国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

多殺性巴氏桿菌的攝鐵機(jī)制研究進(jìn)展

2024-12-18 00:00:00沈香香關(guān)麗君張俊峰薛云司麗芳趙戰(zhàn)勤
畜牧獸醫(yī)學(xué)報(bào) 2024年11期
關(guān)鍵詞:鐵載體

摘 要: 多殺性巴氏桿菌可廣泛感染多種動(dòng)物,引起出血性敗血癥或傳染性肺炎。鐵是多殺性巴氏桿菌感染宿主過(guò)程中生長(zhǎng)、定植和增殖必不可少的營(yíng)養(yǎng)物質(zhì),競(jìng)爭(zhēng)宿主鐵離子是該病原體感染致病的關(guān)鍵環(huán)節(jié)。近年來(lái),多殺性巴氏桿菌的攝鐵系統(tǒng)及其發(fā)生與調(diào)控機(jī)制方面的研究取得了一系列重要進(jìn)展。本文系統(tǒng)闡述了多殺性巴氏桿菌的轉(zhuǎn)鐵蛋白受體攝鐵機(jī)制、血紅素受體攝鐵機(jī)制、鐵載體攝鐵機(jī)制及其攝鐵系統(tǒng)的表達(dá)與調(diào)控機(jī)制,以期為多殺性巴氏桿菌攝鐵系統(tǒng)的分子致病機(jī)理研究提供系統(tǒng)的理論知識(shí),為多殺性巴氏桿菌分子靶標(biāo)藥物及亞單位疫苗的研發(fā)提供新思路。

關(guān)鍵詞: 多殺性巴氏桿菌;攝鐵機(jī)制;鐵載體;ExbB-ExbD-TonB;Fur

中圖分類號(hào):Q935; S852.612

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):0366-6964(2024)11-4852-11

收稿日期:2023-12-04

基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(31672530;U1704117)

作者簡(jiǎn)介:沈香香(1999-),女,河南柘城人,碩士生,主要從事家畜傳染病及其疫苗研究,E-mail:2939116494@qq.com

*通信作者:趙戰(zhàn)勤,主要從事家畜傳染病及其疫苗研究,E-mail:zhaozhanqin@126.com

Research Progress on Iron Uptake Mechanism of Pasteurella multocida

SHEN" Xiangxiang1, GUAN" Lijun1,2, ZHANG" Junfeng1, XUE" Yun1, SI" Lifang1,2, ZHAO" Zhanqin1,2*

(1.Key Lab of Animal Bacterial Infectious Disease Prevention and Control Technology,

College of Animal Science and Technology, Henan University of Science and Technology,

Luoyang 471003," China;

2.Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of

Science and Technology, Luoyang 471003," China)

Abstract:" Pasteurella multocida (P. multocida) can infect a wide range of animals, causing hemorrhagic septicemia or infectious pneumonia. Iron is an essential nutrient for growth, colonization, and proliferation of P. multocida during infection of the host, and competition for iron ions in the host is a critical link in the pathogenesis of this pathogen. In recent years, a series of significant research advances have progressed in the iron uptake system of P. multocida, as well as its occurrence and regulatory mechanisms.

The mechanisms of iron uptake by transferrin, heme receptors and siderophore, and the mechanism of expression and regulation of the P. multocida iron uptake system are all described in this paper.

Aiming to provide systematic theoretical knowledge for the study of the molecular pathogenesis of the P. multocida iron uptake system and to spark new ideas for the investigation and development of molecular target drugs and subunit vaccines of P. multocida.

Key words: Pasteurella multocida; iron uptake mechanism; siderophore; ExbB-ExbD-TonB; Fur

