚糖鏈,并組裝合成BC[14]。

3 康普茶產(chǎn)BC膜的菌株類型

張妍[2]研究發(fā)現(xiàn),康普茶發(fā)酵初期酵母菌迅速繁殖,隨著次級代謝產(chǎn)物的產(chǎn)生,促進(jìn)纖維素的形成;隨后酵母菌生長減緩,且大部分沉降于菌液底部,含量減少。因此,主要附著在菌膜中的葡萄糖桿菌屬(Gluconobacter)成為纖維素的主要生產(chǎn)菌株。余瞻等[15]通過篩選和16 S rDNA測序,鑒定出木糖駒形氏桿菌(Komagataeibacter xylinus)為高產(chǎn)BC的優(yōu)勢菌種。此外,從綠茶康普茶發(fā)酵劑中分離到的新型駒形桿菌(Komagataeibacter rhaeticus)也顯示出較高的BC生產(chǎn)潛力[16]。

微生物群落的組成對康普茶的發(fā)酵過程有顯著影響??灯詹柚械慕湍妇N類差異較大,其對發(fā)酵過程的具體影響值得進(jìn)一步研

究。呂橄等[17]研究發(fā)現(xiàn),在發(fā)酵的前7 d,發(fā)酵液中原核生物多樣性高于菌膜,但在發(fā)酵后期,發(fā)酵液中的多樣性急劇下降,與菌膜的多樣性趨于一致,主要菌群為駒形桿菌屬(Komagataeibacter)。這表明特定細(xì)菌屬在BC形成中的關(guān)鍵作用,對于優(yōu)化康普茶發(fā)酵過程至關(guān)重要。

與康普茶分離菌株Komagataeibacter hansenii B22及參考菌株Komagataeibacter xylinus DSM 46604、Komagataeibacter hansenii DSM 5602相比,Komagataeibacter rhaeticus的纖維素產(chǎn)量顯著提高[18]。駒形桿菌屬菌株的酶活性促進(jìn)UDPG的產(chǎn)生,能夠形成高達(dá)20萬個葡萄糖分子的聚合物鏈,通過β-1,4糖苷鍵聚合最終合成纖維素[19]。這些發(fā)現(xiàn)強調(diào)了選擇合適微生物菌株在優(yōu)化BC生產(chǎn)過程中的重要性。

4 發(fā)酵基質(zhì)對BC形成的影響

4.1 碳源

糖是發(fā)酵基質(zhì)中的主要碳源,最佳質(zhì)量濃度為100 g·L-1,能顯著提高纖維素的產(chǎn)量[20]。其中,蔗糖被認(rèn)為是最佳的碳源,因為它可以被分解為葡萄糖和果糖,從而增加葡萄糖酸的產(chǎn)量,在一定pH范圍內(nèi)有利于纖維素膜的形成。其次,葡萄糖也是一種有效的碳源[21-22]。當(dāng)蔗糖的質(zhì)量分?jǐn)?shù)達(dá)到5%時,BC的產(chǎn)量達(dá)到最高[23];而濃度過高可能產(chǎn)生抑制性物質(zhì),阻礙微生物的生長[24]。此外,葡萄糖作為碳源還會產(chǎn)生副產(chǎn)物葡萄糖酸,降低培養(yǎng)基pH值,從而影響B(tài)C的形成。

4.2 茶葉及其成分

茶葉作為氮源對微生物的生長及細(xì)胞構(gòu)建至關(guān)重要,不同茶類對BC的產(chǎn)量和質(zhì)量有顯著影響。Ramirez等[25]研究發(fā)現(xiàn),紅茶發(fā)酵的康普茶在21 d后BC產(chǎn)量較多。此外,紅茶康普茶中有較多的微生物,推測高微生物含量與優(yōu)質(zhì)纖維素的形成密切相關(guān)[16,26]。

研究表明,綠茶對BC產(chǎn)量的影響顯著高于紅茶;BC的質(zhì)量與綠茶-紅茶混合物負(fù)相關(guān),但與單獨的茶渣、綠茶和紅茶呈正相關(guān)[21,27]。紅茶發(fā)酵的康普茶產(chǎn)生的BC較厚且呈深黃棕色,結(jié)晶度較低;而綠茶發(fā)酵的康普茶產(chǎn)生的BC則更光滑透明,結(jié)晶度較高,表面結(jié)構(gòu)也更均勻[23,25]。使用茶渣作為底物生產(chǎn)的BC產(chǎn)量較高,與單一菌株相比,混合培養(yǎng)或添加茶葉生產(chǎn)的BC質(zhì)量更高、成本更低[24]。

為了尋找新的經(jīng)濟培養(yǎng)基用于工業(yè)化生產(chǎn)BC,許多研究嘗試使用農(nóng)業(yè)廢棄物,如針葉副產(chǎn)物、咖啡渣、葡萄皮、茶渣等。利用茶葉廢料發(fā)酵生產(chǎn)康普茶不僅能夠減少環(huán)境問題,還對茶產(chǎn)業(yè)具有積極影響。研究表明,添加綠茶茶渣的康普茶總多酚和咖啡堿含量顯著高于未添加茶渣的康普茶[28]。茶葉濃度對BC形成有重要影響。Balasubramanian等[21]研究顯示,最佳茶葉添加量為10 g·L-1。添加過多茶葉會抑制微生物生長,導(dǎo)致菌膜質(zhì)量不佳;添加過少則不利于菌膜形成[24,29]。不同茶類發(fā)酵康普茶的成分和微生物群落各異,這也會影響B(tài)C的產(chǎn)量和質(zhì)量[30]。

