国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

多BTT導(dǎo)彈滾轉(zhuǎn)通道姿態(tài)約束下的固定時(shí)間姿態(tài)協(xié)調(diào)控制

2024-11-23 00:00:00胡子晅周佳玲王利楠孫佳月溫廣輝
關(guān)鍵詞:協(xié)調(diào)控制

摘要: 針對(duì)多傾斜轉(zhuǎn)彎(bank-to-turn, BTT)導(dǎo)彈在姿態(tài)約束下的滾轉(zhuǎn)通道一致性安全控制問(wèn)題,提出一種分布式固定時(shí)間姿態(tài)協(xié)調(diào)控制器。BTT 導(dǎo)彈氣動(dòng)參數(shù)變化強(qiáng)烈、對(duì)機(jī)動(dòng)要求高,對(duì)控制器提出了響應(yīng)速度快、抗干擾能力強(qiáng)、且需滿足姿態(tài)受限約束等要求。針對(duì)上述問(wèn)題,基于固定時(shí)間控制技術(shù)、障礙Lyapunov函數(shù),結(jié)合多智能體系統(tǒng)協(xié)調(diào)控制理論,對(duì)多枚BTT導(dǎo)彈滾轉(zhuǎn)通道提出一種分布式固定時(shí)間姿態(tài)協(xié)調(diào)控制律。在所提協(xié)調(diào)控制律下,所有BTT導(dǎo)彈的滾轉(zhuǎn)角可在固定時(shí)間一致收斂至給定的參考指令信號(hào),且在控制過(guò)程中滿足姿態(tài)約束條件。仿真結(jié)果表明了所提方法的有效性。

關(guān)鍵詞: 多枚傾斜轉(zhuǎn)彎導(dǎo)彈; 滾轉(zhuǎn)通道; 固定時(shí)間控制; 狀態(tài)約束; 協(xié)調(diào)控制

中圖分類(lèi)號(hào): TP 13

文獻(xiàn)標(biāo)志碼: A

DOI:10.12305/j.issn.1001-506X.2024.06.24

Fixed-time coordinated attitude control for roll channels of multiple BTT missiles with attitude constraints

HU Zixuan1, ZHOU Jialing1, WANG Linan2, SUN Jiayue3, WEN Guanghui1,2,*

(1. MIIT Key Laboratory of Complex-field Intelligent Exploration, Beijing Institute of Technology, Beijing 100081, China; 2. Department of Systems Science School of Mathematics, Southeast University, Nanjing 211189, China; 3. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China)

Abstract: In view of the consensus safe control problem for roll channels of multiple bank-to-turn (BTT) missiles under attitude constraints, a distributed fixed-time attitude-coordination controller is proposed. Due to the significant variation in aerodynamic parameters and high maneuvering requirements of BTT missiles, as well as practical constraints on missile attitudes, the controller is required to have high response speed and strong ability of disturbance rejection. Within this context, a distributed fixed-time attitude coordination control law for the roll channels of multiple BTT missiles is proposed, which utilizes the fixed-time control technology, barrier Lyapunov function technology, and coordinated control theory of multi-agent systems. Under this coordination control law, the roll angles of all BTT missiles converge consistently to a given reference command signal within a fixed time and in the meanwhile satisfy the attitude constraints during the whole control course. Simulation results demonstrate the effectiveness of the proposed method.

Keywords: multiple bank-to-turn (BTT) missiles; roll channels; fixed-time control; state constraint; coordination control

0 引 言

近年來(lái),多導(dǎo)彈協(xié)同作戰(zhàn)受到廣泛關(guān)注[1-2。多導(dǎo)彈協(xié)同作戰(zhàn)旨在通過(guò)彈間信息交互,實(shí)現(xiàn)導(dǎo)彈群在毀傷層面的配合,從而更有效地完成多樣化的戰(zhàn)術(shù)任務(wù)[3。多彈協(xié)同作戰(zhàn)在分布式防御4、空中分布式作戰(zhàn)5-6、分布式反艦作戰(zhàn)7等作戰(zhàn)模式中可以迅速構(gòu)建殺傷鏈/殺傷網(wǎng),生成殺傷效能。

