摘 要: 牛場規(guī)模化程度不斷擴大,個體發(fā)情的精準鑒定成為繁殖管理重點。行為表現(xiàn)、生理變化與自身卵泡發(fā)育密切相關(guān),是鑒別發(fā)情母牛、確定最佳配種時間的重要標記。利用現(xiàn)代科技深入揭示這些標記的發(fā)情周期變化規(guī)律與調(diào)控機制,提高自動化發(fā)情鑒定效率成為該領(lǐng)域的研究焦點。為此,本文綜述了母牛發(fā)情行為變化、生理特征的國內(nèi)外研究進展,分析了相關(guān)發(fā)情鑒定技術(shù)存在的問題,并回顧了發(fā)情母牛唾液、尿液、乳汁特異化合物的研究狀況,旨在為研發(fā)新型高效的發(fā)情鑒定自動化技術(shù)提供參考。
關(guān)鍵詞: 母牛;發(fā)情鑒定;行為標記;生理標記;分子標記
中圖分類號:S823.3
文獻標志碼:A
文章編號:0366-6964(2024)11-4785-11
收稿日期:2024-04-25
基金項目:科技創(chuàng)新2030(2023ZD0404903);國家重點研發(fā)計劃(2023YFD1300601)
作者簡介:楊書含(2000-),男,貴州鎮(zhèn)遠人,碩士,主要從事動物遺傳育種與繁殖研究,E-mail:3312270752@qq.com
*通信作者:路永強,主要從事動物遺傳育種與繁殖研究,E-mail:luyongqiang@163.com;王 棟,主要從事動物遺傳育種與繁殖研究,E-mail:dwangcn2002@vip.sina.com
Research Progress of Estrus Identification Markers in Cows
YANG" Shuhan1, SHI" Yuxin2, PANG" Yunwei1, YUAN" Kaimin1,3, XIU" Haoyu1,4, WANG" Chao1,3, LU" Yongqiang5*, WANG" Dong1*
(1.Institute of Animal Sciences,Chinese Academy of Agricultural Sciences, Beijing 100193,
China;
2.Aohan Animal Husbandry Bureau, Chifeng 024300, China;
3.College of
Animal Science and Technology,Jilin Agricultural University, Changchun 130118, China;
4.College of Animal Science,Shanxi Agricultural University, Taigu 030801, China;
5.Animal Husbandry Station of Beijing, Beijing 100107, China)
Abstract: With increasing scaled cattle cultivation, estrus accurate identification of individual has become the management focus of breeding. The performance of behavior and physiological changes, which are important markers in distinguishing estrus cows and determining the optimal insemination time, are closely related to itself follicular development. A better knowledge of the regularity and mechanism of these markers by modern technology during estrus cycle would help to improve the efficiency of automated estrus identification and become the focus in this field. Therefore, this paper reviews the research progress on estrus behavior and physiological characteristics of cow, analyzes the existing related issues in estrus identification techniques, and summarizes the recent research on identification of specific compounds of saliva, urine and milk in estrus cows, aiming to provide reference for developing newly efficient automated estrus identification technologies.
Key words: cows; estrus identification; behavior marker; physiological marker; molecular marker
*Corresponding authors: LU Yongqiang, E-mail: luyongqiang@163.com; WANG Dong, E-mail: dwangcn2002@ vip.sina.com
隨著養(yǎng)殖的規(guī)模化程度不斷擴大,母牛飼養(yǎng)頭數(shù)急劇增加,牛場面臨越來越大的發(fā)情鑒定壓力。傳統(tǒng)人工發(fā)情鑒定方法費時費力、時效性差,已無法適應(yīng)規(guī)?;B(yǎng)殖發(fā)展需要?;谟嫴狡骰蛑悄茼椚ΡO(jiān)測母?;顒恿康陌l(fā)情鑒定自動化技術(shù)應(yīng)運而生,不僅提高了檢出效率,還解決了牛場用工難、用工貴和夜間無人值守等問題。然而,安靜發(fā)情母?;顒恿孔兓幻黠@[1],僅監(jiān)測活動量無法突破安靜發(fā)情鑒定瓶頸,配種效率難以進一步提升。探索新的發(fā)情鑒定標記,建立高效的發(fā)情鑒定自動化技術(shù),解決安靜發(fā)情鑒定問題,提高配種效率成為當(dāng)務(wù)之急。
科技飛躍發(fā)展,使得科研人員有機會利用物聯(lián)網(wǎng)、機電傳感和分子信息等技術(shù),進一步揭示母牛發(fā)情相關(guān)行為、生理指標變化規(guī)律與調(diào)控機制,并推動精準高效的發(fā)情鑒定自動化技術(shù)研發(fā),進而加快牛場繁殖管理智能化發(fā)展。為此,本文綜述了母牛發(fā)情行為變化、生理特征及相應(yīng)的發(fā)情鑒定技術(shù)研究進展,并討論發(fā)情母牛唾液、尿液和乳汁等液體中的特異分子化合物研究狀況,旨在為建立更高效的發(fā)情鑒定自動化技術(shù)提供參考。