*Corresponding author: ZHAO Zhanqin,E-mail:zhaozhanqin@126.com

多殺性巴氏桿菌(Pasteurella multocida, Pm)是一種短桿狀的革蘭陰性條件致病菌[1]。根據(jù)莢膜抗原(K抗原)可將多殺性巴氏桿菌分為5種血清型(A、B、D、E和F)[2],根據(jù)菌體抗原(O抗原)可分為16種血清型(1~16)[3]。該菌廣泛感染多種動(dòng)物(牛、羊、禽、豬、兔、犬、貓和人),其引起的巴氏桿菌?。≒asteurellosis)主要表現(xiàn)為傳染性肺炎和出血性敗血癥[4],給養(yǎng)殖業(yè)造成重大經(jīng)濟(jì)損失。鐵離子是多殺性巴氏桿菌感染宿主過(guò)程中定植和增殖的必需元素因子[5],多殺性巴氏桿菌的攝鐵機(jī)制是研究其與宿主發(fā)生感染與免疫機(jī)制的重要內(nèi)容,受到了研究學(xué)者的廣泛關(guān)注[6-7]。鐵參與DNA和蛋白質(zhì)的生物合成、生物膜形成、氧化還原及電子轉(zhuǎn)移等過(guò)程,是微生物和動(dòng)物生長(zhǎng)代謝必不可少的營(yíng)養(yǎng)物質(zhì)[8-9]。在多殺性巴氏桿菌與宿主相互作用中,鐵是促進(jìn)細(xì)菌生長(zhǎng)、繁殖、黏附以及毒力因子表達(dá)[10-12]的重要因子,該菌獲取鐵的能力是影響其致病性的重要因素[13]。但由于宿主的營(yíng)養(yǎng)免疫機(jī)制,多殺性巴氏桿菌在感染宿主過(guò)程中常面臨游離鐵匱乏的狀況[14-15],為此,該菌進(jìn)化出多種攝鐵機(jī)制從宿主的轉(zhuǎn)鐵蛋白(transferrin, Tf)和血紅蛋白(haemoglobin, Hb)中奪取鐵離子。本文對(duì)多殺性巴氏桿菌三種獲取鐵離子的途徑、攝鐵相關(guān)蛋白功能和調(diào)控因子的研究進(jìn)展進(jìn)行綜述。系統(tǒng)掌握多殺性巴氏桿菌的攝鐵機(jī)制,將有助于從干擾細(xì)菌攝鐵這一視角為研發(fā)新型抗菌藥物及生物制品提供新思路。

1 鐵在細(xì)菌中的生物學(xué)功能

鐵是地球上含量最豐富的金屬元素之一,通常以氧化態(tài)(Fe3+)或還原態(tài)(Fe2+)形式存在,鐵離子的這種氧化還原狀態(tài)使其在生物系統(tǒng)中被廣泛利用。鐵離子通常與蛋白質(zhì)結(jié)合或作為鐵硫簇或血紅素基團(tuán)的一部分,參與微生物中多種重要的生物過(guò)程,包括有氧呼吸、ATP合成、電子轉(zhuǎn)移、DNA和蛋白質(zhì)合成等過(guò)程[16]。因此,鐵是細(xì)菌實(shí)現(xiàn)自身代謝與功能必不可少的因子。

1.1 鐵硫簇在細(xì)菌中的功能

鐵硫簇是普遍存在于生物體內(nèi)的最古老的生命物質(zhì)之一,是具有重要調(diào)節(jié)功能或催化作用的蛋白質(zhì)金屬簇。以多殺性巴氏桿菌為模式微生物進(jìn)行鐵硫簇功能的研究較少,但是在其它細(xì)菌中已有一些了解。細(xì)菌中常見的鐵硫簇結(jié)構(gòu)有[4Fe-4S]、[3Fe-4S]和[2Fe-2S],這些結(jié)構(gòu)之間可以進(jìn)行置換,從而發(fā)生電子轉(zhuǎn)移[17]。鐵硫簇能夠穩(wěn)定細(xì)菌中蛋白質(zhì)的特定功能,如[4Fe-4S]簇可使大腸桿菌核酸內(nèi)切酶Ⅲ具有更穩(wěn)定的DNA結(jié)合位點(diǎn)[18]。鐵硫簇還能夠保護(hù)蛋白質(zhì)不被蛋白酶分解,如[4Fe-4S]簇可使枯草芽孢桿菌中氨基轉(zhuǎn)移酶具有穩(wěn)定的結(jié)構(gòu)和活性,鐵硫簇被破壞則會(huì)導(dǎo)致氨基轉(zhuǎn)移酶被降解[19]。鐵硫簇參與基因表達(dá)和調(diào)控,如根瘤菌鐵調(diào)節(jié)因子A(rhizobial iron regulator A, RirA)必須具備完整的[3Fe-4S]簇才能夠調(diào)節(jié)DNA的轉(zhuǎn)錄[20]。此外,大腸桿菌中的SoxR(superoxide response)蛋白作為一種信號(hào)傳遞因子和轉(zhuǎn)錄激活因子,其發(fā)揮功能和維持活性有賴于[2Fe-2S]簇[21]。