許多導(dǎo)彈系統(tǒng)采用了傾斜轉(zhuǎn)彎(bank-to-turn, BTT)技術(shù)來(lái)增強(qiáng)導(dǎo)彈系統(tǒng)的機(jī)動(dòng)性和攻擊的精度,稱(chēng)為BTT導(dǎo)彈[8。對(duì)于BTT導(dǎo)彈而言,深入研究其滾轉(zhuǎn)通道的控制系統(tǒng)尤為重要。BTT導(dǎo)彈通過(guò)控制其滾轉(zhuǎn)通道,使其最大升力面迅速調(diào)整至所需方向,并控制其俯仰通道,使其在最大升力面內(nèi)產(chǎn)生所需過(guò)載,以此實(shí)現(xiàn)快速機(jī)動(dòng)。BTT導(dǎo)彈滾轉(zhuǎn)通道的動(dòng)力學(xué)模型可建模為時(shí)變二階線性模型[9,存在未知時(shí)變不確定性,導(dǎo)致BTT導(dǎo)彈滾轉(zhuǎn)協(xié)調(diào)控制律設(shè)計(jì)困難。為此,不少文獻(xiàn)提出針對(duì)單BTT導(dǎo)彈滾轉(zhuǎn)通道的控制設(shè)計(jì)方案[9-14,文獻(xiàn)[15-16]提出針對(duì)多個(gè)BTT導(dǎo)彈滾轉(zhuǎn)通道自動(dòng)駕駛儀設(shè)計(jì)姿態(tài)協(xié)調(diào)控制律,采用有限時(shí)間控制技術(shù)提高了系統(tǒng)的動(dòng)態(tài)品質(zhì)。

固定時(shí)間控制技術(shù)[17-18作為有限時(shí)間控制技術(shù)的改進(jìn)方法,具有更快的收斂速度和與系統(tǒng)初始條件無(wú)關(guān)的收斂時(shí)間,是一種契合多導(dǎo)彈協(xié)同控制快速響應(yīng)需求的控制技術(shù)。目前,固定時(shí)間控制技術(shù)被廣泛應(yīng)用于協(xié)同控制任務(wù)[19-24。此外,在實(shí)際系統(tǒng)中,系統(tǒng)狀態(tài)受到實(shí)際系統(tǒng)限制要求。以導(dǎo)彈系統(tǒng)為例,過(guò)大的姿態(tài)角度會(huì)導(dǎo)致導(dǎo)彈飛行失穩(wěn)。設(shè)計(jì)狀態(tài)約束下的系統(tǒng)控制器是近年來(lái)研究的熱點(diǎn)問(wèn)題之一。為此,學(xué)者們提出一系列控制設(shè)計(jì)方法,其中基于障礙Lyapunov函數(shù)(barrier Lyapunov functions, BLF)的控制器設(shè)計(jì)方法備受關(guān)注,如基于對(duì)數(shù) BLF[25-27、基于正切BLF[28-29、基于積分BLF[30-31等。然而,由于這些控制方法需要獲取多BTT導(dǎo)彈系統(tǒng)的全局信息,無(wú)法有效解決多個(gè)BTT導(dǎo)彈滾轉(zhuǎn)通道系統(tǒng)的受限姿態(tài)協(xié)調(diào)控制問(wèn)題。

本文針對(duì)多BTT導(dǎo)彈滾轉(zhuǎn)通道姿態(tài)約束下的固定時(shí)間姿態(tài)協(xié)調(diào)控制問(wèn)題,采用反步法,基于多智能體一致性協(xié)調(diào)控制理論,設(shè)計(jì)了一種新型多BTT導(dǎo)彈滾轉(zhuǎn)通道協(xié)調(diào)控制律。該項(xiàng)技術(shù)能夠滿足多導(dǎo)彈協(xié)同控制對(duì)快速性、安全性等的需求。相比于已有結(jié)果,本文的創(chuàng)新點(diǎn)主要有:

(1) 基于多智能體理論設(shè)計(jì)了一種新的BLF,并利用新的基于鄰居規(guī)則的BLF設(shè)計(jì)虛擬角速度。利用BLF理論嚴(yán)格證明所有BTT導(dǎo)彈在控制過(guò)程中滿足約束條件。

(2) 提出基于固定時(shí)間控制方法和增加冪次積分技術(shù)[32的多BTT導(dǎo)彈滾轉(zhuǎn)通道協(xié)調(diào)控制律,克服了采用反步法設(shè)計(jì)固定時(shí)間控制器會(huì)產(chǎn)生奇異性的缺點(diǎn)。與文獻(xiàn)[15-16]使用的有限時(shí)間控制技術(shù)相比,本文使用的固定時(shí)間控制技術(shù)可保證所有導(dǎo)彈在固定時(shí)間內(nèi)實(shí)現(xiàn)滾轉(zhuǎn)角一致到達(dá)參考指令信號(hào),且收斂時(shí)間與系統(tǒng)初始條件無(wú)關(guān)。

