国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

對(duì)角互補(bǔ)四邊形的探索

2024-12-12 00:00龔平
初中生學(xué)習(xí)指導(dǎo)·中考版 2024年11期

典例剖析

例 如圖1,四邊形ABCD中,∠B + ∠D = 180°,且AB = AD. 求證:CA平分∠BCD.

解法1:(雙垂法)如圖2,過(guò)點(diǎn)A作AE ⊥ BC交BC于點(diǎn)E,作AF ⊥ CD交CD延長(zhǎng)線于點(diǎn)F.

∵∠B + ∠ADC = 180°,∠ADC + ∠ADF = 180°,∴∠B = ∠ADF. ∵AE ⊥ BC,AF ⊥ CD,∴∠AEB = ∠AFD = 90°. ∵AB = AD,∴△ABE ≌ △ADF,∴AE = AF.

∵AE ⊥ BC,AF ⊥ CD,∴CA平分∠BCD.

解法2:(旋轉(zhuǎn)法)如圖3,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)∠BAD的度數(shù)至△AED.

∴△ABC ≌ △ADE,∴AC = AE,∠B = ∠ADE,∠ACB = ∠E.

∵∠B + ∠ADC = 180°,∴∠ADC + ∠ADE = 180°,∴點(diǎn)C,D,E共線.

∵AC = AE,∴∠ACE = ∠E = ∠ACB,∴CA平分∠BCD.

解法3:(截長(zhǎng)補(bǔ)短法)如圖4,延長(zhǎng)CD至點(diǎn)E,使DE = CB,連接AE.

∵∠B + ∠ADC = 180°,∠ADC + ∠ADE = 180°,∴∠B = ∠ADE.

∵AB = AD,CB = DE,∴△ABC ≌ △ADE,∴AC = AE,∠ACB = ∠E.

∴∠ACE = ∠E = ∠ACB,∴CA平分∠BCD.

變式 如圖1,四邊形ABCD中,∠B + ∠D = 180°,且CA平分∠BCD.

求證:AB = AD.

解法1:(雙垂法)如圖5,過(guò)點(diǎn)A作AE ⊥ BC交BC于點(diǎn)E,作AF ⊥ CD交CD延長(zhǎng)線于點(diǎn)F.

∵AE ⊥ BC,AF ⊥ CD,CA平分∠BCD,∴AE = AF.

∵∠B + ∠ADC = 180°,∠ADC + ∠ADF = 180°,∴∠B = ∠ADF.

∵AE ⊥ BC,AF ⊥ CD,∴∠AEB = ∠AFD = 90°,∴△ABE ≌ △ADF,∴AB = AD.

解法2:(旋轉(zhuǎn)法)如圖6,作∠DAE = ∠BAC,AE交CD的延長(zhǎng)線于點(diǎn)E.

∵∠B + ∠ADC = 180°,∠ADC + ∠ADE = 180°,∴∠B = ∠ADE,∴ ∠ACE = ∠E.

∵CA平分∠BCD,∴ ∠ACE = ∠ACB, ∠E = ∠ACB,∴AC = AE,∴△ABC ≌ △ADE.

∴AB = AD.

解法3:(截長(zhǎng)補(bǔ)短法)如圖7,延長(zhǎng)CD至點(diǎn)E,使CE = CB.

∵CA平分∠BCD,∴ ∠ACE = ∠ACB.

∵AC = AC,∴△ABC ≌ △AEC,∴AB = AE,∠B = ∠E.

∵∠B + ∠ADC = 180°,∠ADC + ∠ADE = 180°,∴∠B = ∠ADE = ∠E,∴AD = AE,

∴AB = AD.

勤于積累

一、對(duì)角互補(bǔ)四邊形輔助線引法

1.見(jiàn)角平分線,作雙垂線.

過(guò)角平分線上的一點(diǎn)向角的兩邊作垂線,可得等線段.

2. 旋轉(zhuǎn)出等腰,等腰可旋轉(zhuǎn). 當(dāng)問(wèn)題中出現(xiàn)“共頂點(diǎn),等線段”結(jié)構(gòu)時(shí),可考慮“造旋轉(zhuǎn),出全等”解題策略,化分散為集中,化不規(guī)則為規(guī)則.

若用旋轉(zhuǎn)作輔助線,則需證明三點(diǎn)共線,如例題的解法2;若采用作雙垂線、截長(zhǎng)補(bǔ)短等方法,則需證明全等,如例題的解法1和解法3.