1.2 血紅素在細(xì)菌中的功能

血紅素(heme)是一類含有亞鐵離子的卟啉類化合物,存在于動(dòng)物、植物和微生物中[22],充足的血紅素能夠促進(jìn)多殺性巴氏桿菌的生長(zhǎng)[23]。血紅素作為輔因子參與細(xì)菌氧化酶、過(guò)氧化物酶等酶類的生物合成,血紅素含量的高低決定了酶的活性[24-25]。氧化酶參與細(xì)菌有氧呼吸,過(guò)氧化物酶基因參與細(xì)菌代謝、生物膜形成和菌體運(yùn)動(dòng),它們?cè)诩?xì)菌定植、感染宿主過(guò)程中發(fā)揮著重要作用[25-26]。此外,5-羥色氨酸是細(xì)菌中許多生物活性物質(zhì)的化學(xué)前體,而血紅素能夠利用鐵離子的氧化還原能力,協(xié)同O2或H2O2使色氨酸的吲哚C5位置羥化形成5-羥色氨酸[27]。由此可見,鐵在細(xì)菌中發(fā)揮著十分重要的作用。

1.3 缺鐵對(duì)多殺性巴氏桿菌的影響

細(xì)菌生長(zhǎng)所需的最佳鐵離子濃度約為10-6 mol·L-1,低于此濃度會(huì)造成“鐵饑餓”現(xiàn)象[28]。而鐵在pH=7時(shí)的溶解度為1.4×10-9 mol·L-1,宿主中的鐵離子濃度甚至更低,遠(yuǎn)不能滿足細(xì)菌所需[29]。在多殺性巴氏桿菌中,鐵關(guān)系到該菌在宿主中的生長(zhǎng)、黏附和毒力。低鐵條件下,多殺性巴氏桿菌的生長(zhǎng)明顯減緩,細(xì)菌莢膜的厚度顯著降低,毒力明顯減弱。相反,脂多糖的合成在限鐵條件下顯著增加。脂多糖是巴氏桿菌科細(xì)菌黏附宿主的重要工具,多殺性巴氏桿菌在限鐵條件下發(fā)生的一系列變化使其更容易黏附于宿主[10-11]。多殺性巴氏桿菌外膜上的蛋白組分受鐵影響,在限鐵條件下表達(dá)出多種鐵調(diào)節(jié)外膜蛋白(iron-regulated outer membrane proteins, IROMPs)(如:轉(zhuǎn)鐵蛋白受體、血紅素受體等)奪取宿主的鐵離子,抵御缺鐵造成的不利影響[30]。

2 多殺性巴氏桿菌轉(zhuǎn)鐵蛋白受體攝鐵機(jī)制

多殺性巴氏桿菌的外膜上存在轉(zhuǎn)鐵蛋白受體(transferrin receptor),即轉(zhuǎn)鐵蛋白結(jié)合蛋白A(transferrin binding protein A, TbpA),能夠從宿主的轉(zhuǎn)鐵蛋白結(jié)合鐵(Tf-Fe3+)中攝取鐵離子。由于細(xì)菌的外膜缺乏能量,鐵離子需要在ExbB-ExbD-TonB系統(tǒng)提供能量的情況下經(jīng)TbpA進(jìn)入細(xì)胞周質(zhì),再通過(guò)ABC轉(zhuǎn)運(yùn)系統(tǒng)(ATP-binding cassette transporter)進(jìn)入細(xì)胞質(zhì),供多殺性巴氏桿菌進(jìn)行生長(zhǎng)、繁殖和代謝等生命活動(dòng)。多殺性巴氏桿菌從宿主Tf-Fe3+中攝取鐵離子的過(guò)程大致分為三步:1)Tf-Fe3+與TbpA復(fù)合物的形成;2)Fe3+進(jìn)入細(xì)胞周質(zhì)的過(guò)程;3)Fe3+經(jīng)ABC轉(zhuǎn)運(yùn)系統(tǒng)進(jìn)入細(xì)胞質(zhì)的過(guò)程。