本文的結(jié)構(gòu)如下:第1節(jié)介紹相關(guān)的知識(shí)、引理,并介紹BTT導(dǎo)彈滾轉(zhuǎn)通道數(shù)學(xué)模型和控制問(wèn)題;第2節(jié)給出固定時(shí)間協(xié)調(diào)控制器并證明系統(tǒng)的穩(wěn)定性;第3節(jié)展示仿真結(jié)果;第4節(jié)給出結(jié)論。

1 問(wèn)題描述及預(yù)備知識(shí)

3 數(shù)值仿真

本節(jié)給出4個(gè)BTT導(dǎo)彈滾轉(zhuǎn)通道系統(tǒng)的數(shù)值仿真。假設(shè)該編隊(duì)所期望的滾轉(zhuǎn)角為γd=0°。

如圖1所示,BTT導(dǎo)彈之間的通訊拓?fù)浣Y(jié)構(gòu)圖為無(wú)向連通圖,其中a12=a13=a34=1, b1=1。

仿真中,假設(shè)初始狀態(tài)為:γ(0)=(-3,2,0,-1)T(°),ω(0)=(-1,0,1,-2)T(°)/s。根據(jù)式(3)設(shè)計(jì)控制器來(lái)完成控制目標(biāo),控制器的參數(shù)設(shè)置為κ1=0.015,κ2=0.015,kb1=5,kba=10,θ=0.8,φ=1.2。BTT導(dǎo)彈滾轉(zhuǎn)通道系統(tǒng)的狀態(tài)軌跡曲線如圖2~圖4所示。從圖2可以看到,經(jīng)過(guò)28 s后所有BTT導(dǎo)彈的滾轉(zhuǎn)角與參考指令信號(hào)的誤差遠(yuǎn)小于5×10-3,可以視為所有BTT導(dǎo)彈的滾轉(zhuǎn)角能實(shí)現(xiàn)一致且一致收斂于某參考指令信號(hào)。同時(shí),所有BTT導(dǎo)彈的滾轉(zhuǎn)角滿足約束條件,即|γi(t)|lt;5°和|γi(t)-γj(t)|lt;10°,?i,j∈Γ。此外,所有BTT導(dǎo)彈的滾轉(zhuǎn)角速度和滾轉(zhuǎn)角控制輸入一致收斂于0,符合定理1的結(jié)論。

4 結(jié)束語(yǔ)

本文研究了多BTT導(dǎo)彈滾轉(zhuǎn)通道在姿態(tài)受限約束下的協(xié)調(diào)控制問(wèn)題。通過(guò)運(yùn)用固定時(shí)間理論、BLF方法和分布式控制,提出一種新型的固定時(shí)間協(xié)調(diào)控制方法,旨在確保所有導(dǎo)彈的滾轉(zhuǎn)角姿態(tài)在固定時(shí)間內(nèi)達(dá)到參考指令信號(hào),并且滾轉(zhuǎn)角實(shí)時(shí)滿足約束條件。此外,通過(guò)理論證明和仿真實(shí)驗(yàn),驗(yàn)證了該方法的可行性。

參考文獻(xiàn)

[1]ZHOU J L, WU X J, LYU Y Z, et al. Recent progress on the study of multi-vehicle coordination in cooperative attack and defense: an overview[J]. Asian Journal of Control, 2022, 24(2): 794-809.

[2]溫廣輝, 周佳玲, 呂躍祖, 等. 多導(dǎo)彈協(xié)同作戰(zhàn)中的分布式協(xié)調(diào)控制問(wèn)題[J]. 指揮與控制學(xué)報(bào), 2021, 7(2): 137-145.

WEN G H, ZHOU J L, LYU Y Z, et al. Distributed coordination control in multi-missile cooperative tasks[J]. Journal of Command and Control, 2021, 7(2): 137-145.

[3]肖增博, 雷虎民, 夏訓(xùn)輝. 多導(dǎo)彈協(xié)同作戰(zhàn)關(guān)鍵技術(shù)研究與展望[J]. 飛航導(dǎo)彈, 2008(6): 24-26, 50.