茶葉中富含多酚類物質(zhì),其中具有多個芳香環(huán)的酚類化合物通常比只有1個芳香環(huán)的化合物與纖維素的結(jié)合力更強[31]。此外,中性的兒茶素顯示出最強的纖維素吸附能力和結(jié)合親和力[32]。在BC的生長過程中,位于頂部纖維下的中間層充滿了細(xì)菌細(xì)胞,這些細(xì)胞被視為BC生長的活性劑。該區(qū)域利用被纖維包圍的酵母代謝產(chǎn)物和自溶作用促進(jìn)細(xì)菌的營養(yǎng)作用,從而使纖維素分子能夠結(jié)合茶葉中的多酚類物質(zhì),抑制過多的多酚對細(xì)菌細(xì)胞膜的毒性,進(jìn)一步促進(jìn)BC的形成[33]。

綜上所述,茶葉在BC的形成過程中發(fā)揮了多重作用,包括提供營養(yǎng)和促生長因子,以及調(diào)節(jié)發(fā)酵環(huán)境和影響微生物的生存。研究發(fā)現(xiàn),康普茶中的茶葉富含礦物質(zhì)和維生素,這些成分能促進(jìn)微生物的生長和細(xì)胞結(jié)構(gòu)的構(gòu)建,加速發(fā)酵過程[34]。茶葉中的咖啡堿、茶葉堿和可可堿能夠通過激活纖維素生成復(fù)合物,刺激細(xì)菌產(chǎn)生纖維素[35]。茶多酚的自發(fā)氧化能夠使康普茶在發(fā)酵24 h后接近厭氧狀態(tài),加速酵母菌向發(fā)酵代謝轉(zhuǎn)變,從而促進(jìn)纖維素的形成[36]。紅茶中的茶黃素、茶紅素也能促進(jìn)細(xì)菌產(chǎn)生纖維素[37]。隨著茶葉濃度增加,BC生成量減少,這可能是因為茶多酚能夠抵抗發(fā)酵過程中產(chǎn)生的有害氧化物質(zhì),從而保護(hù)醋酸菌免受氧化應(yīng)激損傷[38]。

4.3 廢棄茶葉資源在BC制備中的應(yīng)用

廢棄茶葉資源來自茶樹修剪、茶葉生產(chǎn)以及日常沖泡。在特定的酸性條件下,烏龍茶茶渣可以高效生產(chǎn)具有熱穩(wěn)定性的微晶纖維素,產(chǎn)率達(dá)到86.7%[39]。按照采摘季節(jié),茶葉可分為春茶、夏茶和秋茶,其中夏秋茶因苦澀味重、市場溢價能力弱、銷量低,導(dǎo)致企業(yè)對其生產(chǎn)積極性較低[40]。

不同茶類的茶渣成分雖有一定差異,但總體上具備相似的營養(yǎng)成分。例如,茶渣中含有粗蛋白質(zhì)、脂肪、灰分、水分、粗纖維、半纖維素、多酚和游離氨基酸等[41-42]。紅茶廢棄物和綠茶茶渣含有表兒茶素(EC)、表沒食子兒茶素(EGC)、表沒食子兒茶素沒食子酸酯(EGCG)、表兒茶素沒食子酸酯(ECG)、沒食子兒茶素(GC)和沒食子酸[43]。研究進(jìn)一步表明,成熟葉片通常含有較高水平的EGC和EC,而幼嫩的葉片和芽則富含有ECG和EGCG,此外,成熟葉片中的咖啡堿含量低于幼嫩芽葉[44]。這些成分的差異可能會影響廢棄茶葉資源在康普茶發(fā)酵過程中的作用和效果。

以上成分在康普茶發(fā)酵過程中對BC的形成起到了重要作用,有助于調(diào)節(jié)發(fā)酵環(huán)境的pH,促進(jìn)細(xì)菌與酵母菌的共生培養(yǎng),并抑制污染物的生長和腐敗[45]。這些特性使得茶葉廢棄物成為BC生產(chǎn)中的重要資源,為資源循環(huán)利用和可持續(xù)發(fā)展提供了新的途徑。

5 BC膜的純化方法及性能改進(jìn)

5.1 純化方法

純化BC膜的過程包括去除細(xì)菌、清洗去除雜質(zhì)或培養(yǎng)基成分,最后通過物理或化學(xué)方法改善其性能[46-47]。具體步驟如下:(1)去除附著細(xì)胞和雜質(zhì):將BC置于80 ℃的0.5 mol·L-1 NaOH溶液中處理120 min,去除附著細(xì)胞和雜質(zhì)[48]。(2)洗滌和漂白:使用1.0 mol·L-1 NaOH在90 ℃下進(jìn)行兩次初始洗滌,然后用1.5% NaClO漂白2 h,可得到白度值高達(dá)(81.4±4.8)的BC[49]。(3)最終純化:在室溫下用5%的KOH溶液處理BC 14 h,以進(jìn)一步純化[23]。經(jīng)過純化處理,BC的Iα和Iβ纖維素的結(jié)晶度從37%提高到87%,并且經(jīng)過噴霧干燥處理的BC表現(xiàn)出更高的熱穩(wěn)定性[50]。