2.1 Tf-Fe3+與TbpA復(fù)合物的形成

多殺性巴氏桿菌在缺乏游離鐵的環(huán)境下,利用自身細(xì)胞外膜的TbpA攝取宿主轉(zhuǎn)鐵蛋白上結(jié)合的鐵離子,即Tf-Fe3+。Tf是一種主要由宿主肝細(xì)胞合成的糖蛋白,能夠與Fe3+可逆性結(jié)合[31]。TbpA是一種多殺性巴氏桿菌的TonB依賴性跨膜受體蛋白[32-33],其C端為由22條反向平行的β-鏈組成的桶狀結(jié)構(gòu)域(β-桶),N端為鑲嵌在“β-桶”內(nèi)的“塞子”結(jié)構(gòu)域[34]。多殺性巴氏桿菌TbpA的C端“β-桶”結(jié)構(gòu)域能夠特異性識(shí)別宿主Tf-Fe3+,并結(jié)合形成跨膜Tf-Fe3+-TbpA復(fù)合物[35-36];同時(shí),TbpA N端塞狀結(jié)構(gòu)域的“TonB盒(TonB-box)”保守區(qū)域發(fā)生構(gòu)象改變,延伸到周質(zhì)中,并與內(nèi)膜上的TonB蛋白結(jié)合獲取能量,促使Tf-Fe3+-TbpA復(fù)合物的Fe3+向周質(zhì)轉(zhuǎn)移(圖1)[37-38]。

2.2 Fe3+進(jìn)入細(xì)胞周質(zhì)的過(guò)程

多殺性巴氏桿菌細(xì)胞內(nèi)膜上的TonB蛋白通過(guò)N端疏水性α-螺旋結(jié)構(gòu)錨定在細(xì)胞內(nèi)膜上,與ExbB-ExbD蛋白結(jié)合形成ExbB-ExbD-TonB復(fù)合物[39],該復(fù)合物能夠提供細(xì)菌進(jìn)行外膜物質(zhì)交換的能量,參與鐵離子等多種營(yíng)養(yǎng)物質(zhì)的跨膜轉(zhuǎn)運(yùn)[34]。在ExbB-ExbD-TonB復(fù)合物中,TonB通過(guò)N端的α-螺旋結(jié)構(gòu)與ExbB-ExbD結(jié)合,而ExbB-ExbD的跨膜結(jié)構(gòu)域共同構(gòu)成質(zhì)子通道,將內(nèi)膜上的質(zhì)子動(dòng)力勢(shì)能傳遞給TonB。另外,內(nèi)膜上的ExbB-ExbD通過(guò)“旋轉(zhuǎn)運(yùn)動(dòng)”促使TonB的長(zhǎng)鞭狀區(qū)域(包括可伸縮的間隔區(qū)和C末端結(jié)構(gòu)域)在周質(zhì)中發(fā)生擺動(dòng),并與暴露在周質(zhì)中的TbpA N端的TonB-box區(qū)域結(jié)合,從而將能量傳遞給TbpA,導(dǎo)致其“塞子”結(jié)構(gòu)域打開,并在桶狀結(jié)構(gòu)域中形成一個(gè)通道,供Fe3+經(jīng)該通道進(jìn)入細(xì)胞周質(zhì)中(圖1)[34,40-41]。

2.3 Fe3+經(jīng)ABC轉(zhuǎn)運(yùn)系統(tǒng)進(jìn)入細(xì)胞質(zhì)的過(guò)程

ABC轉(zhuǎn)運(yùn)系統(tǒng)(ATP-binding cassette transporter),即腺苷三磷酸結(jié)合盒轉(zhuǎn)運(yùn)蛋白,可利用ATP水解的能量來(lái)逆濃度梯度將鐵離子等底物轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞中。多殺性巴氏桿菌通過(guò)TbpA捕獲的Fe3+進(jìn)入細(xì)胞周質(zhì)后,再通過(guò)ABC轉(zhuǎn)運(yùn)系統(tǒng)(FbpABC)將其輸送到細(xì)胞質(zhì)中。該過(guò)程中,鐵結(jié)合蛋白A(ferric binding protein A, FbpA)在自然條件下以單體形式游離于周質(zhì)中,捕獲周質(zhì)中的Fe3+[42-44];鐵結(jié)合蛋白B(ferric binding protein B, FbpB)是細(xì)胞內(nèi)膜上的一種疏水性跨膜蛋白,能夠接收FbpA遞呈的Fe3+;鐵結(jié)合蛋白C(ferric binding protein C, FbpC)是位于細(xì)菌內(nèi)膜內(nèi)側(cè)的親水性ATP結(jié)合蛋白,其與FbpB結(jié)合形成二聚體,為FbpB提供轉(zhuǎn)運(yùn)Fe3+所需的能量[45]。Fe3+通過(guò)FbpABC進(jìn)入細(xì)胞質(zhì)后,被還原為Fe2+供多殺性巴氏桿菌代謝利用(圖1)。

