1. 如圖1,已知矩形ABCD,AD = [3],點(diǎn)E是射線AB上一動(dòng)點(diǎn),點(diǎn)F,G在直線CD上,點(diǎn)E運(yùn)動(dòng)過(guò)程中始終滿足EF = EG,∠FEG = 120°,射線FE與直線CB交于點(diǎn)P,延長(zhǎng)EG到Q使GQ = FP,連接PQ交直線CD于點(diǎn)M,當(dāng)GM = 1時(shí),CG = .
2. 如圖2,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)坐標(biāo)分別為O(0,0),A(0,3),B(4,3),C(4,0). 動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿射線OC方向運(yùn)動(dòng);動(dòng)點(diǎn)P從點(diǎn)A同時(shí)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿射線AB方向運(yùn)動(dòng). 設(shè)運(yùn)動(dòng)的時(shí)間為t秒,點(diǎn)O關(guān)于直線PQ的對(duì)稱點(diǎn)為M,當(dāng)點(diǎn)M落到直線BC上時(shí),t = .
3. 如圖3,已知矩形ABCD中,AB = 6,BC = 5,點(diǎn)E是邊CD上一動(dòng)點(diǎn),連接EA,將線段EA繞點(diǎn)E沿逆時(shí)針?lè)较蛐D(zhuǎn)90°至EF,點(diǎn)A的對(duì)應(yīng)點(diǎn)是點(diǎn)F,當(dāng)△FBC是直角三角形時(shí),S△ADF = .
答案:1. 2或4. 分兩種情況.
(1)當(dāng)點(diǎn)E在線段AB上時(shí),如圖4,過(guò)點(diǎn)P作PH [?] EG,交直線CD于點(diǎn)H,易證FP = PH,△PHM ≌ △QGM,GM = HM = 1,由題易求FG = 6,F(xiàn)H = 8,∴CH = 4,∴CG = 4 - 2 = 2. (2)當(dāng)點(diǎn)E在線段AB的延長(zhǎng)線上時(shí),如圖5,過(guò)點(diǎn)P作PH [?] EG,交直線CD于點(diǎn)H,易證FP = PH,△PHM ≌ △QGM,GM = HM = 1,由題易求FG = 6,F(xiàn)H = 4,∴CH = 2,∴CG = 2 + 2 = 4.
2. 0.5或2.
延長(zhǎng)QP交y軸于點(diǎn)D,作矩形DOCN,則△DAP∽△DOQ,所以[DADO] = [APOQ] = [25],所以D(0,5),N(4,5),所以DN = 4. (1)當(dāng)點(diǎn)Q在線段OC上時(shí),如圖6,DM = 5. 在Rt△DMN中,由勾股定理得MN = 3,CM = 2. 在Rt△QCM中,由勾股定理得QM = 2.5,則OQ = 2.5,所以t = [2.55] = 0.5. (2)當(dāng)點(diǎn)Q在線段OC的延長(zhǎng)線上時(shí),如圖7,DM = 5. 在Rt△DMN中,由勾股定理得MN = 3,CM = 8. 在Rt△QCM中,由勾股定理得QM = 10,則OQ = 10,所以t = [105] = 2.
3. [252]或25或[1358-5418]或[1358+5418].
(1)當(dāng)∠FCB = 90°時(shí),此時(shí)點(diǎn)F落在CD上,點(diǎn)E與點(diǎn)D重合,圖略. 由旋轉(zhuǎn)性質(zhì)可知AE = EF = AD = 5,所以S△ADF = [252].
(2)當(dāng)∠FBC = 90°時(shí),此時(shí)點(diǎn)F落在直線AB上,如圖8,過(guò)點(diǎn)E作EG [⊥] [AF]于點(diǎn)G. 由旋轉(zhuǎn)性質(zhì)可知,AE = EF,∠AEF = 90°,AG = FG,則AF = 2EG = 10,所以S△ADF = 25.
(3)當(dāng)∠BFC = 90°時(shí),過(guò)點(diǎn) F 作 FP [⊥] DC,交DC延長(zhǎng)線于點(diǎn)P,交AB延長(zhǎng)線于點(diǎn) Q,如圖9,則FQ [⊥] AB. 設(shè)CP = x,根據(jù)題意可知△ADE ≌△EPF,則AD = EP = 5,所以CE = 5 - x,DE = PF = x + 1,BQ = CP = x,F(xiàn)Q = 4 - x,根據(jù)題意可知△CPF∽△FQB,則[x4-x] = [x+1x],解得[x1=34-414],[x2=34+414],所以S△ADF = [1358] - [5418]或[1358] + [5418].
(作者單位:沈陽(yáng)市南昌初級(jí)中學(xué))
初中生學(xué)習(xí)指導(dǎo)·中考版2024年11期