5.2 性能改進(jìn)

不同的處理方法可以顯著改善BC的理化性能,目前已在以下幾個方面開展了研究和應(yīng)用:(1)增強機械性能:Kn?ller等[51]利用鈦(IV)雙(乳酸銨)二氫氧化物(Ti-BALDH)處理BC,通過增強交聯(lián)改善BC機械性能,使其更適用于紡織業(yè)。(2)調(diào)整結(jié)晶度和尺寸:Hamed等[45]研究發(fā)現(xiàn),通過γ輻照處理,可以根據(jù)不同的劑量調(diào)整BC的結(jié)晶度和尺寸,從而優(yōu)化其結(jié)構(gòu)特性。(3)提高柔韌性和抗氧化性:BC中添加適量甘油可以形成柔韌性強且具有良好抗氧化性的聚合物水凝膠,使其適用于食品包裝材料[52-53]。(4)改善斷裂伸長率和阻隔性能:在BC中摻入8%的茶多酚和殼聚糖,可以有效提高其斷裂伸長率、接觸角和水汽阻隔性能[54]。(5)提高強度和延伸率:在康普茶中添加蛋白胨作為氮源能夠提升BC的強度和延伸率[55]。(6)增強硬度和抗氧化活性:將BC浸入聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)基質(zhì)中,形成的PMMA-BC復(fù)合材料具有更高的硬度[56],而將BC顆粒摻入馬來酸化亞麻籽油(Maleinized linseed oil,MLO)-聚乳酸(PLA)中則能增強其抗氧化活性[57]。(7)提高吸附能力:利用超聲波法和氧化石墨烯的羧基可以顯著提高BC對Pb(II)的吸附能力[58]。(8)改善光吸收性能:制備殼聚糖BC材料的涂層可以有效改善其在UV-Vis范圍內(nèi)的光吸收性能[59]。

此外,開發(fā)機器學(xué)習(xí)預(yù)測模型來識別影響康普茶生產(chǎn)BC的關(guān)鍵工藝參數(shù),通過發(fā)酵性能分析進(jìn)行預(yù)測建模,可以最大限度地提高產(chǎn)量并降低試錯成本[60]。這些研究成果展示了各種改進(jìn)方法對BC性能的不同影響,為BC在實際應(yīng)用中的優(yōu)化提供了重要參考。

6 BC的功效及應(yīng)用

6.1 作為膳食多糖的保健功效

BC作為可食用膳食纖維,不僅具有與天然纖維素相似的益處,還能降低患糖尿病、肥胖癥、心血管疾病的風(fēng)險[61-62]。毒理學(xué)評估表明,BC對小鼠無生殖毒性、無胚胎毒性、無致畸作用,也無炎癥反應(yīng)[63-65]。1992年,美國食品和藥物管理局(FDA)將BC認(rèn)定為“公認(rèn)安全”(GRAS)[66]。BC的多功能性和可降解性使其在烘焙食品、甜點、零食和飲料中得到廣泛應(yīng)用,并因其與植物纖維素的相似結(jié)構(gòu),常被用作高纖維膳食補充劑和素食者的肉類替代品[67]。

研究表明,BC和植物纖維素的攝入能顯著促進(jìn)糞便中脂肪、膽固醇和膽汁酸的排出,降低血清甘油三酯、總膽固醇、低密度脂蛋白水平[66]。BC降低血脂和膽固醇的效果優(yōu)于植物纖維素,這可能與其膳食纖維的特性有關(guān)[68-69]。BC與魔芋葡甘露聚糖的混合物能改善高脂飲食誘導(dǎo)的小鼠的高胰島素血癥和高血糖,并調(diào)節(jié)脂質(zhì)相關(guān)的細(xì)胞因子和炎癥因子,顯著提高小鼠腸道菌群的豐度和多樣性,從而預(yù)防肥胖并調(diào)節(jié)脂肪酸代謝[70]。

BC可以增加地芬諾酯(Diphenoxylate)誘發(fā)的便秘大鼠上皮細(xì)胞的黏液和肌肉厚度,減少水通道蛋白的表達(dá),并削弱ATP酶活性,從而緩解便秘[71]。BC的三維網(wǎng)絡(luò)結(jié)構(gòu)能結(jié)合淀粉顆粒和葡萄糖分子,降低食糜中的葡萄糖濃度,從而延緩餐后血糖水平的升高[72]。此外,BC還被用作復(fù)雜細(xì)胞壁膳食纖維發(fā)酵的模型系統(tǒng),通過進(jìn)行體外發(fā)酵比較,確定影響糞便細(xì)菌發(fā)酵速率和最終產(chǎn)物的因素[73]。

6.2 在多領(lǐng)域中的應(yīng)用

BC是一種豐富且可再生資源,在生物醫(yī)藥、紡織和包裝等領(lǐng)域展現(xiàn)出廣闊的應(yīng)用前景。BC具有納米級纖維的三維網(wǎng)狀結(jié)構(gòu),其化學(xué)結(jié)構(gòu)與植物纖維素相似,但不含木質(zhì)素、半纖維素、果膠等雜質(zhì),且不需要繁雜的化學(xué)處理,因此在物質(zhì)化學(xué)性能上更為優(yōu)越[14,74]。由于BC的纖維直徑為植物纖維素的1/1 000~