XIAO Z B, LEI H M, XIA X H. Research and prospect on key technologies of multi-missile cooperative operation[J]. Winged Missiles Journal, 2008(6): 24-26, 50.

[4]槐澤鵬, 梁雪超, 王洪波, 等. 多彈協(xié)同及其智能化發(fā)展研究[J]. 戰(zhàn)術(shù)導(dǎo)彈技術(shù), 2019(5): 77-85.

HUAI Z P, LIANG X C, WANG H B, et al. Research on multi-missile collaborative and its intelligence development[J]. Tactical Missile Technology, 2019(5): 77-85.

[5]楊斌. 空中分布式作戰(zhàn)概念及關(guān)鍵技術(shù)分析[J]. 電訊技術(shù), 2022, 62(6): 826-835.

YANG B. Concepts and key technology analysis for air distributed operations[J]. Telecommunication Engineering, 2022, 62(6): 826-835.

[6]宋琛, 張蓬蓬. 分布式協(xié)同對(duì)未來(lái)制空作戰(zhàn)的影響[J]. 飛航導(dǎo)彈, 2019(11): 8-11.

SONG C, ZHANG P P. Influence of distributed cooperation on future air defense operations[J]. Aerodynamic Missile Journal, 2019(11): 8-11.

[7]曾家有, 謝宇鵬. 分布式反艦作戰(zhàn)特點(diǎn)及裝備發(fā)展分析[J]. 戰(zhàn)術(shù)導(dǎo)彈技術(shù), 2020(4): 183-188.

ZENG J Y, XIE Y P. Characteristics and equipment development on distributed anti-ship combat[J]. Tactical Missile Technology, 2020(4): 183-188.

[8]朱志剛, 周鳳岐. BTT導(dǎo)彈滾動(dòng)通道變結(jié)構(gòu)最終滑態(tài)控制系統(tǒng)設(shè)計(jì)[J]. 西北工業(yè)大學(xué)學(xué)報(bào), 1995(2): 292-297.

ZHU Z G, ZHOU F Q. On design of variable structure terminal sliding mode control system for roll channel of BTT missile[J]. Journal of Northwestern Polytechnical University, 1995(2): 292-297.

[9]段廣仁, 周凈揚(yáng). BTT導(dǎo)彈滾動(dòng)通道自動(dòng)駕駛儀設(shè)計(jì)[J]. 黑龍江大學(xué)自然科學(xué)學(xué)報(bào), 2005, 22(5): 561-565, 569.

DUAN G R, ZHOU J Y. Autopilot design of roll channel for BTT missiles[J]. Journal of Natural Science of Heilongjiang University, 2005, 22(5): 561-565, 569.

[10]湯柏濤, 董斌, 于云峰. BTT導(dǎo)彈滾轉(zhuǎn)通道模型參考變結(jié)構(gòu)自動(dòng)駕駛儀設(shè)計(jì)[J]. 計(jì)算機(jī)測(cè)量與控制, 2011, 19(1): 105-107.

TANG B T, DONG B, YU Y F. Autopilot design for BTT missile based on model reference variable structure control[J]. Computer Measurement amp; Control, 2011, 19(1): 105-107.

[11]LI S, YANG J. Robust autopilot design for bank-to-turn missiles using disturbance observers[J]. IEEE Trans.on Aerospace and Electronic Systems, 2013, 49(1): 558-579.

[12]XU X Y, CUI X X, YU W B, et al. Design of missile roll autopilot based on linear extended state observer[C]∥Proc.of the IEEE 34th Chinese Control and Decision Conference, 2022: 418-421.

[13]于秀萍, 官英雙. 基于H∞控制理論的BTT導(dǎo)彈自動(dòng)駕駛儀設(shè)計(jì)[J]. 系統(tǒng)工程與電子技術(shù), 2008, 30(5): 905-908.

YU X P, GUAN Y S. Design of autopilot for BTT missile based on H∞ control theory[J]. Systems Engineering and Electronics, 2008, 30(5): 905-908.

[14]DING X M, HU Y P, JIA R L, et al. A novel disturbance rejection control of roll channel for small air-to-surface missiles[J]. Applied Sciences, 2023, 13(1): 389.