1 母牛發(fā)情的行為標記
發(fā)情期間,母牛行為變化可直接反映自身發(fā)情狀態(tài),成為發(fā)情鑒定重要的觀測指標。一般情況下,間情期母牛不接受爬跨,且無弓腰舉尾、頻頻排尿等現(xiàn)象;而發(fā)情期母牛,常表現(xiàn)興奮不安、左顧右盼、大聲哞叫、食欲降低、反芻減少、相互追逐打鬧、嗅聞外陰、兩后肢叉開舉尾、接受爬跨或爬跨其它牛等行為[2-4]。目前,基于上述行為標記的發(fā)情鑒定研究,主要集中在爬跨視頻監(jiān)控和反芻自動監(jiān)測兩方面。
1.1 發(fā)情爬跨行為
爬跨作為母牛最典型的發(fā)情行為[5],已被廣泛用于發(fā)情鑒定。實踐表明,被爬跨母牛站立不動時處于發(fā)情盛期,且排卵發(fā)生在首次爬跨后的23.5 h±1.5 h(范圍為19~27 h)或發(fā)生在爬跨站立不動后的21.8 h±1.3 h(范圍為19~25 h)[6],成為預(yù)測排卵的標志。然而,母牛每次爬跨僅持續(xù)4~7 s,且大多集中在夜間,人工觀察漏檢風(fēng)險大,限制了其揭示發(fā)情和預(yù)測排卵的實際使用。據(jù)此,人們利用彩色蠟筆或染料在待檢母牛尾根背上部涂一條標記,一旦待檢母牛接受爬跨,該標記因被爬跨而蹭掉,建立了尾部涂蠟法[7]。該法解決了夜間無人值守問題,提高了發(fā)情檢出率,但標記部位與墻體或欄桿等物體接觸時,也有可能被蹭掉而干擾配種員判斷,假陽性率較高。受尾部涂蠟思想啟發(fā),人們基于機電、傳感等技術(shù),研制出了無線發(fā)情爬跨探測儀[8],即壓力觸發(fā)裝置。將該裝置固定在待檢母牛尾根背上部,母牛受到其它牛爬跨產(chǎn)生的壓力會被該裝置實時采集,并通過無線傳輸模塊發(fā)送給上位機系統(tǒng),經(jīng)軟件分析、加工后自動進行預(yù)警提示呈現(xiàn)給用戶。此爬跨探測儀將發(fā)情檢出率提高到82.1%[9],但靈敏度在37%~94%范圍波動[10],而且壓力觸發(fā)裝置易移位或脫落,實際應(yīng)用效果較差。近年來,為更好的監(jiān)測母牛爬跨,視頻監(jiān)控引起了廣泛關(guān)注[11-12]。
基于智能監(jiān)控和人機交互系統(tǒng)研發(fā)的母牛爬跨視頻監(jiān)測系統(tǒng),為發(fā)情鑒定智能化帶來了巨大希望。在牛舍、運動場等區(qū)域安裝攝像頭實時錄制母牛行為,并每隔一段時間將其上傳至計算機系統(tǒng),經(jīng)特定算法分析和程序處理,若有爬跨行為,與計算機連接的顯示屏就會報警,且顯示爬跨母牛和被爬跨母牛個體號。這樣,配種員每天只需查看顯示屏,就可找出發(fā)情母牛并驗證、授精,省時省力,取得了較好的鑒定結(jié)果。并且,在多項研究推動下,視頻監(jiān)控母牛爬跨的準確率從80%提升到99.21%,發(fā)情檢出率提高到88.6%[13-18]。然而,母牛爬跨視頻監(jiān)測技術(shù)局限于光照較好的白天,且監(jiān)測范圍有限,并要求視野清晰無遮擋物,在夜間光線較暗和扎堆遮擋情況下識別效果較差,更無法識別監(jiān)測范圍外的母牛。夜間場景下,視頻模糊不清、背景顏色失真和邊緣細節(jié)丟失,一直是該技術(shù)的痛點。結(jié)合牛場實際環(huán)境條件和母牛體表特征,采用高斯濾波(MSRCR、AGCWD和GMM)圖像背景增強算法、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)(YOLOv5s、YOLOv5n和Alex Net)模型算法和支持向量機(SVM)分類算法[19-22]持續(xù)優(yōu)化,或許能解決夜間視頻監(jiān)測效果不佳的難題。
1.2 發(fā)情反芻行為
反芻作為牛羊等復(fù)胃動物特有的行為,在評判發(fā)情和身體健康等方面具有重要意義。發(fā)情當(dāng)天,母牛食欲降低、反芻減少已被研究證實[23-25]。Zebari等[26]報道,間情期母牛每天的干物質(zhì)攝入量約為21.6~22.7 kg,而發(fā)情當(dāng)天減少到19.8~20.5 kg,比發(fā)情前后每天減少1.8~2.2 kg。母牛采食行為直接影響到自身反芻行為,采食量減少,反芻時間也相繼減少。通常情況下,發(fā)情前母牛反芻時間波動不大,而發(fā)情當(dāng)天顯著下降至最低(約減少65.8~74 min),隨后又逐漸回升至發(fā)情前水平,呈典型的“V”字型變化[27-29]。發(fā)情當(dāng)天反芻時間減少,成為判斷母牛發(fā)情與否的重要標記。然而,人工觀測母牛反芻時間工作強度較大,且夜間無人值守。聲音識別、壓力監(jiān)測等技術(shù)的發(fā)展,為實時監(jiān)測和度量母牛反芻時間奠定了基礎(chǔ)。
基于麥克風(fēng)系統(tǒng),以色列SCR公司率先開發(fā)了自動識別母牛反芻聲音的技術(shù)[30],但該技術(shù)易將進食、飲水和反芻的聲音相互混淆,導(dǎo)致檢測結(jié)果偏高,實用性較差?;谀概7雌c時,顳窩或鼻帶壓力變化,Braun等[31]研發(fā)了壓力監(jiān)測系統(tǒng),經(jīng)驗證得出的反芻時間(388.3 min)和次數(shù)(410.0次)與人工觀察計數(shù)結(jié)果(389.3 min,410.1次)相近,可替代人工觀測,但在顳窩或鼻帶處,如何穩(wěn)定安裝壓力傳感器是一項巨大挑戰(zhàn)?;谀概7雌c時,上下頜運動的頻率,Shen等[32]利用三軸加速度傳感器,結(jié)合k-最近鄰分類算法,研發(fā)了反芻行為自動監(jiān)測系統(tǒng),準確率為93.7%,但易受采食上下頜運動頻率影響。孫雅琳[33]利用六軸加速度傳感系統(tǒng),結(jié)合CA-Mobile Net網(wǎng)絡(luò)和Fed Avg模型聚合算法,將反芻識別準確性進一步提升至98.2%,更加接近人工觀測。近期,還進行了多項母牛反芻行為視頻監(jiān)測研究[34-36],其中,姬江濤等[37]改進FlowNet 2.0光流算法,對母牛反芻識別準確率可達99.39%。然而,視頻檢測的局限性仍然是該技術(shù)推廣應(yīng)用的主要限制因素。
2 母牛發(fā)情的生理標記
發(fā)情期間的各種行為變化都源于母?;顒恿吭黾?、體溫升高和陰道黏液電阻值降低等生理變化,這些生理指標變化為發(fā)情鑒定自動化技術(shù)研發(fā)提供了更重要的標記?;谏鲜錾碇笜耍瑖鴥?nèi)外已經(jīng)研發(fā)了相應(yīng)發(fā)情鑒定設(shè)備,如計步器、智能項圈、智能耳標、陰道黏液電阻值檢測設(shè)備和陰道測溫設(shè)備等,其中,計步器和智能項圈最為成熟,已在全世界推廣應(yīng)用。
2.1 基于活動量的發(fā)情鑒定