1/100,是一種納米纖維材料[75],在生產(chǎn)上具有很大的優(yōu)勢。

BC具備親水性、高力學(xué)性能、高純度及高結(jié)晶度等特性,被廣泛認(rèn)為是一種環(huán)保且無污染的材料。BC顯著的抗菌性使其能夠有效保護(hù)傷口、促進(jìn)愈合并防止感染,因此被廣泛應(yīng)用于皮膚移植、重度燒傷、面部脫皮、手術(shù)縫合等多種皮膚損傷治療[76-77]。作為可生物降解的材料,BC可用于各種包裝材料中,保持蔬菜和水果的營養(yǎng)成分及新鮮度,延長食品的保質(zhì)期[78]。此外,BC還可作為保護(hù)益生菌的基質(zhì),提高益生菌在胃腸道中的生存能力[79]。

BC具有還原金屬離子的能力,使其能將膜內(nèi)金屬離子還原成均勻分散的金屬粒子,這有助于解決碳納米管在聚合物中的團聚和分散問題[80]。在造紙工業(yè)中,BC能提升紙張的物理性能,改善其附著性和均勻吸墨性[81]。

以茶葉廢棄資源和夏秋茶為底物進(jìn)行康普茶發(fā)酵產(chǎn)生的BC膜在多個領(lǐng)域具有應(yīng)用前景(圖3)。例如,由BC制成的包裝袋不僅能保留食品的物理和營養(yǎng)性質(zhì),還可生物降解,從而有效緩解白色污染問題[82]。通過生產(chǎn)高附加值的BC膜,不僅有助于茶產(chǎn)業(yè)的發(fā)展和轉(zhuǎn)型,還能提高資源利用率,實現(xiàn)綠色可持續(xù)化生產(chǎn)。

7 總結(jié)與展望

發(fā)酵基質(zhì)對BC的形成有著顯著的影響。廢棄茶葉資源和夏秋茶中的多酚類、咖啡堿等

物質(zhì)在康普茶發(fā)酵形成BC的過程中發(fā)揮重要作用,如調(diào)節(jié)發(fā)酵液的pH、抑制葡萄糖醛酸的形成等。保留茶渣發(fā)酵還能增加BC的產(chǎn)量和質(zhì)量。在工業(yè)化生產(chǎn)中,通過調(diào)節(jié)碳源、茶葉類型、發(fā)酵時間和溫度等因素,可獲得高產(chǎn)的BC。

BC在包裝領(lǐng)域的應(yīng)用已經(jīng)得到廣泛研究。在食品包裝中,BC可以減少分解為納米纖維的能量,從而受到關(guān)注,但仍需尋找更有效的方法生產(chǎn)具有最佳特性的BC。在消化或食品加工過程中,由BC負(fù)載的不穩(wěn)定功能因子能改善其功能特性。為了BC能在食品工業(yè)中有更廣泛的應(yīng)用,需要對BC進(jìn)行更多的改性研究。

BC的產(chǎn)量和生產(chǎn)成本是其在食品工業(yè)中應(yīng)用的主要制約因素。我們的研究揭示了康普茶中存在高產(chǎn)BC的菌種,并發(fā)現(xiàn)通過茶渣發(fā)酵法可以顯著提高康普茶菌膜的產(chǎn)量[28]。因此,利用康普茶生產(chǎn)BC的方法對于降低生產(chǎn)成本、提高產(chǎn)量以及簡化生產(chǎn)流程具有重要意義。盡管夏秋茶產(chǎn)量高于春茶,但因其品質(zhì)較差、經(jīng)濟價值較低而被大量廢棄,造成資源浪費。將夏秋茶及其加工過程產(chǎn)生的廢渣用于生產(chǎn)康普茶中的BC,可能是一種提高夏秋茶利用效益和實現(xiàn)BC規(guī)?;a(chǎn)的有效方法。

此外,使用低成本的糖蜜和茶渣作為康普茶生物膜所需的碳源和氮源,不僅能降低生產(chǎn)成本,還能實現(xiàn)資源的循環(huán)利用。目前的研究主要集中在微生物形態(tài)和可培養(yǎng)性,以及BC作為替代材料的潛力等方面,針對康普茶中的茶葉成分對BC形成的具體作用機制仍然較少涉及。未來的研究需要明確BC的作用機制,優(yōu)化生產(chǎn)工藝,探索通過添加特定茶葉成分提高BC產(chǎn)量的方法,實現(xiàn)BC在各個領(lǐng)域的廣泛應(yīng)用。

參考文獻(xiàn)

[1] Liu Y, Li X, Shi L, et al. Analysis of polysaccharide structure involves separating homologous polysaccharides, drawing elution curve, measuring purity and molecular weight of polysaccharide in segmented homologous polysaccharide group, determining structure, glycosidic bonds and functional groups of each polysaccharide: CN117990732-A [P]. 2024-05-07[2024-06-19].

[2] 張妍. 紅茶菌發(fā)酵產(chǎn)細(xì)菌纖維素工藝及其性能研究[D]. 哈爾濱: 哈爾濱商業(yè)大學(xué), 2013.