[15]都海波, 李世華. 多BTT導(dǎo)彈滾動(dòng)通道的有限時(shí)間姿態(tài)協(xié)調(diào)控制[C]∥IEEE第三十一屆中國(guó)控制會(huì)議, 2012: 445-450.

DU H B, LI S H. Finite-time attitude cooperative control for roll channels of multiple BTT missiles[C]∥Proc.of the IEEE 31st Chinese Control Conference, 2012: 445-450.

[16]都海波, 李世華, 何怡剛, 等. 多枚傾斜轉(zhuǎn)彎導(dǎo)彈的滾轉(zhuǎn)通道之分布式有限時(shí)間姿態(tài)協(xié)調(diào)控制[J]. 控制理論與應(yīng)用, 2013, 30(8): 956-963.

DU H B, LI S H, HE Y G, et al. Distributed finite-time attitude cooperative control for roll channels of multiple bank-to-turn missiles[J]. Control Theory amp; Applications, 2013, 30(8): 956-963.

[17]POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Trans.on Automatic Control, 2012, 57(8): 2106-2110.

[18]董澤洪, 李穎暉, 呂茂隆, 等. 考慮輸入受限的高超聲速飛行器非奇異固定時(shí)間自適應(yīng)切換控制[J]. 系統(tǒng)工程與電子技術(shù), 2023, 45(5): 1476-1488.

DONG Z H, LI Y H, LYU M L, et al. Singularity-free fixed-time adaptive switching control for hypersonic flight vehicle with input constraints[J]. Systems Engineering and Electro-nics, 2023, 45(5): 1476-1488.

[19]ZHOU N, CHENG X D, SUN Z Q, et al. Fixed-time cooperative behavioral control for networked autonomous agents with second-order nonlinear dynamics[J]. IEEE Trans.on Cyberne-tics, 2022, 52(9): 9504-9518.

[20]XIN S, SHI M, LI W, et al. Distributed fixed-time bipartite containment control of multi-agent systems with unknown disturbances[C]∥Proc.of the 7th International Conference on Control, Robotics and Cybernetics, 2022: 69-73.

[21]HU D, ZHANG S, ZOU A M. Velocity-free fixed-time attitude cooperative control for spacecraft formations under directed graphs[J]. International Journal of Robust and Nonlinear Control, 2021, 31(8): 2905-2927.

[22]HONG H F, WANG H. Fixed-time formation control for se-cond-order disturbed multi-agent systems under directed graph[J]. Symmetry, 2021, 13(12): 2295.

[23]白嘉琪, 王彥愷, 邢昊. 無(wú)人艇與四旋翼無(wú)人機(jī)固定時(shí)間異構(gòu)編隊(duì)控制[J]. 系統(tǒng)工程與電子技術(shù), 2023, 45(4): 1152-1163.

BAI J Q, WANG Y K, XING H. Fixed-time heterogeneous formation control of unmanned boats and quadrotor unmanned aerial vehicle[J]. Systems Engineering and Electronics, 2023, 45(4): 1152-1163.

[24]符小衛(wèi), 陳子浩. 多無(wú)人機(jī)協(xié)同探測(cè)快速目標(biāo)的控制方法設(shè)計(jì)[J]. 系統(tǒng)工程與電子技術(shù), 2021, 43(11): 3295-3304.

FU X W, CHEN Z H. Design of control method for multi-UAV cooperative detection of fast target[J]. Systems Engineering and Electronics, 2021, 43(11): 3295-3304.

[25]LIU L, LIU Y J, TONG S. Fuzzy-based multierror constraint control for switched nonlinear systems and its applications[J]. IEEE Trans.on Fuzzy Systems, 2019, 27(8): 1519-1531.

[26]LI D P, LIU Y J, TONG S C, et al. Neural networks-based adaptive control for nonlinear state constrained systems with input delay[J]. IEEE Trans.on Cybernetics, 2019, 49(4): 1249-1258.

[27]梁樂(lè)成, 趙斌, 周軍, 等. 部分約束下空中目標(biāo)攔截制導(dǎo)控制一體化方法[J]. 系統(tǒng)工程與電子技術(shù), 2023, 45(4): 1134-1143.

LIANG L C, ZHAO B, ZHOU J, et al. Integrated guidance and control method against aerial target with partial constraints[J]. Systems Engineering and Electronics, 2023, 45(4): 1134-1143.

[28]CHEN A Q, TANG L, LIU Y J, et al. Adaptive control for switched uncertain nonlinear systems with time-varying output constraint and input saturation[J]. International Journal of Adaptive Control and Signal Processing, 2019, 33(9): 1344-1358.