3 多殺性巴氏桿菌血紅素受體攝鐵機(jī)制

動(dòng)物體內(nèi)約有70%的鐵儲(chǔ)存在血紅素(heme)中[46]。血紅素可與珠蛋白(globin)結(jié)合形成血紅蛋白(haemoglobin, Hb)、肌紅蛋白(myoglobin, Mb)和細(xì)胞色素(cytochromes, Cyt)等[47-48]。其中,Hb是細(xì)菌攝取血紅素的主要來(lái)源[49]。多殺性巴氏桿通過(guò)血紅素轉(zhuǎn)運(yùn)系統(tǒng)從宿主血紅素結(jié)合蛋白中攝取血紅素,并將其轉(zhuǎn)運(yùn)至細(xì)胞質(zhì)中分解,獲取血紅素中的Fe2+[7]。血紅素轉(zhuǎn)運(yùn)方式通常分為兩種:1)直接轉(zhuǎn)運(yùn),即細(xì)菌利用外膜的血紅素受體直接攝取宿主的血紅素;2)間接轉(zhuǎn)運(yùn),即細(xì)菌分泌高親和力的血紅素載體蛋白到細(xì)胞外,奪取宿主血紅素,并遞呈給外膜上的血紅素受體[50]。

3.1 血紅素直接轉(zhuǎn)運(yùn)系統(tǒng)

多殺性巴氏桿菌在限鐵條件下表達(dá)血紅蛋白結(jié)合蛋白A(hemoglobin-binding protein A, HgbA)、血紅蛋白結(jié)合蛋白B(hemoglobin-binding protein B, HgbB)和血紅素-血凝素受體(heme-hemopexin receptor, HemR)等血紅素受體。這些血紅素受體與TbpA的結(jié)構(gòu)相似,能夠直接識(shí)別宿主的血紅素[51]。血紅素受體的C端“β-桶”結(jié)構(gòu)域與宿主Hb結(jié)合后,其N端“塞子”結(jié)構(gòu)域的TonB-box區(qū)域發(fā)生構(gòu)象改變,延伸到多殺性巴氏桿菌的細(xì)胞周質(zhì)中,與TonB C末端結(jié)構(gòu)域結(jié)合,獲得ExbB-ExbD-TonB復(fù)合物傳遞的能量,導(dǎo)致其“塞子”結(jié)構(gòu)域打開并形成通道,將血紅素轉(zhuǎn)運(yùn)到細(xì)胞周質(zhì)中(圖2)[52]。

關(guān)于多殺性巴氏桿菌通過(guò)ABC轉(zhuǎn)運(yùn)系統(tǒng)(HmuTUV)將血紅素轉(zhuǎn)運(yùn)到細(xì)胞質(zhì)中的過(guò)程尚不明確。但鼠疫耶爾森菌血紅素ABC轉(zhuǎn)運(yùn)系統(tǒng)(HmuTUV)的相關(guān)研究已經(jīng)基本清晰(圖2):血紅素被轉(zhuǎn)運(yùn)到細(xì)胞周質(zhì)后,被血紅素結(jié)合蛋白HmuT捕獲,并遞呈給細(xì)胞內(nèi)膜上的跨膜蛋白HmuU;而ATP結(jié)合蛋白HmuV水解ATP為HmuU提供能量,將血紅素轉(zhuǎn)運(yùn)到細(xì)胞質(zhì)中[53-54];進(jìn)入細(xì)胞質(zhì)的血紅素被血紅素分解酶分解,從而釋放Fe2+供細(xì)菌代謝利用[55]。GenBank登錄的多殺性巴氏桿菌基因組(MAPT01000007.1、MANI01000004.1、MAPS01000002.1等)均具有同源的HmuTUV蛋白基因簇,其注釋信息預(yù)測(cè)它們具有相同的ABC轉(zhuǎn)運(yùn)系統(tǒng)功能(圖2)。

3.2 血紅素間接轉(zhuǎn)運(yùn)系統(tǒng)

