四邊形最值問題因常與三角形、函數(shù)等知識綜合考查,故而一般難度較大,下面舉例介紹此類題的解題策略.
例1 如圖1,菱形紙片ABCD的邊長為2,∠ABC = 60°,如圖2,翻折∠ABC,∠ADC,使兩個角的頂點重合于對角線BD上一點P,EF,GH分別是折痕. 設(shè)AE = x(0 < x < 2),給出下列判斷:
①當(dāng)x = 1時,DP的長為[3];
②EF + GH的值隨x的變化而變化;
③六邊形AEFCHG面積的最大值是[332];
④六邊形AEFCHG周長的值不變.
其中正確的是( ).
A. ①② B. ①④ C. ②③④ D. ①③④
解析:根據(jù)菱形的性質(zhì),先確定出△ABC是等邊三角形,再用x表示出EF,BP,DP,GH,然后取x賦予的值,即可求出EF + GH的值;利用面積公式和周長公式分別確定相應(yīng)的函數(shù)關(guān)系,即可解決問題.
(1)∵菱形ABCD的邊長為2,∠ABC = 60°,∴AC = AB = 2,BD = 2[3].
由折疊知,△BEF是等邊三角形,當(dāng)x = 1時,BE = AB - AE = 1.
由折疊知,BP = 2 × [32] = [3] = [12]BD,∴DP = [3]. 故①正確.
(2)如圖3,設(shè)EF與BD交于M,GH與BD交于N,
∵AE = x,∴BE = AB - AE = 2 - x.
∵△BEF是等邊三角形,∴EF = BE = 2 - x,
∴BM = [3]EM = [3] × [12]EF = [32](2 - x),
∴BP = 2BM = [3](2 - x),
∴DP = BD - BP = 2[3] - [3](2 - x) = [3]x,
∴DN = [12]DP = [32]x,∴GH = 2GN = 2 × [12]x = x,
∴EF + GH = 2.
故②錯誤.
(3)當(dāng)0 < x < 2時,
∵AE = x,∴BE = 2 - x,
∴EF = 2 - x,∴BP = [3](2 - x),
∴DP = [3]x,∴GH = 2 × [x2] = x = DG = DH,
∴S六邊形AEFCHG = S菱形ABCD - S△BEF - S△DGH
= [12] × 2 × 2[3] - [34](2 - x)2 - [34]x2
= 2[3] - [32](x - 1)2 - [32]
= -[32](x - 1)2 + [332].
當(dāng)x = 1時,六邊形AEFCHG面積最大,最大值為[332].
故③正確.
(4)六邊形AEFCHG周長 = AE + EF + FC + CH + HG + AG = x + 2 - x + x + 2 - x + x + 2 - x = 6,是定值. 故④正確.
即正確的有①③④,故選D.
例2 已知:如圖4,四邊形ABCD是邊長為1的正方形,對角線AC,BD相交于點O. 過點O作一直角∠MON,直角邊OM,ON分別與OA,OB重合,然后逆時針旋轉(zhuǎn)∠MON,旋轉(zhuǎn)角為θ(0° < θ < 90°),OM,ON分別交AB,BC于E,F(xiàn)兩點,連接EF交OB于點G,則下列結(jié)論中正確的是 (填序號).
①EF = [2]OE;
②S四邊形OEBF∶S正方形ABCD = 1∶2;
③BE + BF = [2]OA;
④OG·BD = AE2 + CF2;
⑤在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,AE = [34].
解析:本題是四邊形綜合題,考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理以及二次函數(shù)的最值問題. 注意掌握轉(zhuǎn)化思想的應(yīng)用是解本題的關(guān)鍵.
(1)由四邊形ABCD是正方形,∠EOF = 90°,可得∠BOE = ∠COF.
易證△BOE ≌ △COF(ASA),∴OE = OF,
∴△OEF是等腰直角三角形,∴EF = [2]OE.
故①正確.
(2)∵S四邊形OEBF = S△BOF + S△BOE = S△BOF + S△COF = S△BOC = [14]S正方形ABCD,
∴S四邊形OEBF∶S正方形ABCD = 1∶4.
故②錯誤.
(3)∵△BOE ≌ △COF,∴BE + BF = BF + CF = BC = [2]OA.
故③正確.
(4)∵∠EOG = ∠BOE,∠OEG = ∠OBE = 45°,∴△OEG ∽ △OBE,
∴OE∶OB = OG∶OE,∴OG·OB = OE2.
∵OB = [12]BD,OE = [22]EF,∴OG·BD = EF2.
∵在Rt△BEF中,EF2 = BE2 + BF2,∴EF2 = AE2 + CF2,
∴OG·BD = AE2 + CF2.
故④正確.
(5)如圖5,過點O作OH ⊥ BC于H,
∵BC = 1,∴OH = [12]BC = [12].
設(shè)AE = x,則BE = CF = 1 - x,BF = x,
∴S△BEF + S△COF = [12]BE·BF + [12]CF·OH = [12]x(1 - x) + [12] × (1 - x) × [12] = -[12][x-142] + [932].
∵-[12] < 0,∴當(dāng)x = [14]時,S△BEF + S△COF的值最大.
即在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,AE = [14].
故⑤錯誤.
故答案為①③④.
拓展訓(xùn)練
1. 如圖6,正方形ABCD邊長為1,點E在邊AB上(不與A,B重合),將△ADE沿直線DE折疊,點A落在點A1處,連接A1B,將A1B繞點B順時針旋轉(zhuǎn)90°得到A2B,連接A1A,A1C,A2C. 給出下列四個結(jié)論:
①△ABA1 ≌ △CBA2;
②∠ADE + ∠A1CB = 45°;
③若點P是直線DE上的動點,則CP + A1P的最小值為[2];
④當(dāng)∠ADE = 30°時,△A1BE的面積為[3-36].
其中正確的結(jié)論個數(shù)是( ).
A. 1 B. 2 C. 3 D. 4
2. 如圖7,在四邊形ABCD中,AB = CD = 6,BC = AD = 8,∠A = ∠B = ∠C = ∠D = 90°,E為CD邊的中點,P為四邊形ABCD邊上的動點,動點P從A出發(fā),沿著A→B→C→D運動到點D停止,設(shè)點P經(jīng)過的路程為x,△APE的面積為y.
(1)當(dāng)x = 8時,求對應(yīng)y的值.
(2)當(dāng)點P在CD邊上時,求y與x之間的函數(shù)關(guān)系式.
(3)如圖8,當(dāng)點P在線段BC上運動時,是否存在點P使得△APE的周長最?。咳舸嬖冢埉嫵龃藭r點P的位置,并寫出必要的畫圖步驟;若不存在,請說明理由.
答案:1. C
2. (1)21
(2)[y] = [68-4x14≤x<17 ,4x-6817<x≤20.]
(3)存在,點[P]在線段[BC]上[PC] = [83].
(作者單位:開原市民主教育集團(tuán)里仁學(xué)校)
初中生學(xué)習(xí)指導(dǎo)·中考版2024年11期