Zhang Y. Study on the process and characterization of bacterial cellulose producted by Kombucha [D]. Harbin: Harbin University of Commerce, 2013.

[3] G?rgü? A, Gen?dag E, Yilmaz F M. Bioactive peptides derived from plant origin by-products: biological activities and techno-functional utilizations in food developments: a review [J]. Food Research International, 2020, 136: 109504. doi: 10.1016/j.foodres.2020.109504.

[4] Wang B Y, Rutherfurd-Markwick K, Zhang X X, et al. Kombucha: production and microbiological research [J]. Foods, 2022, 11(21): 3456. doi: 10.3390/foods11213456.

[5] 蔣立文. 紅茶菌優(yōu)勢微生物的分離、鑒定及抗菌機理的研究[D]. 長沙: 湖南農(nóng)業(yè)大學(xué), 2007.

Jiang L W. Studies on isolation and identification of predominant microbes from Kombucha and their anti-microbes mechanism [D]. Changsha: Hunan Agricultural University, 2007.

[6] Behera B, Laavanya D, Balasubramanian P. Techno-economic feasibility assessment of bacterial cellulose biofilm production during the Kombucha fermentation process [J]. Bioresource Technology, 2022, 346: 126659. doi: 10.1016/j.biortech.2021.126659.

[7] Devanthi P V P, Kho K, Nurdiansyah R, et al. Do Kombucha symbiotic cultures of bacteria and yeast affect bacterial cellulose yield in molasses? [J]. Journal of Fungi, 2021, 7(9): 705. doi: 10.3390/jof7090705.

[8] Esa F, Tasirin S M, Rahman N A. Overview of bacterial cellulose production and application [J]. Agriculture and Agricultural Science Procedia, 2014, 2: 113-119.

[9] Dufresne C, Farnworth E. Tea, Kombucha, and health: a review [J]. Food Research International, 2000, 33(6) : 409-421.

[10] 吳薇, 蓋寶川, 籍保平. 紅茶菌菌種主要代謝產(chǎn)物的試驗研究[J]. 食品科學(xué), 2004, 25(12): 147-151.

Wu W, Gai B C, Ji B P. D-glucaric acid and other metabolites in Kombucha [J]. Food Science, 2004, 25(12): 147-151.

[11] Villarreal-Soto S A, Beaufort S, Bouajila J, et al. Understanding Kombucha tea fermentation: a review [J]. Journal of Food Science, 2018, 83(3): 580-588.

[12] 唐水佳, 楊雪霞, 洪楓. 紅茶菌制備細(xì)菌纖維素的研究[J]. 纖維素科學(xué)與技術(shù), 2012, 20(2): 40-45.

Tang S J, Yang X X, Hong F. Production of bacterial cellulose by Kombucha [J]. Journal of Cellulose Science and Technology, 2012, 20(2): 40-45.

[13] Savary O, Mounier J, Thierry A, et al. Tailor-made microbial consortium for Kombucha fermentation: microbiota-induced biochemical changes and biofilm formation [J]. Food Research International, 2021, 147: 110549. doi: 10.1016/j.foodres.2021.110549.

[14] Laavanya D, Shirkole S, Balasubramanian P. Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation [J]. Journal of Cleaner Production, 2021, 295: 126454. doi: 10.1016/j.jclepro.2021.126454.

[15] 余瞻, 趙福權(quán), 徐成龍, 等. 紅茶菌中細(xì)菌纖維素產(chǎn)生菌的篩選、鑒定及其發(fā)酵動力學(xué)模型構(gòu)建[J]. 食品與發(fā)酵工業(yè), 2021, 47(6): 92-98.

Yu Z, Zhao F Q, Xu C L, et al. Screening, identification of bacterial cellulose producing bacteria and establishment of fermentation kinetics [J]. Food and Fermentation Industries, 2021, 47(6): 92-98.

[16] Chakravorty S, Bhattacharya S, Chatzinotas A, et al. Kombucha tea fermentation: microbial and biochemical dynamics [J]. International Journal of Food Microbiology, 2016, 220: 63-72.

[17] 呂橄, 趙文韜, 龔建萍, 等. 細(xì)菌纖維素在食品工業(yè)中的應(yīng)用研究進(jìn)展[J]. 現(xiàn)代食品, 2021(16): 23-28.

Lü K, Zhao W T, Gong J P, et al. Research progress on the application of bacterial cellulose in food industry [J]. Modern Food, 2021(16): 23-28.

[18] Semjonovs P, Ruklisha M, Paegle L, et al. Cellulose synthesis by Komagataeibacter rhaeticus strain P1463 isolated from Kombucha [J]. Applied Microbiology and Biotechnology, 2017, 101(3): 1003-1012.

[19] Emiljanowicz K E, Malinowska-Panczyk E. Kombucha from alternative raw materials: the review [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(19): 3185-3194.

[20] AlKalifawi I, Hassan A A. Factors influence on the yield of bacterial cellulose of Kombucha (Khubdat Humza) [J]. Baghdad Science Journal, 2014, 11(3): 1420-1428.

[21] Balasubramanian P, Praharaj P T. Principal component analysis revealed the key influencing factors of kombucha bacterial cellulose yield and productivity [J]. Bioresource Technology Reports, 2023, 23: 101539. doi: 10.1016/j.biteb.2023.101539.