正常發(fā)情母牛軀體不同部位活動量顯著增加,達最高并持續(xù)一段時間后,又逐漸下降并恢復(fù)到間情期水平[38];且有研究表明,排卵發(fā)生在腿部活動量開始增加后的29.3 h±3.9 h(范圍為22~39 h)或發(fā)生在腿部活動量增加結(jié)束后的19.4 h±4.4 h(范圍為12~35 h)[39]?;谏鲜鲆?guī)律,采用振動或加速度傳感器,融入物聯(lián)網(wǎng)等現(xiàn)代技術(shù)獲取活動量數(shù)據(jù),建立了母牛發(fā)情鑒定自動化技術(shù),顛覆了傳統(tǒng)發(fā)情鑒定方法,使規(guī)?;鰧崿F(xiàn)了高效繁殖目標。但是,在腿部、頸部、尾部和耳部等軀體不同部位監(jiān)測到的活動量有很大差異,發(fā)情鑒定效果也有很大差異。
2.1.1 腿部活動量的發(fā)情監(jiān)測效果
腿是軀體運動的主要部位,其運動規(guī)律也是研發(fā)計步器自動監(jiān)測母牛發(fā)情的最早標記,但值得注意,各腿發(fā)情檢出率各不相同。Mayo等[40]報道,母牛左前腿、右前腿、左后腿和右后腿的發(fā)情檢出率分別為66.1%、32.1%、41.3%和69.7%,這提示人們對各腿運動習(xí)性進行深入研究,可能會獲得更高的發(fā)情檢出率。多項基于母牛腿部活動量的發(fā)情鑒定結(jié)果表明,發(fā)情檢出率差異較大,約為70.23%~94.8%不等[41-43]。推測除不同腿檢測結(jié)果有差別外,可能還與不同計步器發(fā)情檢出閾值差異有關(guān)。因為不同季節(jié)、胎次、泌乳量等因素會影響發(fā)情母牛活動量增加幅度和持續(xù)時間[44-45],所以綜合考慮這些因素,科學(xué)設(shè)置活動量發(fā)情鑒定閾值至關(guān)重要。另外,在母牛腿部安裝或拆除計步器很不方便,需要花費較長時間,且存在糞尿污染計步器,影響使用壽命的問題。計步器外殼和綁帶有時會摩破接觸部位皮膚,造成細菌感染、誘發(fā)炎癥等問題也不容忽視。在腿部安裝計步器監(jiān)測母牛發(fā)情,不一定是最佳選擇。
2.1.2 頸部活動量的發(fā)情監(jiān)測效果
對比母牛全身部位,頸部佩戴智能項圈進行活動量監(jiān)測,無論是穿戴還是拆卸都很方便,同時,也避免了糞尿污染和易脫落問題,所以,被很多牛場推廣應(yīng)用。然而,本團隊前期研究發(fā)現(xiàn),母牛發(fā)情當(dāng)天頸部活動總量(20 950±1 541)遠低于前腿(59 998±1 993)、后腿(59 069± 2 174)、尾部(57 820±2 895)和頭部(31 450±2 330),且發(fā)情鑒定準確率(43.9%)與檢出率(62.1%)也低于腿部(84.8%、96.6%)、尾部(61.5%、100%)和頭部(59.1%、89.7%)[38]。另外,國外利用智能項圈監(jiān)測母牛發(fā)情的結(jié)果差異也較大,有36.3%~71%不等[40,46-47]??梢姡妙i部活動量判斷母牛發(fā)情的檢出效果并不理想,不僅低于其它部位,而且變化差異較大。雖然,在頸部佩戴智能項圈比在腿部穿戴計步器更方便,但是,能否提高發(fā)情鑒定效率還有待進一步研究和驗證。
2.1.3 尾部活動量的發(fā)情監(jiān)測效果
尾巴是較靈敏又靈活的部位,可受神經(jīng)支配隨意活動。發(fā)情期間,母牛通過舉尾或利用尾根腹下部來回撫摸外陰,以疏解生殖系統(tǒng)充血腫脹或瘙癢難耐的刺激,使尾部活動量大幅增加。研究表明,母牛發(fā)情當(dāng)天尾部活動總量為57 820±2 895,比發(fā)情前、后5 d每天的活動總量高1.63倍;發(fā)情開始前和發(fā)情結(jié)束后的尾部活動量與間情期差異不顯著[38]。因此,尾部活動量,也成為發(fā)情鑒定研究的重要標記[48]。然而,母牛尾巴呈上大下小的扁圓柱型,較難穩(wěn)定佩戴活動量監(jiān)測設(shè)備,若佩戴過于牢固,極易使尾巴皮膚出現(xiàn)壓痕,甚至腫脹或壞死。檢測180只母牛尾部佩戴傳感器的效果發(fā)現(xiàn),僅有25頭母牛(13.9%)的尾巴上一直附著傳感器,且對尾巴無損害;而傳感器滑動、脫落或尾巴腫脹、疼痛及無法操作的母牛分別有37頭(20.6%)、77頭(42.8%)、31頭(17.1%)和10頭(5.6%)[49]。此外,母牛尾部佩戴傳感器等設(shè)備會影響尾巴驅(qū)趕蚊蠅和撓癢等功能,使其產(chǎn)生應(yīng)激反應(yīng),降低生產(chǎn)性能。因此,很少見到關(guān)于尾部活動量的檢測報道。
2.1.4 耳部活動量的發(fā)情監(jiān)測效果
近年來,在母牛耳標中集成加速度傳感器,為利用活動量進行發(fā)情鑒定提供了新的檢測方式。Dolecheck等[47]研究證實,母牛發(fā)情當(dāng)天耳部活動量是平時的3.1倍,且高于頸部(1.2倍)和腿部(2.6倍)。在此基礎(chǔ)上,Mayo等[40]、Schilkowsky等[50]和Schweinzer等[51]在耳標中集成加速度傳感器,獲得的發(fā)情檢出率分別為78.5%、83.4%和96.8%,明顯高于蔣曉新等[41](70.23%)和Dolecheck等[47](65.2%)基于腿部活動量的發(fā)情鑒定研究結(jié)果。這表明,耳部活動量是判斷母牛發(fā)情與否的較好檢出標記。然而,在耳部穿戴傳感器等設(shè)備難度較大,太重或佩戴不科學(xué)都可能影響到檢測效果。而且,耳標電池容量太小,無法支撐整個發(fā)情周期,需要頻繁更換電池。此外,耳標易脫落問題也無法解決。若能解決上述問題,耳標集成加速度傳感器,將成為監(jiān)測母牛發(fā)情的另一重要自動化技術(shù)。
2.2 基于陰道黏液電阻值的發(fā)情鑒定
實踐表明,活動量鑒定正常發(fā)情母牛效果較好,但無法區(qū)分假發(fā)情母牛,假陽性率為8.0%~11.3%[39,52],且難以檢出安靜發(fā)情母牛,存在一定局限性。為研發(fā)更精準的發(fā)情鑒定技術(shù),以及解決安靜發(fā)情鑒定難題,對母牛陰道黏液電阻值進行了大量研究。發(fā)情期間,母牛陰道黏液電阻值顯著降低已被研究證實,成為檢測發(fā)情、確定輸精時間的另一重要生理標記。通常情況下,間情期母牛陰道黏液電阻值較高(299.54 Ω±65.22 Ω),而發(fā)情期顯著下降(245.90 Ω±61.63 Ω),在整個發(fā)情周期呈現(xiàn)“高-低-高”的變化規(guī)律[53]。進一步觀察母牛發(fā)情當(dāng)天的陰道黏液電阻值發(fā)現(xiàn),發(fā)情開始前第4小時迅速下降,到發(fā)情開始后第8~12小時下降至最低(220 Ω±27 Ω),隨后逐漸恢復(fù)至間情期水平;其中,排卵發(fā)生在陰道黏液電阻值下降至最低后的15 h±1.3 h左右,電阻值高、低相差114 Ω±18 Ω[54]。單獨使用陰道黏液電阻值的發(fā)情檢出率為80.4%,而整合活動量后則可達100%,這提示研發(fā)多標記的發(fā)情鑒定自動化技術(shù),綜合診斷母牛發(fā)情,可能會獲得更高的發(fā)情鑒定效率。
