典例剖析
例 如圖1,四邊形ABCD中,∠B + ∠D = 180°,且AB = AD. 求證:CA平分∠BCD.
解法1:(雙垂法)如圖2,過(guò)點(diǎn)A作AE ⊥ BC交BC于點(diǎn)E,作AF ⊥ CD交CD延長(zhǎng)線于點(diǎn)F.
∵∠B + ∠ADC = 180°,∠ADC + ∠ADF = 180°,∴∠B = ∠ADF. ∵AE ⊥ BC,AF ⊥ CD,∴∠AEB = ∠AFD = 90°. ∵AB = AD,∴△ABE ≌ △ADF,∴AE = AF.
∵AE ⊥ BC,AF ⊥ CD,∴CA平分∠BCD.
解法2:(旋轉(zhuǎn)法)如圖3,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)∠BAD的度數(shù)至△AED.
∴△ABC ≌ △ADE,∴AC = AE,∠B = ∠ADE,∠ACB = ∠E.
∵∠B + ∠ADC = 180°,∴∠ADC + ∠ADE = 180°,∴點(diǎn)C,D,E共線.
∵AC = AE,∴∠ACE = ∠E = ∠ACB,∴CA平分∠BCD.
解法3:(截長(zhǎng)補(bǔ)短法)如圖4,延長(zhǎng)CD至點(diǎn)E,使DE = CB,連接AE.
∵∠B + ∠ADC = 180°,∠ADC + ∠ADE = 180°,∴∠B = ∠ADE.
∵AB = AD,CB = DE,∴△ABC ≌ △ADE,∴AC = AE,∠ACB = ∠E.
∴∠ACE = ∠E = ∠ACB,∴CA平分∠BCD.
變式 如圖1,四邊形ABCD中,∠B + ∠D = 180°,且CA平分∠BCD.
求證:AB = AD.
解法1:(雙垂法)如圖5,過(guò)點(diǎn)A作AE ⊥ BC交BC于點(diǎn)E,作AF ⊥ CD交CD延長(zhǎng)線于點(diǎn)F.
∵AE ⊥ BC,AF ⊥ CD,CA平分∠BCD,∴AE = AF.
∵∠B + ∠ADC = 180°,∠ADC + ∠ADF = 180°,∴∠B = ∠ADF.
∵AE ⊥ BC,AF ⊥ CD,∴∠AEB = ∠AFD = 90°,∴△ABE ≌ △ADF,∴AB = AD.
解法2:(旋轉(zhuǎn)法)如圖6,作∠DAE = ∠BAC,AE交CD的延長(zhǎng)線于點(diǎn)E.
∵∠B + ∠ADC = 180°,∠ADC + ∠ADE = 180°,∴∠B = ∠ADE,∴ ∠ACE = ∠E.
∵CA平分∠BCD,∴ ∠ACE = ∠ACB, ∠E = ∠ACB,∴AC = AE,∴△ABC ≌ △ADE.
∴AB = AD.
解法3:(截長(zhǎng)補(bǔ)短法)如圖7,延長(zhǎng)CD至點(diǎn)E,使CE = CB.
∵CA平分∠BCD,∴ ∠ACE = ∠ACB.
∵AC = AC,∴△ABC ≌ △AEC,∴AB = AE,∠B = ∠E.
∵∠B + ∠ADC = 180°,∠ADC + ∠ADE = 180°,∴∠B = ∠ADE = ∠E,∴AD = AE,
∴AB = AD.
勤于積累
一、對(duì)角互補(bǔ)四邊形輔助線引法
1.見(jiàn)角平分線,作雙垂線.
過(guò)角平分線上的一點(diǎn)向角的兩邊作垂線,可得等線段.
2. 旋轉(zhuǎn)出等腰,等腰可旋轉(zhuǎn). 當(dāng)問(wèn)題中出現(xiàn)“共頂點(diǎn),等線段”結(jié)構(gòu)時(shí),可考慮“造旋轉(zhuǎn),出全等”解題策略,化分散為集中,化不規(guī)則為規(guī)則.