血紅素間接轉(zhuǎn)運(yùn)系統(tǒng)是由血紅素載體(Hemophore)介導(dǎo)的一種血紅素轉(zhuǎn)運(yùn)方式,其比直接轉(zhuǎn)運(yùn)系統(tǒng)的效率更高。血紅素載體是由革蘭陰性菌分泌到細(xì)胞外的一類蛋白質(zhì),迄今已在銅綠假單胞菌、鼠疫耶爾森菌和黏質(zhì)沙雷菌等多種細(xì)菌中發(fā)現(xiàn)的血紅素載體主要有HasA、HusA、HxuA、HphA等[56-60]。這類蛋白質(zhì)對(duì)血紅素的親和力極高,能夠競(jìng)爭(zhēng)宿主血紅蛋白(Hb)、肌紅蛋白(Mb)和細(xì)胞色素(Cyt)中的血紅素,并遞呈給細(xì)菌外膜上的特異性血紅素受體(不同的血紅素載體對(duì)應(yīng)的受體不同)[61]。血紅素受體獲得ExbB-ExbD-TonB復(fù)合物提供的能量后,導(dǎo)致其“塞子”結(jié)構(gòu)域打開并形成通道,將血紅素轉(zhuǎn)運(yùn)到細(xì)胞周質(zhì)中,再由ABC轉(zhuǎn)運(yùn)系統(tǒng)(HmuTUV)將血紅素轉(zhuǎn)運(yùn)到細(xì)胞質(zhì)中供細(xì)菌代謝利用,該過(guò)程與血紅素直接轉(zhuǎn)運(yùn)系統(tǒng)相同。雖然關(guān)于多殺性巴氏桿菌血紅素載體的相關(guān)研究尚不明確,但在該菌中已發(fā)現(xiàn)了HasA的受體,即血紅素獲取系統(tǒng)受體(Heme acquisition system receptor, HasR)[62]。在鼠疫耶爾森菌中,HasR可特異性識(shí)別并結(jié)合HasA,接收HasA從宿主Hb中獲取的血紅素[63]。

4 多殺性巴氏桿菌鐵載體攝鐵機(jī)制

鐵載體(Siderophore)是由微生物產(chǎn)生的高親和力、低分子量的金屬螯合劑,主要是與宿主或環(huán)境中的Fe3+結(jié)合形成Fe3+-Siderophore螯合物,但它也能與其他金屬元素(例如:鉬、錳、鈷和鎳)形成螯合物[64-65]。根據(jù)化學(xué)性質(zhì)的差異,可將鐵載體分為氧肟酸鹽型(Hydroxamates;由?;土u化的烷胺組成)、兒茶酚鹽型(Phenolates;

由兒茶酚酸酯和羥基組成)和羧酸鹽型(Carboxylates;由檸檬酸或β-羥基天冬氨酸組成)三類。除上述類型外,某些鐵載體也可歸為混合型,多為氧肟酸鹽-兒茶酚鹽或氧肟酸鹽-羧酸鹽的組合[66]。其中,兒茶酚鹽型鐵載體與鐵結(jié)合的能力最強(qiáng),羧酸鹽型鐵載體與鐵結(jié)合的能力最弱[67]。

多殺性巴氏桿菌A血清型菌株在限鐵條件下分泌一種羧酸鹽型鐵載體,被命名為multocidin[68],目前僅知其受體蛋白為76、84和94 ku的鐵相關(guān)外膜蛋白[69],關(guān)于該鐵載體詳細(xì)的攝取機(jī)制尚不清楚。多殺性巴氏桿菌不產(chǎn)生氧肟酸"" 鹽型鐵載體,但卻可以吸收氧肟酸鹽型鐵載體ferrioxamine B和ferrioxamine E(圖3);該菌也不產(chǎn)生兒茶酚鹽型鐵載體,但可以利用一些酚鹽型鐵載體的代謝中間產(chǎn)物如二羥基苯甲酸(DHBA)[70]。另外,尚未證實(shí)多殺性巴氏桿菌是否產(chǎn)生混合型鐵載體,但已證實(shí)該菌可吸收混合型鐵載體rhizoferrin(圖3)[70]。