傳統(tǒng)陰道黏液電阻值測定,主要由人工將帶線探頭插入母牛陰道,然后連通萬用電表觀察電阻值變化,當(dāng)電阻值穩(wěn)定后,記錄母牛編號和電阻值。這種方法無法實現(xiàn)連續(xù)、自動監(jiān)測,不僅費時費力,還易引起應(yīng)激反應(yīng),更無法對牛群實行批量化監(jiān)測。利用先進科學(xué)技術(shù),研發(fā)母牛陰道黏液電阻值自動采集技術(shù),解決上述問題是未來發(fā)展的必然趨勢?;谀概j幍澜Y(jié)構(gòu),Andersson等[55]設(shè)計了可穿戴無線探頭,初步實現(xiàn)了陰道黏液電阻值自動監(jiān)測,但該無線探頭的電池容量僅為200 mA·h,使其未能連續(xù)長時間工作,實際應(yīng)用效果較差。劉忠超和何東?。?6]也設(shè)計了一款自動采集母牛陰道黏液電阻值的無線探頭,該無線探頭的電池容量為6 500 mA·h,可連續(xù)工作38 d,超越了母牛發(fā)情周期天數(shù),精確度±2%、準確性可達98.5%,為發(fā)情鑒定提供了一種新的監(jiān)測方法。然而,無線探頭長時間停留在陰道內(nèi),易損傷陰道誘發(fā)炎癥,且母牛走動也易影響探頭位置及檢測效果,并且該探頭對硬件要求較高,還需要解決傳感器短路和長久穩(wěn)定佩戴等問題。目前,基于防水、防腐蝕的傳感器研發(fā),可能是該探頭成功應(yīng)用的關(guān)鍵。同時,整合活動量與陰道黏液電阻值兩種標記,或許能提高母牛發(fā)情鑒定效果,徹底解決安靜發(fā)情鑒定問題。
2.3 基于體溫的發(fā)情鑒定
基于陰道黏液電阻值標記的發(fā)情鑒定自動化技術(shù),雖然難以突破產(chǎn)業(yè)應(yīng)用技術(shù)瓶頸,但卻開啟了母牛發(fā)情其它生理標記的探索研究。其中,基于體溫標記的發(fā)情鑒定技術(shù)研發(fā),引起廣泛關(guān)注。母牛雖為恒溫動物,但其體溫卻隨發(fā)情周期呈現(xiàn)一定規(guī)律性變化。葛利江等[57]研究發(fā)現(xiàn),發(fā)情前母牛直腸溫度為38.7 ℃,而發(fā)情時上升至39.2 ℃,接近排卵時又下降到38.5 ℃,隨后逐漸恢復(fù)至發(fā)情前水平,整體呈現(xiàn)先升高后降低的變化規(guī)律。然而,直腸測溫?zé)o法實現(xiàn)自動化,研究重點轉(zhuǎn)向體表,但牛全身被毛濃密,只有鼻、眼、乳房等少數(shù)部位無毛裸露,而這些部位又無法固定溫度采集設(shè)備,導(dǎo)致體表自動測溫難度較大。目前,人們研發(fā)了瘤胃[58]、陰道[59]、眼球[60]和耳道[61]等部位溫度的監(jiān)測技術(shù),并檢測到這些部位溫度的變化與直腸溫度呈現(xiàn)相似規(guī)律,可升高0.3 ℃~0.5 ℃;且有研究表明,基于耳部溫度標記的母牛發(fā)情平均持續(xù)時間為16 h±5.67 h,從發(fā)情開始到排卵的平均時間間隔為27.90 h±7.68 h[62]。因此,體溫也被作為判斷母牛發(fā)情與否的重要生理標記,而且,基于陰道溫度標記的發(fā)情鑒定獲得了高達92%的檢出率[63],是目前除活動量外,最有希望用于母牛發(fā)情自動監(jiān)測的生理指標。
然而,陰道測溫易對母牛造成傷害或引起應(yīng)激反應(yīng),如何實現(xiàn)母牛體溫自動監(jiān)測是一大難點。與監(jiān)測陰道溫度相比,監(jiān)測耳部溫度,傷害要小些。于是,屈東東[64]基于DS18B20溫度傳感器、ESP-WROOM模組和WiFi傳輸,構(gòu)建了母牛耳部溫度實時監(jiān)測系統(tǒng)。該系統(tǒng)監(jiān)測范圍可達80 m,測試精度±0.2 ℃,但每隔幾十米就要布置無線WiFi接入點,以及鋪設(shè)大量電纜和布局較多無線接入點,增加了系統(tǒng)復(fù)雜度。熱紅外測溫技術(shù)的推廣利用,為母牛體溫自動監(jiān)測提供了新方向。何東健和宋子琪[65]利用熱紅外成像技術(shù)與骨架樹模型對牛眼部溫度進行自動檢測,平均絕對誤差為0.35 ℃、相對誤差為0.38%,具有較高精度;但牛頭自由度較大,眼睛目標較小,實際應(yīng)用并不理想。選擇更合適的部位并設(shè)計更巧妙的測溫設(shè)備,是該方向未來研發(fā)的重點。同時,仍需深入研究疾病、季節(jié)、產(chǎn)奶量、胎次和不同發(fā)情類型等因素對母牛體溫的影響,以期確定最佳發(fā)情溫度預(yù)報閾值,為建立更精準的母牛體溫發(fā)情鑒定自動化技術(shù)提供重要支撐。
3 母牛發(fā)情的分子標記
分子檢測技術(shù)的發(fā)展,使母牛唾液、尿液、乳汁的化學(xué)成分得到了深度剖析,為發(fā)情診斷分子標記研究開辟了新領(lǐng)域。目前,化學(xué)提取、代謝組學(xué)和色譜質(zhì)譜分析技術(shù)都取得了較快發(fā)展,且研究篩選出了一些不同發(fā)情階段的特異分子化合物,為母牛發(fā)情鑒定技術(shù)革新帶來了新希望。
3.1 唾液化合物
辛海云等[66]綜述表明,唾液化合物的晶體結(jié)構(gòu)差異、蛋白組學(xué)差異、揮發(fā)物差異,以及胞外RNA差異和電解質(zhì)平衡差異都可能用于動物發(fā)情鑒定技術(shù)研發(fā)。關(guān)于發(fā)情母牛唾液特異揮發(fā)性分子化合物的篩選研究,也取得了很多新發(fā)現(xiàn)。Sankar等[67]報道,母牛唾液中的三甲胺、乙酸、苯酚4-丙基、戊酸和丙酸等揮發(fā)性物質(zhì),在發(fā)情當(dāng)天顯著增加;其中,三甲胺散發(fā)的氣味具有吸引公??拷男Ч徽J為是潛在的發(fā)情特異性分子標記。Karthikeyan等[68]研究認為,水牛唾液中的對甲酚是一種異性吸引劑,也可作為發(fā)情特異性分子標志物。本團隊前期研究發(fā)現(xiàn),與發(fā)情前相比,發(fā)情當(dāng)天奶牛唾液中的1-戊醇、2-戊基呋喃、苯乙醇等23個揮發(fā)性化合物含量顯著升高;進一步比較正常發(fā)情和安靜發(fā)情奶牛發(fā)情當(dāng)天23個化合物的含量發(fā)現(xiàn),除6-(2,2,2-三氯-1-羥乙基)-1-甲基環(huán)己烯和2-羥基苯甲酸甲酯兩個化合物含量顯著高于安靜發(fā)情外,其余21個化合物無顯著差異[69]。由此推測,利用唾液揮發(fā)性化合物判斷母牛發(fā)情受安靜發(fā)情干擾小,為尋找不受安靜發(fā)情影響的發(fā)情鑒定標記提供了新思路。同時,整合發(fā)情母牛唾液晶體呈蕨類模式的特點[70],以及ENO3、SDF4、SERPRINA1、HSP-70等唾液蛋白表達增加等特性[71-72],采用多標記共同診斷發(fā)情,或許有望突破安靜發(fā)情鑒定瓶頸,提高配種效率。
3.2 尿液化合物