二、一組鄰邊相等的對(duì)角互補(bǔ)四邊形三種常見(jiàn)類型的結(jié)論

1.含一對(duì)直角和一組相等鄰邊型.

如圖8,四邊形ABCD中,若∠ABC = ∠ADC = 90°,AD = CD,則有AB + BC = [2BD].

如圖9,四邊形ABCD中,若∠ADB = ∠ACB = 90°,AD = BD,則有AC - BC = [2CD].

2.含60°角和一組相等鄰邊型.

如圖10,四邊形ABCD中,若∠BAD + ∠BCD = 180°,∠BAD = 60°,AB = AD,則有CD + BC = AC.

3.含120°角和一組相等鄰邊型.

如圖11,四邊形ABCD中,若∠BAD + ∠BCD = 180°,∠BAD = 120°,AB = AD,則有CD + BC = [3AC].

如圖12,四邊形ABCD中,若∠BDC = ∠BAC = 120°,BD = CD,則有AC - AB = [3AD].

拓展訓(xùn)練

1.如圖13,四邊形ABCD中,∠ABC = ∠ADC = 90°,設(shè)∠DBC = α.

求證:CD = AD × tan α.

2.綜合與實(shí)踐.

在學(xué)習(xí)特殊四邊形的過(guò)程中,我們積累了一定的研究經(jīng)驗(yàn),請(qǐng)運(yùn)用已有經(jīng)驗(yàn),對(duì)“鄰等對(duì)補(bǔ)四邊形”進(jìn)行研究.

定義:至少有一組鄰邊相等且對(duì)角互補(bǔ)的四邊形叫做鄰等對(duì)補(bǔ)四邊形.

(1)操作判斷.

用分別含有30°和45°角的直角三角形紙板拼出如圖14所示的4個(gè)四邊形,其中是鄰等對(duì)補(bǔ)四邊形的有 (填序號(hào)).

(2)性質(zhì)探究.

根據(jù)定義可得出鄰等對(duì)補(bǔ)四邊形的邊、角的性質(zhì). 下面研究與對(duì)角線相關(guān)的性質(zhì).

如圖15,四邊形ABCD是鄰等對(duì)補(bǔ)四邊形,AB = AD,AC是它的一條對(duì)角線.

①寫(xiě)出圖中相等的角,并說(shuō)明理由;

②若BC = m,DC = n,∠BCD = 2θ,求AC的長(zhǎng)(用含m,n,θ的式子表示).

(3)拓展應(yīng)用.

如圖16,在Rt△ABC中,∠B = 90°,AB = 3,BC = 4,分別在邊BC,AC上取點(diǎn)M,N,使四邊形ABMN是鄰等對(duì)補(bǔ)四邊形. 當(dāng)該鄰等對(duì)補(bǔ)四邊形僅有一組鄰邊相等時(shí),請(qǐng)直接寫(xiě)出BN的長(zhǎng).

參考答案:

1.如圖17,作∠CDE = ∠ADB,DE交BC的延長(zhǎng)線于點(diǎn)E.

∵∠ADC = 90°,∴∠ADB + ∠BDC = ∠CDE + ∠BDC = 90°.

∵∠ABC = ∠ADC = 90°,∠ABC + ∠BCD + ∠ADC + ∠A = 360°,∴∠BCD + ∠A = 180°.

∵∠BCD + ∠DCE = 180°,∴∠A = ∠DCE,

∴△ADB [∽] △CDE.

∴[CDAD] = [DEBD] = tan α,∴CD = AD × tan α.

2. (1)②④ (2)①∠ACD = ∠ACB,理由略 ②AC = [m+n2cos θ] (3)BN的長(zhǎng)為[1252]或[1272].

(作者單位:沈陽(yáng)市第一三四中學(xué))

茂名市| 贵溪市| 含山县| 上虞市| 阳原县| 衡阳市| 太仆寺旗| 商洛市| 济南市| 新津县| 永川市| 巴塘县| 古浪县| 阜城县| 基隆市| 邵武市| 石城县| 泗阳县| 嘉义市| 富民县| 汝阳县| 绩溪县| 清水河县| 陵川县| 大渡口区| 嘉鱼县| 汝阳县| 灵寿县| 英德市| 乳源| 闵行区| 中山市| 南木林县| 桦南县| 夏邑县| 清远市| 邻水| 颍上县| 手游| 瓮安县| 阳信县|