[22] Neera, Ramana K V, Batra H V. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha tea, and production of the biopolymer [J]. Applied Biochemistry and Biotechnology, 2015, 176(4): 1162-1173.

[23] Yim S M, Song J E, Kim H R. Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar [J]. Process Biochemistry, 2017, 59: 26-36.

[24] Sharma C, Bhardwaj N K. Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms [J]. International Journal of Biological Macromolecules, 2019, 132: 166-177.

[25] Ramirez Tapias Y A, Di Monte M V, Peltzer M A, et al. Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions [J]. Food Chemistry, 2022, 372: 131346. doi:10.1016/j.foodchem.2021.131346.

[26] Mahmoud F, Haines D, Al-Ozairi E, et al. Effect of black tea consumption on intracellular cytokines, regulatory T cells and metabolic biomarkers in type 2 diabetes patients [J]. Phytotherapy Research, 2016, 30(3): 454-462.

[27] Gargey I A, Indira D, Jayabalan R, et al. Optimization of etherification reactions for recycling of tea fungal biomass waste into Carboxymethylcellulose [M]//Drück H, Pillai R G, Tharian M G, et al. Green buildings and sustainable engineering. Singapore: Springer Singapore, 2019.

[28] Zhou D D, Saimaiti A, Luo M, et al. Fermentation with tea residues enhances antioxidant activities and polyphenol contents in Kombucha beverages [J]. Antioxidants, 2022, 11(1): 115. doi: 10.3390/antiox11010155.

[29] 李昊燃. 紅茶菌中細(xì)菌纖維素產(chǎn)生菌的篩選鑒定及發(fā)酵條件優(yōu)化[D]. 開封: 河南大學(xué), 2016.

Li H R. Screening and identification of a strain producing bacterial cellolose from Kombucha and purification of fermentation process [D]. Kaifeng: Henan University, 2016.

[30] 蔣立文, 劉德華, 廖盧燕, 等. 紅茶菌發(fā)酵過程中主要化學(xué)成分變化的研究[J]. 食品科學(xué), 2007, 28(3): 238-240.

Jiang L W, Liu D H, Liao L Y, et al. Study on changes in major components during tea fungus fermentation [J]. Food Science, 2007, 28(3): 238-240.

[31] Tang H R, Covington A D, Hancock R A. Structure-activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen [J]. Biopolymers, 2003, 70(3): 403-413.

[32] Phan A D T, Netzel G, Wang D, et al. Binding of dietary polyphenols to cellulose: structural and nutritional aspects [J]. Food Chemistry, 2015, 171: 388-396.

[33] Tran T, Grandvalet C, Winckler P, et al. Shedding light on the formation and structure of Kombucha biofilm using two-photon fluorescence microscopy [J]. Frontiers in Microbiology, 2021, 12: 725379. doi: 10.3389/fmicb.2021.725379.

[34] 張慧霞. 紅茶菌微生物的分離及其代謝的初步研究[D]. 福州: 福建師范大學(xué), 2019.

Zhang H X. Isolation and metabolism of Kombucha microorganisms [D]. Fuzhou: Fujian Normal University, 2019.

[35] Balentine D A, Wiseman S A, Bouwens L C M. The chemistry of tea flavonoids [J]. Critical Reviews in Food Science and Nutrition, 1997, 37(8): 693-704.

[36] Tran T, Verdier F, Martin A, et al. Oxygen management during kombucha production: roles of the matrix, microbial activity, and process parameters [J]. Food Microbiology, 2022, 105: 104024. doi: 10.1016/j.fm.2022.104024.

[37] Fontana J D, Franco V C, Desouza S J, et al. Nature of plant stimulators in the production of Acetobacter xylinum (tea fungus) biofilm used in skin therapy [J]. Applied Biochemistry and Biotechnology, 1991, 28: 341-351.

[38] Serra D O, Mika F, Richter A M, et al. The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the σE-dependent sRNA RybB [J]. Molecular Microbiology, 2016, 101(1): 136-151.

[39] Zhao T, Chen Z Z, Lin X R, et al. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste [J]. Carbohydrate Polymers, 2018, 184: 164-170.

[40] 王奕, 楊娟, 楊海濱, 等. 基于實地與網(wǎng)絡(luò)調(diào)查的夏秋茶產(chǎn)業(yè)發(fā)展現(xiàn)狀及建議[J]. 南方農(nóng)業(yè), 2023, 17(13): 194-199.

Wang Y, Yang J, Yang H B, et al. Development status and suggestions of summer and autumn tea industry based on offline and online surveys [J]. South China Agriculture, 2023, 17(13): 194-199.

[41] Zheng Q M, Han C Y, Zhong Y M, et al. Effects of dietary supplementation with green tea waste on growth, digestive enzyme and lipid metabolism of juvenile hybrid tilapia, Oreochromis niloticus×O. aureus [J]. Fish Physiology and Biochemistry, 2017, 43(2) : 361-371.

[42] Sudheer B A, Ramakrishna C, Raju S, et al. Evaluation of tea waste or tea residue, orange peels and pigeon pea pods for proximate composition, fodder quality and digestibility parameters [J]. The Pharma Innovation Journal, 2022, 11(11): 1441-1445.