結(jié)合化學(xué)提取和氣相色譜聯(lián)動質(zhì)譜,分析間情期、發(fā)情期和妊娠期水牛尿液,共發(fā)現(xiàn)156種揮發(fā)性化合物[73],并檢測到某些化合物僅存在于特定生理階段。Rajanarayanan和Archunan[74]發(fā)現(xiàn),水牛尿液中的4-氯辛烷、9-甲基苯酚和4-十八烯酸只在發(fā)情期表達,并攜帶特殊氣味,具有刺激其它牛嗅聞、爬跨的作用。董智豪等[75]綜述報道,奶牛尿液中的鄰苯二甲酸二丙酯和1-碘十一烷僅存在于發(fā)情期,也可作為發(fā)情特異分子標志物。基于不同發(fā)情階段母牛尿液化合物差異,Muthukumar等[76]開發(fā)了發(fā)情檢測試劑盒,向該試劑盒加入發(fā)情前尿液呈現(xiàn)粉色,發(fā)情時為無色,發(fā)情后為深粉色,發(fā)情檢出率為60%,為利用特異分子化合物標記判斷母牛發(fā)情開辟了新方式。然而,不同發(fā)情階段母牛尿液混合會導(dǎo)致某些化合物結(jié)構(gòu)發(fā)生變化而衍生新化合物,所以檢測時應(yīng)分別進行,以避免顏色互融或產(chǎn)生其它顏色,從而干擾鑒定結(jié)果。最新研究報道,安靜發(fā)情水牛尿液的Tamm-Horsfall蛋白顯著增加,約為間情期1.31倍[77],可將其視為檢測安靜發(fā)情的分子標志物。深入揭示發(fā)情母牛尿液特異性化合物成分及其存在形式,并針對這些特異性化合研發(fā)更精準的專一試劑盒或試紙,也許能推動該研究方向取得突破性進展。
3.3 乳汁化合物
牛奶量多易獲取,其化合物的發(fā)情周期變化規(guī)律備受研究人員關(guān)注。牛奶含有數(shù)十種化合物[78],但目前只有少數(shù)被證明存在發(fā)情特異性。發(fā)情當(dāng)天,母牛乳汁中的蛋白質(zhì)、脂肪、尿素、總固體(TS)和固體非脂肪(SnF)含量顯著高于發(fā)情前第3天[79];發(fā)情當(dāng)天牛乳中的醋酸、戊酸、己酸和肉豆蔻酸含量,分別比發(fā)情前第14天增加1.29%、1.19%、1.22%、1.93%,而花生四烯酸則降低1.46%[80]。比較乳清代謝物發(fā)現(xiàn),產(chǎn)后70 d卵巢靜止母牛乳清中的琥珀酸、磷酸肌酸等6種代謝物含量,高于正常發(fā)情母牛,而丙氨酸、肌酐和乳糖等7種代謝物含量,則低于正常發(fā)情母牛[81]。這提示監(jiān)測乳清代謝物變化,也許能區(qū)分產(chǎn)后母牛是正常發(fā)情,還是卵巢靜止,以便對牛只進行精準配種或同期發(fā)情處理。另外,Liu等[82]報道,發(fā)情母牛乳汁外泌體少于非發(fā)情母牛,外泌體蛋白濃度更低;進一步研究發(fā)現(xiàn),乳源性外泌體參與調(diào)控雌二醇和孕酮(CYP19A1、CYP11A1、 RUNX2、HSD3β1、StAR)相關(guān)基因表達,其中,RUNX2在間情期表達顯著高于發(fā)情期。發(fā)情期與間情期乳汁外分泌體差異,可能是雌、孕激素隨發(fā)情周期變化造成的。故推測,乳汁外分泌體可能與卵泡發(fā)育、排卵、黃體形成和退化也存在一定關(guān)系。因此,深入探明外泌體對母牛發(fā)情排卵的調(diào)控作用,對于挖掘乳汁化合物標記,建立非侵入式發(fā)情鑒定技術(shù)具有重要意義。
4 小結(jié)
自動監(jiān)測母牛發(fā)情,已成為規(guī)?;龇敝彻芾碇攸c發(fā)展方向?;诨顒恿康陌l(fā)情鑒定自動化技術(shù)顛覆了傳統(tǒng)發(fā)情鑒定方法,提高了規(guī)?;龇敝彻芾硭叫б妗5唇鉀Q安靜發(fā)情鑒定問題,所以,催生了爬跨圖像視頻、反芻時間、陰道黏液電阻值和體溫等一系列指標的研究,以及相關(guān)自動化檢測技術(shù)的開發(fā)。發(fā)情母牛反芻時間、陰道黏液電阻值和體溫等指標變化規(guī)律的深入揭示,及其相關(guān)指標穿戴設(shè)備研發(fā)的突破,將會推動建立更高效的發(fā)情鑒定自動化技術(shù),突破安靜發(fā)情鑒定瓶頸。此外,揭示唾液、乳汁中的分子化合物與發(fā)情周期之間的關(guān)系,也是未來發(fā)情鑒定的重點研究方向。
參考文獻(References):
[1] 周正義,田 莉,田宏志,等.母牛安靜發(fā)情鑒定技術(shù)概況及影響因素分析[J].畜牧獸醫(yī)學(xué)報,2021,52(4):862-871.
ZHOU Z Y,TIAN L,TIAN H Z,et al.Analysis of identification technology and influence factors on silent estrus of cows[J].Acta Veterinaria et Zootechnica Sinica,2021,52(4):862-871.(in Chinese)
[2] 李 拓.母牛的發(fā)情周期以及發(fā)情的鑒定方法[J].中國動物保健,2022,24(7):83-84.
LI T.The estrous cycle of the cow and the identification method of estrus[J].China Animal Health,2022,24(7):83-84.(in Chinese)
[3] REITH S,HOY S.Review:behavioral signs of estrus and the potential of fully automated systems for detection of estrus in dairy cattle[J].Animal,2018,12(2):398-407.
[4] 萬仁華.正確判斷母牛發(fā)情與適時人工授精[J].中國畜牧業(yè),2022(19):53-54.
WAN R H.Judging oestrus of cow correctly and carrying out artificial insemination timely[J].China Animal Industry,2022(19): 53-54.(in Chinese)
[5] GAUDE I,KEMPF A,STRVE K D,et al.Estrus signs in Holstein Friesian dairy cows and their reliability for ovulation detection in the context of visual estrus detection[J].Livest Sci,2021,245:104449.
[6] MONDAL M,RAJKHOWA C,PRAKASH B S.Behavioral estrous signs can predict the time of ovulation in mithun (Bos frontalis)[J].Theriogenology,2006,66(5):1391-1396.
[7] 宋亞攀,孫麗萍,郭愛珍,等.涂蠟筆方法在母牛發(fā)情鑒定中的應(yīng)用[J].中國奶牛,2014(15):60-62.