[29]WANG C X, WU Y Q. Finite-time tracking control for strict-feedback nonlinear systems with full state constraints[J]. International Journal of Control, 2019, 92(6): 1426-1433.

[30]ZHAO W, LIU Y J, LIU L. Observer-based adaptive fuzzy tracking control using integral barrier Lyapunov functionals for a nonlinear system with full state constraints[J]. IEEE-CAA Journal of Automatica Sinica, 2021, 8(3): 617-627.

[31]YUAN F, LIU Y J, LIU L, et al. Adaptive neural consensus tracking control for nonlinear multiagent systems using integral barrier Lyapunov functionals[J]. IEEE Trans.on Neural Networks and Learning Systems, 2023, 34(8): 4544-4554.

[32]QIAN C J, LIN W. A continuous feedback approach to global strong stabilization of nonlinear systems[J]. IEEE Trans.on Automatic Control, 2001, 46(7): 1061-1079.

[33]HARDY G H, LITTLEWOOD J E, POLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1952.

[34]ZOU A M, DE RUITER A H J, KUMAR K D. Distributed finite-time velocity-free attitude coordination control for spacecraft formations[J]. Automatica, 2016, 67: 46-53.

[35]ZOU A M, KUMAR K D, DE RUITER A H J. Fixed-time attitude tracking control for rigid spacecraft[J]. Automatica, 2020, 113: 108792.

[36]HONG Y G, HU J P, GAO L X. Tracking control for multi-agent consensus with an active leader and variable topology[J]. Automatica, 2006, 42(7): 1177-1182.

[37]PENG T K. Adaptive control of uncertain constrained nonlinear systems[D]. Singapore: National University of Singapore, 2008.

作者簡(jiǎn)介

胡子晅(1998—),男,碩士研究生,主要研究方向?yàn)槎嘀悄荏w固定時(shí)間控制。

周佳玲(1991—),女,副教授,博士,主要研究方向?yàn)閰f(xié)同制導(dǎo)與控制、群智協(xié)同控制與優(yōu)化。

王利楠(1996—),男,博士研究生,主要研究方向?yàn)榉蔷€性控制、分布式非光滑控制。

孫佳月(1990—),女,教授,博士,主要研究方向?yàn)殡S機(jī)系統(tǒng)的魯棒與容錯(cuò)控制、分布式協(xié)同控制。

溫廣輝(1983—),男,教授,博士,主要研究方向?yàn)榉植际娇刂评碚撆c控制工程、自主智能系統(tǒng)分析與控制。

猜你喜歡
協(xié)調(diào)控制
二自由度SCARA機(jī)器人位置的端口受控哈密頓與反步法協(xié)調(diào)控制
多個(gè)MFD 子區(qū)邊界協(xié)調(diào)控制方法
注塑機(jī)驅(qū)動(dòng)系統(tǒng)模糊協(xié)調(diào)控制研究
大型并網(wǎng)型風(fēng)光互補(bǔ)發(fā)電系統(tǒng)的協(xié)調(diào)控制
全電AMT升擋與發(fā)動(dòng)機(jī)協(xié)調(diào)控制研究
空間機(jī)器人協(xié)調(diào)控制全物理仿真設(shè)計(jì)與驗(yàn)證
一種基于曲線控制的獨(dú)立微電網(wǎng)協(xié)調(diào)控制方法
雙饋風(fēng)電機(jī)組減載運(yùn)行的協(xié)調(diào)控制研究
基于微電網(wǎng)逆變器改進(jìn)下垂特性協(xié)調(diào)控制的研究
省地縣三級(jí)AVC系統(tǒng)協(xié)調(diào)控制及實(shí)現(xiàn)
余江县| 迭部县| 天门市| 连云港市| 平阳县| 西青区| 荥阳市| 克拉玛依市| 绥阳县| 繁峙县| 久治县| 杨浦区| 利川市| 沧州市| 馆陶县| 丹阳市| 云和县| 湄潭县| 罗江县| 边坝县| 景宁| 和田市| 长治县| 甘德县| 芦山县| 理塘县| 乐安县| 临海市| 如东县| 岐山县| 东方市| 南城县| 花莲县| 临澧县| 永吉县| 姚安县| 金华市| 高青县| 丰城市| 漠河县| 武义县|