[43] Balc?-Torun F, ?zdemir K S, Mavu? R, et al. Determination of cream formation conditions and its composition during production of concentrated tea extract from black tea manufacturing wastes [J]. The Journal of Food, 2021, 46(2): 339-350.

[44] Ho K K H Y, Haufe T C, Ferruzzi M G, et al. Production and polyphenolic composition of tea [J]. Nutrition Today, 2018, 53(6): 268-278.

[45] Hamed D A, Maghrawy H H, Abdel Kareem H. Biosynthesis of bacterial cellulose nanofibrils in black tea media by a symbiotic culture of bacteria and yeast isolated from commercial kombucha beverage [J]. World Journal of Microbiology and Biotechnology, 2022, 39(2): 48. doi: 10.1007/s11274-022-03485-0.

[46] Hussain Z, Sajjad W, Khan T, et al. Production of bacterial cellulose from industrial wastes: a review [J]. Cellulose, 2019, 26(5): 2895-2911.

[47] Hegde S, Bhadri G, Narsapur K, et al. Statistical optimization of medium components by response surface methodology for enhanced production of bacterial cellulose by Gluconacetobacter persimmonis [J]. Journal of Bioprocessing & Biotechniques, 2013, 4: 142. doi: 10.4172/2155-9821.1000142.

[48] Padmanabhan S K, Lamanna L, Friuli M, et al. Carboxymethylcellulose-based hydrogel obtained from bacterial cellulose [J]. Molecules, 2023, 28(2): 829. doi: 10.3390/molecules28020829.

[49] Amarasekara A S, Wang D, Grady T L. A comparison of kombucha SCOBY bacterial cellulose purification methods [J]. Discover Applied Sciences, 2020, 2: 240. doi: 10.1007/s42452-020-1982-2.

[50] Dima S O, Panaitescu D M, Orban C, et al. Bacterial nanocellulose from side-streams of Kombucha beverages production: preparation and physical-chemical properties [J]. Polymers, 2017, 9(8): 374. doi: 10.3390/polym9080374.

[51] Kn?ller A, Widenmeyer M, Bill J, et al. Fast-growing bacterial cellulose with outstanding mechanical properties via cross-linking by multivalent ions [J]. Materials, 2020, 13(12): 2838. doi: 10.3390/ma13122838.

[52] Tapias Y A R, Peltzer M A, Delgado J F, et al. Kombucha tea byproduct as source of novel materials: formulation and characterization of films [J]. Food and Bioprocess Technology, 2020, 13: 1166-1180.

[53] Kamiński K, Jarosz M, Grudzień J, et al. Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles [J]. Cellulose, 2020, 27: 5353-5365.

[54] Zhou X Y, Liu X L, Wang Q, et al. Antimicrobial and antioxidant films formed by bacterial cellulose, chitosan and tea polyphenol: shelf life extension of grass carp [J]. Food Packaging and Shelf Life, 2022, 33: 100866. doi: 10.1016/j.fpsl.2022.100866.

[55] Betlej I, Salerno-Kochan R, Krajewski K, et al. The influence of culture medium components on the physical and mechanical properties of cellulose synthesized by Kombucha microorganisms [J]. Bioresources, 2020, 15(2): 3125-3135.

[56] Oliver-Ortega H, Geng S, Espinach F X, et al. Bacterial cellulose network from Kombucha fermentation impregnated with emulsion-polymerized poly (methyl methacrylate) to form nanocomposite [J]. 2021, 13(4): 664. doi: 10.3390/polym13040664.

[57] Agüero A, Lascano D, Ivorra-Martinez J, et al. Use of bacterial cellulose obtained from kombucha fermentation in spent coffee grounds for active composites based on PLA and maleinized linseed oil [J]. Industrial Crops and Products, 2023, 202: 116971. doi: 10.1016/j.indcrop.2023.116971.

[58] Zhang X X, Xu J, Zhang Z J, et al. Pb(II) adsorption properties of a three-dimensional porous bacterial cellulose/graphene oxide composite hydrogel subjected to ultrasonic treatment [J]. Materials, 2024, 17(13): 3053. doi: 10.3390/ma17133053.

[59] Julia M M R, Rubí E R Q, Juan P H R, et al. Production and characterization of biocomposite films of bacterial cellulose from Kombucha and coated with chitosan [J]. Polymers, 2022, 14(17): 3632. doi: 10.3390/polym14173632.

[60] Priyadharshini T, Nageshwari K, Vimaladhasan S, et al. Machine learning prediction of SCOBY cellulose yield from Kombucha tea fermentation [J]. Bioresource Technology Reports, 2022, 18: 101027. doi: 10.1016/j.biteb.2022.101027.

[61] 張秀伶, 王穩(wěn)航. 納米纖維素研究及在食品工業(yè)中的應(yīng)用前景[J]. 食品工業(yè)科技, 2016, 37(21): 377-382.

Zhang X L, Wang W H. Study on nano-cellulose and its application prospect in food industry [J]. Science and Technology of Food Industry, 2016, 37(21): 377-382.

[62] 張艷, 張麗薇, 張金葉, 等. 紅茶菌類產(chǎn)品的研究進(jìn)展[J]. 現(xiàn)代食品, 2017(20): 44-46.

Zhang Y, Zhang L W, Zhang J Y, et al. The research progress of Kombucha's products [J]. Modern Food, 2017(20): 44-46.