SONG Y P,SUN L P,GUO A Z,et al.Application of crayon method in cow estrus identification[J].China Dairy Cattle, 2014(15): 60-62.(in Chinese)
[8] 劉忠超,劉勇軍.基于Android的奶牛發(fā)情爬跨行為無線監(jiān)測系統(tǒng)設(shè)計[J].黑龍江畜牧獸醫(yī),2019(8):55-59,179.
LIU Z C,LIU Y J.Design of wireless monitoring system for cow estrus crawling behavior based on Android[J].Heilongjiang Animal Science and Veterinary Medicine,2019(8):55-59,179.(in Chinese)
[9] WALKER W L,NEBEL R L,MCGILLIARD M L.Time of ovulation relative to mounting activity in dairy cattle[J].J Dairy Sci,1996,79(9):1555-1561.
[10] SAINT-DIZIER M,CHASTANT-MAILLARD S.Potential of connected devices to optimize cattle reproduction[J]. Theriogenology, 2018,112:53-62.
[11] LODKAEW T,PASUPA K,LOO C K.CowXNet:an automated cow estrus detection system [J].Expert Syst Appl,2023,211:118550.
[12] BAI Q,GAO R H,WANG R,et al.X3DFast model for classifying dairy cow behaviors based on a two-pathway architecture[J].Sci Rep,2023,13(1):20519.
[13] 顧靜秋,王志海,高榮華,等.基于融合圖像與運動量的奶牛行為識別方法[J].農(nóng)業(yè)機械學(xué)報,2017,48(6):145-151.
GU J Q,WANG Z H,GAO R H,et al.Recognition method of cow behavior based on combination of image and activities[J].Transactions of the Chinese Society for Agricultural Machinery,2017,48(6):145-151.(in Chinese)
[14] WU D H,WANG Y F,HAN M X,et al.Using a CNN-LSTM for basic behaviors detection of a single dairy cow in a complex environment[J].Comput Electron Agric,2021,182:106016.
[15] 王 政,許興時,華志新,等.融合YOLO v5n與通道剪枝算法的輕量化奶牛發(fā)情行為識別[J].農(nóng)業(yè)工程學(xué)報,2022,38(23): 130-140.
WANG Z,XU X S,HUA Z X,et al.Lightweight recognition for the oestrus behavior of dairy cows combining YOLO v5n and channel pruning[J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(23):130-140.(in Chinese)
[16] WANG R,BAI Q,GAO R H,et al.Oestrus detection in dairy cows by using atrous spatial pyramid and attention mechanism[J]. Biosyst Eng,2022,223:259-276.
[17] 謝忠紅,劉悅怡,宋子陽,等.基于時序運動特征的奶牛爬跨行為識別研究[J].南京農(nóng)業(yè)大學(xué)學(xué)報,2021,44(1):194-200.
XIE Z H,LIU Y Y,SONG Z Y,et al.Research on recognition of crawling behavior of cows based on temporal motion features[J].Journal of Nanjing Agricultural University,2021,44(1):194-200.(in Chinese)
[18] GUO Y Y,ZHANG Z R,HE D J,et al.Detection of cow mounting behavior using region geometry and optical flow characteristics[J].Comput Electron Agric,2019,163:104828.
[19] 岳 帥.基于計算機視覺的奶牛夜間爬跨預(yù)警系統(tǒng)開發(fā)[D].楊凌:西北農(nóng)林科技大學(xué),2023.
YUE S.Computer vision-based cows’ nocturnal mounting early warning system development[D].Yangling:Northwest Aamp;F University, 2023.(in Chinese)
[20] 王少華.基于視頻分析和深度學(xué)習(xí)的奶牛爬跨行為檢測方法研究[D].楊凌:西北農(nóng)林科技大學(xué),2021.
WANG S H.Detection methods of cow mounting behavior based on video analysis and dee learning[D].Yangling:Northwest Aamp;F University,2021.(in Chinese)
[21] 蔡兆暉,林學(xué)杰.基于機器視覺的奶牛發(fā)情行為視頻監(jiān)測算法研究[J].當(dāng)代畜禽養(yǎng)殖業(yè),2021(3):28-30.
CAI Z H,LIN X J.Research on video monitoring algorithm of milk cow estrus behavior based on machine vision[J].Modern Livestock and Poultry Breeding Industry,2021(3):28-30.(in Chinese)
[22] MA S F,ZHANG Q R,LI T F,et al.Basic motion behavior recognition of single dairy cow based on improved Rexnet 3D network[J].Comput Electron Agric,2022,194:106772.
[23] CODL R,DUCHACˇGEK J,VACEK M,et al.Relationship between daily activities duration and oestrus in dairy cows over the year[J].Acta Vet Brno,2022,91(1):11-16.
[24] ZHOU X J,XU C,GOMES LOPES M,et al.Characterization of the physical and ruminal activities related to estrus in dairy cows raised on Chinese commercial farms[J].Vet Arh,2023,93(2):143-158.
[25] STRAPK P,MIACˇGIAKOV M,STRAPKOV E,et al.Influence of estrus on changes of locomotion activity and rumination time in cattle dams[J].Acta Fytotech Zootech,2021,24:127-130.
[26] ZEBARI H M,RUTTER S M,BLEACH E C L.Characterizing changes in activity and feeding behaviour of lactating dairy cows during behavioural and silent oestrus[J].Appl Anim Behav Sci,2018,206(6):12-17.
[27] 潘予琮,蔣林樹,熊本海.奶牛產(chǎn)后首次發(fā)情行為變化規(guī)律及影響因素分析[J].中國畜牧雜志,2021,57(4):123-128.
PAN Y C,JIANG L S,XIONG B H,et al.Analysis on the change rules and influencing factors of first estrus behavior in postpartum dairy cows[J].Chinese Journal of Animal Science,2021,57(4):123-128.(in Chinese)
[28] REITH S,HOY S.Relationship between daily rumination time and estrus of dairy cows[J].J Dairy Sci,2012,95(11):6416-6420.
[29] PAHL C,HARTUNG E,MAHLKOW-NERGE K,et al.Feeding characteristics and rumination time of dairy cows around estrus[J].J Dairy Sci,2015,98(1):148-154.
[30] SCHIRMANN K,CHAPINAL N,WEARY D M,et al.Rumination and its relationship to feeding and lying behavior in Holstein dairy cows[J].J Dairy Sci,2012,95(6):3212-3217.
[31] BRAUN U,TRSCH L,NYDEGGER F,et al.Evaluation of eating and rumination behaviour in cows using a noseband pressure sensor[J].BMC Vet Res,2013,9:164.
[32] SHEN W Z,CHENG F,ZHANG Y,et al.Automatic recognition of ingestive-related behaviors of dairy cows based on triaxial acceleration[J].Information Processing in Agriculture,2020,7(3):427-443.
[33] 孫雅琳.基于邊緣計算的奶牛反芻行為實時監(jiān)測研究[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2023.
SUN Y L.Research on real-time monitoring of dairy cow rumination behavior based on edge computing[D].Harbin:Northeast Agricultural University,2023.(in Chinese)
[34] 毛燕茹.基于機器視覺的多目標奶牛反芻行為監(jiān)測方法研究[D].楊凌:西北農(nóng)林科技大學(xué),2022.