若用旋轉(zhuǎn)作輔助線,則需證明三點(diǎn)共線,如例題的解法2;若采用作雙垂線、截長(zhǎng)補(bǔ)短等方法,則需證明全等,如例題的解法1和解法3.
二、一組鄰邊相等的對(duì)角互補(bǔ)四邊形三種常見(jiàn)類型的結(jié)論
1.含一對(duì)直角和一組相等鄰邊型.
如圖8,四邊形ABCD中,若∠ABC = ∠ADC = 90°,AD = CD,則有AB + BC = [2BD].
如圖9,四邊形ABCD中,若∠ADB = ∠ACB = 90°,AD = BD,則有AC - BC = [2CD].
2.含60°角和一組相等鄰邊型.
如圖10,四邊形ABCD中,若∠BAD + ∠BCD = 180°,∠BAD = 60°,AB = AD,則有CD + BC = AC.
3.含120°角和一組相等鄰邊型.
如圖11,四邊形ABCD中,若∠BAD + ∠BCD = 180°,∠BAD = 120°,AB = AD,則有CD + BC = [3AC].
如圖12,四邊形ABCD中,若∠BDC = ∠BAC = 120°,BD = CD,則有AC - AB = [3AD].
拓展訓(xùn)練
1.如圖13,四邊形ABCD中,∠ABC = ∠ADC = 90°,設(shè)∠DBC = α.
求證:CD = AD × tan α.
2.綜合與實(shí)踐.
在學(xué)習(xí)特殊四邊形的過(guò)程中,我們積累了一定的研究經(jīng)驗(yàn),請(qǐng)運(yùn)用已有經(jīng)驗(yàn),對(duì)“鄰等對(duì)補(bǔ)四邊形”進(jìn)行研究.
定義:至少有一組鄰邊相等且對(duì)角互補(bǔ)的四邊形叫做鄰等對(duì)補(bǔ)四邊形.
(1)操作判斷.
用分別含有30°和45°角的直角三角形紙板拼出如圖14所示的4個(gè)四邊形,其中是鄰等對(duì)補(bǔ)四邊形的有 (填序號(hào)).
(2)性質(zhì)探究.
根據(jù)定義可得出鄰等對(duì)補(bǔ)四邊形的邊、角的性質(zhì). 下面研究與對(duì)角線相關(guān)的性質(zhì).
如圖15,四邊形ABCD是鄰等對(duì)補(bǔ)四邊形,AB = AD,AC是它的一條對(duì)角線.
①寫(xiě)出圖中相等的角,并說(shuō)明理由;
②若BC = m,DC = n,∠BCD = 2θ,求AC的長(zhǎng)(用含m,n,θ的式子表示).
(3)拓展應(yīng)用.
如圖16,在Rt△ABC中,∠B = 90°,AB = 3,BC = 4,分別在邊BC,AC上取點(diǎn)M,N,使四邊形ABMN是鄰等對(duì)補(bǔ)四邊形. 當(dāng)該鄰等對(duì)補(bǔ)四邊形僅有一組鄰邊相等時(shí),請(qǐng)直接寫(xiě)出BN的長(zhǎng).
參考答案:
1.如圖17,作∠CDE = ∠ADB,DE交BC的延長(zhǎng)線于點(diǎn)E.
∵∠ADC = 90°,∴∠ADB + ∠BDC = ∠CDE + ∠BDC = 90°.
∵∠ABC = ∠ADC = 90°,∠ABC + ∠BCD + ∠ADC + ∠A = 360°,∴∠BCD + ∠A = 180°.
∵∠BCD + ∠DCE = 180°,∴∠A = ∠DCE,
∴△ADB [∽] △CDE.
∴[CDAD] = [DEBD] = tan α,∴CD = AD × tan α.
2. (1)②④ (2)①∠ACD = ∠ACB,理由略 ②AC = [m+n2cos θ] (3)BN的長(zhǎng)為[1252]或[1272].
(作者單位:沈陽(yáng)市第一三四中學(xué))
初中生學(xué)習(xí)指導(dǎo)·中考版2024年11期