[63] Okiyama A, Yamanaka S, Takehisa F. Effect of bacterial cellulose on fecal excretion and transit time in rats [J]. Journal of Japanese Society of Nutrition and Food Science, 1993, 46(2): 155-159.

[64] Hagiwara A, Imai N, Sano M, et al. A 28-day oral toxicity study of fermentation-derived cellulose, produced by Acetobacter aceti subspecies xylinum [J]. The Journal of Toxicological Sciences, 2010, 35(3): 317-325.

[65] Xu C, Ma X, Chen S W, et al. Bacterial cellulose membranes used as artificial substitutes for dural defection in rabbits [J]. 2014, 15(6): 10855-10867.

[66] Chau C F, Yang P, Yu C M, et al. Investigation on the lipid- and cholesterol-lowering abilities of biocellulose [J]. Journal of Agricultural and Food Chemistry, 2008, 56(6): 2291-2295.

[67] Lin D H, Liu Z, Shen R, et al. Bacterial cellulose in food industry: current research and future prospects [J]. International Journal of Biological Macromolecules, 2020, 158: 1007-1019.

[68] Garcia-Diez F, Garcia-Mediavilla V, Bayon J E, et al. Pectin feeding influences fecal bile acid excretion, hepatic bile acid and cholesterol synthesis and serum cholesterol in rats [J]. Journal of Nutrition, 1996, 126: 1766-1771.

[69] Lairon D. Dietary fibres and dietary lipids [M]//McCleary B V, Prosky L. Advanced dietary fibre technology. Malden City: Blackwell Science Ltd., 2001.

[70] Zhai X C, Lin D H, Zhao Y, et al. Effects of dietary fiber supplementation on fatty acid metabolism and intestinal microbiota diversity in C57BL/6J mice fed with a high-fat diet [J]. Journal of Agricultural and Food Chemistry, 2018, 66(48): 12706-12718.

[71] Zhai X C, Lin D H, Zhao Y, et al. Bacterial cellulose relieves diphenoxylate-induced constipation in rats [J]. Journal of Agricultural and Food Chemistry, 2018, 66(16): 4106-4117.

[72] Zhang L L, Zhang W, Peng F B, et al. Effects of bacterial cellulose on glucose metabolism in an in vitro chyme model and its rheological evaluation [J]. International Journal of Food Science & Technology, 2021, 56(11): 6100-6112.

[73] Mikkelsen D, Gidley M J, Williams B A. In vitro fermentation of bacterial cellulose composites as model dietary fibers [J]. Journal of Agricultural and Food Chemistry, 2011, 59(8): 4025-4032.

[74] Avcioglu N H B M, Bilkay I S. Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium [J]. Process Biochemistry, 2021, 108: 61-67.

[75] 朱昌來, 李峰, 尤慶生, 等. 納米細(xì)菌纖維素的制備及其超微結(jié)構(gòu)鏡觀察[J]. 生物醫(yī)學(xué)工程研究, 2008, 27(4): 287-290.

Zhu C L, Li F, You Q S, et al. Preparation of nanometer biomaterial bacterial cellulose and observation of its ultra-structure [J]. Journal of Biomedical Engineering Research, 2008, 27(4): 287-290.

[76] 胡晨, 唐義權(quán). 細(xì)菌纖維素在眼科等醫(yī)學(xué)領(lǐng)域的研究與展望[J]. 合成材料老化與應(yīng)用, 2021, 50(5): 178-180.

Hu C, Tang Y Q. Research and prospect of bacterial cellulose in the field of ophthalmology [J]. Synthetic Materials Aging and Application, 2021, 50(5): 178-180.

[77] Czaja W, Krystynowicz A, Bielecki S, et al. Microbial cellulose: the natural power to heal wounds [J]. Biomaterials, 2006, 27(2): 145-151.

[78] Aduri P, Rao K A, Fatima A, et al. Study of biodegradable packaging material produced from scoby [J]. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 2019, 5(3): 389. doi: 10.26479/2019.0503.32.

[79] Khorasani A C, Shojaosadati S A. Bacterial nanocellulose-pectin bionanocomposites as prebiotics against drying and gastrointestinal condition [J]. International Journal of Biological Macromolecules, 2016, 83: 9-18.

[80] 蔣高鵬. 基于細(xì)菌纖維素的質(zhì)子交換膜的制備、表征及其在燃料電池中的應(yīng)用研究[D]. 上海: 東華大學(xué), 2012.

Jiang G P. Preparation, characterization of proton exchange membranes based on bacterial cellulose and their application in fuel cells [D]. Shanghai: Donghua Univversity, 2012.

[81] 劉玉智, 李景超, 陳立宗, 等. 細(xì)菌纖維素在造紙行業(yè)中的研究與應(yīng)用進(jìn)展[J]. 山東化工, 2019, 48(22) : 55, 57.

Liu Y Z, Li J C, Chen L Z, et al. Research and application progress of bacterial cellulose in the field of papermaking [J]. Shandong Chemical Industry, 2019, 48(22): 55, 57.

[82] Aung T, Kim M J. A comprehensive review on kombucha biofilms: a promising candidate for sustainable food product development [J]. Trends in Food Science & Technology, 2024, 144: 104325. doi: 10.1016/j.tifs.2024.104325.