MAO Y R.Multi-target rumination behavior monitoring method of dairy cows based on machine vision[D].Yangling:Northwest Aamp;F University,2022.(in Chinese)
[35] LI J X,LIU Y H,ZHENG W X,et al.Monitoring cattle ruminating behavior based on an improved keypoint detection model[J]. Animals (Basel),2024,14(12):1791.
[36] 陳甜甜.基于計算機視覺的牛反芻行為識別與分析[D].包頭:內(nèi)蒙古科技大學(xué),2023.
CHEN T T.Recognition and analysis of cattle’s rumination based on computer vision[D].Baotou:Inner Mongolia University of Science amp; Technology,2023.(in Chinese)
[37] 姬江濤,劉啟航,高榮華,等.基于改進FlowNet 2.0光流算法的奶牛反芻行為分析方法[J].農(nóng)業(yè)機械學(xué)報,2023,54(1):235-242.
JI J T,LIU Q H,GAO R H,et al.Ruminant behavior analysis method of dairy cows with improved FlowNet 2.0 optical flow algorithm[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(1):235-242.(in Chinese)
[38] 郭冠華.奶牛發(fā)情期軀體不同部位活動量變化規(guī)律研究[D].太谷:山西農(nóng)業(yè)大學(xué),2022.
GUO G H.Study on the changing law of the activity of different parts of the body of dairy cows during estrus[D].Taigu:Shanxi Agricultural University,2022.(in Chinese)
[39] ROELOFS J B,VAN EERDENBURG F J C M,SOEDE N M,et al.Pedometer readings for estrous detection and as predictor for time of ovulation in dairy cattle[J].Theriogenology,2005,64(8):1690-1703.
[40] MAYO L M,SILVIA W J,RAY D L,et al.Automated estrous detection using multiple commercial precision dairy monitoring technologies in synchronized dairy cows[J].J Dairy Sci,2019,102(3):2645-2656.
[41] 蔣曉新,劉 煒,魏星遠,等.運用計步器鑒定泌乳盛期荷斯坦奶牛的發(fā)情效果研究[J].安徽農(nóng)業(yè)科學(xué),2013,41(15): 6728-6729,6732.
JIANG X X,LIU W,WEI X Y,et al.Study on the effects of identifying the estrus of holstein cows during peak lactation by using pedometer[J].Journal of Anhui Agricultural Sciences,2013,41(15):6728-6729,6732.(in Chinese)
[42] SAKAGUCHI M,F(xiàn)UJIKI R,YABUUCHI K,et al.Reliability of Estrous detection in holstein heifers using a radiotelemetric pedometer located on the neck or legs under different rearing conditions[J].J Reprod Dev,2007,53(4):819-828.
[43] 曹學(xué)浩,黃善琦,馬樹剛,等.活動量監(jiān)測技術(shù)的研究及其在奶牛繁殖管理中的應(yīng)用[J].中國奶牛,2013(8):37-40.
CAO X H,HUANG S Q,MA S G,et al.Applications of activity monitoring technology in dairy cattle breeding management[J].China Dairy Cattle,2013(8):37-40.(in Chinese)
[44] 孫保貴.奶牛運動量輔助發(fā)情診斷及電導(dǎo)率輔助乳房炎診斷參數(shù)的研究[D].泰安:山東農(nóng)業(yè)大學(xué),2011.
SUN B G.A study on parameters for estrus detection based on activity record and subclinical mastitis diagnosis based on milk conductivity in lactating cows[D].Taian:Shandong Agricultural University,2011.(in Chinese)
[45] 胡仁超.荷斯坦?;顒恿孔兓?guī)律及其影響因素的相關(guān)性研究[D].楊凌:西北農(nóng)林科技大學(xué),2016.
HU R C.Researches on variation of the walking activity and it’s influencing factors of holstein cattle[D].Yangling:Northwest Aamp;F University,2016.(in Chinese)
[46] VALENZA A,GIORDANO J O,LOPES G JR,et al.Assessment of an accelerometer system for detection of estrus and treatment with gonadotropin-releasing hormone at the time of insemination in lactating dairy cows[J].J Dairy Sci,2012,95(12):7115-7127.
[47] DOLECHECK K A,SILVIA W J,HEERSCHE G JR,et al.Behavioral and physiological changes around estrus events identified using multiple automated monitoring technologies[J].J Dairy Sci,2015,98(12):8723-8731.
[48] HIGAKI S,OKADA H,SUZUKI C,et al.Estrus detection in tie-stall housed cows through supervised machine learning using a multimodal tail-attached device[J].Comput Electron Agric,2021,191:106513.
[49] VO A L,F(xiàn)ISCHER-TENHAGEN C,BARTEL A,et al.Sensitivity and specificity of a tail-activity measuring device for calving prediction in dairy cattle[J].J Dairy Sci,2021,104(3):3353-3363.
[50] SCHILKOWSKY E M,GRANADOS G E,SITKO E M,et al.Evaluation and characterization of estrus alerts and behavioral parameters generated by an ear-attached accelerometer-based system for automated detection of estrus[J].J Dairy Sci,2021,104(5):6222-6237.
[51] SCHWEINZER V,GUSTERER E,KANZ P,et al.Evaluation of an ear-attached accelerometer for detecting estrus events in indoor housed dairy cows[J].Theriogenology,2019,130:19-25.
[52] STEVENSON J S,HILL S L,NEBEL R L,et al.Ovulation timing and conception risk after automated activity monitoring in lactating dairy cows[J].J Dairy Sci,2014,97(7):4296-4308.
[53] 和占星,張繼才,黃梅芬,等.不同繁殖生理階段及繁殖障礙母牛的陰道黏液電阻值變化[J].畜牧與飼料科學(xué),2023,44(5):57-62.
HE Z X,ZHANG J C,HUANG M F,et al.Characterization of changes in electrical resistance of vaginal mucus of beef cows in different reproductive physiological periods and with different types of reproductive disorders[J].Animal Husbandry and Feed Science,2023,44(5):57-62.(in Chinese)
[54] 寇紅祥.奶牛體溫與活動量自動檢測系統(tǒng)設(shè)計研發(fā)及發(fā)情周期規(guī)律研究[D].長春:吉林農(nóng)業(yè)大學(xué),2017.
KOU H X.Design of automatic detection system for body temperature and activity and the research on oestrus regulation of dairy cows[D].Changchun:Jilin Agricultural University,2017.(in Chinese)
[55] ANDERSSON L M,OKADA H,MIURA R,et al.Wearable wireless estrus detection sensor for cows[J].Comput Electron Agric, 2016, 127:101-108.
[56] 劉忠超,何東健.奶牛陰道植入式電阻傳感器與無線監(jiān)測系統(tǒng)研究[J].農(nóng)業(yè)機械學(xué)報,2019,50(11):175-185.
LIU Z C,HE D J.Research of implantable sensor and wireless monitoring system for cow’s vaginal resistance[J].Transactions of the Chinese Society for Agricultural Machinery,2019,50(11):175-185.(in Chinese)
[57] 葛利江,吳志杰,陳建鰲,等.關(guān)于奶牛發(fā)情周期及圍產(chǎn)期體溫變化規(guī)律的研究[J].黑龍江畜牧獸醫(yī),1995(11):3-5.
GE L J,WU Z J,CHEN J A,et al.Variations in body temperature in dairy cows Druing the estrous cycle and Periparturient period[J].Heilongjiang Animal Science and Veterinary Medicine,1995(11):3-5.(in Chinese)
[58] KIM J Y,LEE J S,JO Y H,et al.Measuring the effects of estrus on rumen temperature and environment,behavior and physiological attributes in Korean native breeding cattle[J].J Anim Sci Technol,2023,65(3):579-587.
[59] HIGAKI S,MIURA R,SUDA T,et al.Estrous detection by continuous measurements of vaginal temperature and conductivity with supervised machine learning in cattle[J].Theriogenology,2019,123:90-99.
[60] 王 禎.基于溫度分布特征的奶牛發(fā)情識別關(guān)鍵技術(shù)的研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2022.
WANG Z.Research on the key technology of cow estrus based on temperature distribution characteristics[D].Hohhot:Inner Mongolia Agricultural University,2022.(in Chinese)
[61] 修豪宇,李迎軍,原開敏,等.母牛發(fā)情期間軀體不同部位溫度變化規(guī)律研究進展[J].畜牧獸醫(yī)學(xué)報,2024,55(4):1381-1388.
XIU H Y,LI Y J,YUAN K M,et al.Research progress of temperature variation in different parts of body during estrus in cows[J].Acta Veterinaria et Zootechnica Sinica,2024,55(4):1381-1388.(in Chinese)
[62] RANDI F,MCDONALD M,DUFFY P,et al.The relationship between external auditory canal temperature and onset of estrus and ovulation in beef heifers[J].Theriogenology,2018,110:175-181.
[63] WANG S L,ZHANG H L,TIAN H Z,et al.Alterations in vaginal temperature during the estrous cycle in dairy cows detected by a new intravaginal device—a pilot study[J].Trop Anim Health Prod,2020,52(5):2265-2271.
[64] 屈東東.群養(yǎng)奶牛體溫實時監(jiān)測系統(tǒng)設(shè)計與實現(xiàn)[D].合肥:安徽農(nóng)業(yè)大學(xué),2017.
QU D D.Design and implementation of monitoring system for multiple cows body temperature[D].Hefei:Anhui Agricultural University,2017.(in Chinese)
[65] 何東健,宋子琪.基于熱紅外成像與骨架樹模型的奶牛眼溫自動檢測[J].農(nóng)業(yè)機械學(xué)報,2021,52(3):243-250.
HE D J,SONG Z Q.Automatic detection of dairy cow’s eye temperature based on thermal infrared imaging technology and skeleton tree model[J].Transactions of the Chinese Society for Agricultural Machinery,2021,52(3):243-250.(in Chinese)
[66] 辛海云,孟繁明,胡 斌,等.唾液在家畜發(fā)情鑒定中的應(yīng)用進展[J].畜牧與獸醫(yī),2020,52(7):136-139.
XIN H Y,MENG F M,HU B,et al.Application of saliva in animal estrus detection[J].Animal Husbandry amp; Veterinary Medicine,2020,52(7):136-139.(in Chinese)
[67] SANKAR R,ARCHUNAN G,HABARA Y.Detection of oestrous-related odour in bovine (Bos taurus) saliva:bioassay of identified compounds[J].Animal,2007,1(9):1321-1327.
[68] KARTHIKEYAN K,MANIVANNAN P,RAJESH D,et al.Identification of p-cresol as an estrus-specific volatile in buffalo saliva:comparative docking analysis of buffalo OBP and β-lactoglobulin with p-cresol[J].Zoolog Sci,2014,31(1):31-36.
[69] 董智豪,時玉新,郭冠華,等.母牛不同發(fā)情階段唾液化合物的比較分析[J].畜牧獸醫(yī)學(xué)報,2023,54(11):4636-4652.
DONG Z H,SHI Y X,GUO G H,et al.Comparative analysis of salivary compounds in different estrous stages of cows[J].Acta Veterinaria et Zootechnica Sinica,2023,54(11):4636-4652.(in Chinese)
[70] CHAVAN N B,KUMARESAN A,CHHILLAR S,et al.Salivary crystallization pattern:a possible unconventional tool for timing of insemination and early pregnancy diagnosis in zebu cows[J].J Dairy Sci,2023,90(1):21-25.
[71] SINGH L K,PANDEY M,BAITHALU R K,et al.Comparative proteome profiling of saliva between estrus and non-estrus stages by employing label-free quantitation (LFQ) and Tandem Mass Tag (TMT)-LC-MS/MS analysis:an approach for estrus biomarker identification in Bubalus bubalis[J].Front Genet,2022,13:867909.
[72] 賈銀海.基于唾液蛋白組學(xué)開發(fā)鑒定水牛發(fā)情方法的研究[D].南寧:廣西大學(xué),2019.
JIA Y H.Research on the estrus identification method of the development based on the salivary proteomics in the buffalo[D]. Nanning:Guangxi University,2019.(in Chinese)
[73] BARMAN P,YADAV M C,KUMAR H,et al.Gas chromatographic-mass spectrometric analysis of chemical volatiles in buffalo (Bubalus bubalis) urine[J].Theriogenology,2013,80(6):654-658.
[74] RAJANARAYANAN S,ARCHUNAN G.Identification of urinary sex pheromones in female buffaloes and their influence on bull reproductive behaviour[J].Res Vet Sci,2011,91(2):301-305.
[75] 董智豪,張秋雪,郭冠華,等.牛發(fā)情特異信息素的研究進展[J].畜牧獸醫(yī)學(xué)報,2022,53(4):1010-1018.
DONG Z H,ZHANG Q X,GUO G H,et al.Study progress on specific pheromones of bovine during oestrus[J].Acta Veterinaria et Zootechnica Sinica,2022,53(4):1010-1018.(in Chinese)
[76] MUTHUKUMAR S,MUNIASAMY S,SRINIVASAN M,et al.Evaluation of pheromone-based kit:a noninvasive approach of estrus detection in buffalo[J].Reprod Domest Anim,2018,53(6):1466-1472.
[77] VARRA M,SUNDARESAN N R,KUMAR V G,et al.Tamm-horsfall protein expression in urine of buffaloes at the estrus and diestrus stages of estrous cycle[J].Agric Sci Dig,2024,43(6):858-863.
[78] FOROUTAN A,GUO A C,VAZQUEZ-FRESNO R,et al.Chemical composition of commercial cow’s milk[J].J Agric Food Chem,2019,67(17):4897-4914.
[79] DU C,NAN L K,LI C F,et al.Influence of estrus on the milk characteristics and mid-infrared spectra of dairy cows[J].Animals (Basel),2021,11(5):1200.
[80] ZEBARI H M,RUTTER S M,BLEACH E C L.Fatty acid profile of milk for determining reproductive status in lactating Holstein Friesian cows[J].Anim Reprod Sci,2019,202:26-34.
[81] ZHAO C,BAI Y L,F(xiàn)U S X,et al.Comparison of metabolic alterations in serum and milk whey between inactive ovaries and estrus dairy cows[J].Front Vet Sci,2021,7:609391.
[82] LIU W J,DU C,NAN L K,et al.Influence of estrus on dairy cow milk exosomal miRNAs and their role in hormone secretion by granulosa cells[J].Int J Mol Sci,2023,24(11):9608.
(編輯 郭云雁)