已有研究發(fā)現(xiàn),多殺性巴氏桿菌外膜上存在一種鐵載體受體FecA[7]。在大腸桿菌的研究中,F(xiàn)ecA具有與轉(zhuǎn)鐵蛋白受體TbpA、血紅素受體HgbA等相似的結(jié)構(gòu)[71],由C端“β-桶”結(jié)構(gòu)域和N端“塞子”結(jié)構(gòu)域組成。FecA能夠識(shí)別并結(jié)合檸檬酸鐵,在獲得ExbB-ExbD-TonB復(fù)合物提供的能量后,其“塞子”結(jié)構(gòu)域打開并形成通道,將檸檬酸鐵轉(zhuǎn)運(yùn)到細(xì)胞周質(zhì)中,再經(jīng)鐵載體ABC轉(zhuǎn)運(yùn)系統(tǒng)(FecBDE)轉(zhuǎn)運(yùn)到細(xì)胞質(zhì)中[72-73]。Fe3+在細(xì)胞質(zhì)中被還原為Fe2+后從鐵載體中脫離,供細(xì)菌代謝利用,鐵載體則被降解或排出細(xì)胞外[74-75]。由于多殺性巴氏桿菌攜帶有與大腸桿菌同源的鐵載體受體FecA,因此推測(cè),多殺性巴氏桿菌FecA介導(dǎo)的鐵載體轉(zhuǎn)運(yùn)系統(tǒng)與大腸桿菌類似。

5 細(xì)菌攝鐵調(diào)節(jié)因子

缺鐵不利于細(xì)菌生長(zhǎng)繁殖,但細(xì)菌攝入過(guò)量Fe2+會(huì)引起芬頓反應(yīng)(Fenton reaction),產(chǎn)生活性氧和活性氮,造成氨基酸殘基氧化、蛋白及DNA損傷,最終導(dǎo)致細(xì)菌死亡[76]。因此,細(xì)菌細(xì)胞內(nèi)的鐵離子濃度必須受到嚴(yán)格的調(diào)控。細(xì)菌進(jìn)化出鐵相關(guān)調(diào)節(jié)因子維持鐵穩(wěn)態(tài),這些鐵調(diào)節(jié)因子包括:鐵攝取調(diào)節(jié)因子(ferric uptake regulator, Fur)[20]、鐵依賴性調(diào)節(jié)因子(iron-dependent regulator, IdeR)、鐵應(yīng)答調(diào)節(jié)因子(iron response regulator, Irr)[77]、根瘤菌鐵調(diào)節(jié)因子A(rhizobial iron regulator A, RirA)[78]、鐵硫簇調(diào)節(jié)因子(iron sulfur cluster regulator, IscR)[79]。目前,僅有Fur在多殺性巴氏桿菌中被報(bào)道。Fur是維持細(xì)菌鐵穩(wěn)態(tài)最主要的轉(zhuǎn)錄調(diào)節(jié)因子,其C端為二聚化的金屬離子結(jié)合結(jié)構(gòu)域,N端為DNA結(jié)合結(jié)構(gòu)域,通過(guò)感知細(xì)菌胞內(nèi)Fe2+水平,抑制或激活鐵相關(guān)基因的轉(zhuǎn)錄[80]。

5.1 Fur作為轉(zhuǎn)錄抑制因子的調(diào)控機(jī)制

當(dāng)細(xì)菌細(xì)胞內(nèi)Fe2+水平過(guò)高時(shí),F(xiàn)ur能夠識(shí)別并結(jié)合DNA上的一段共有序列“Fur盒(Fur-box)”,若DNA上的啟動(dòng)子與Fur-box位置重合,啟動(dòng)子區(qū)域則被Fur占據(jù),導(dǎo)致RNA聚合酶無(wú)法結(jié)合DNA,其轉(zhuǎn)錄受到抑制[81-82](圖4A)。如:在大腸桿菌中,F(xiàn)ur C端與Fe2+結(jié)合形成Fur-Fe2+復(fù)合物,促使Fur N端的DNA結(jié)合結(jié)構(gòu)域與大腸桿菌鐵載體合成相關(guān)基因簇iucABCD上的Fur-box結(jié)合,導(dǎo)致RNA聚合酶無(wú)法聚集到iucABCD的啟動(dòng)子上,從而抑制鐵載體合成,阻礙細(xì)菌攝取鐵離子[83-84]。關(guān)于多殺性巴氏桿菌Fur的探索始于2001年[85],研究相對(duì)滯后。隨后,研究學(xué)者在多殺性巴氏桿菌的鐵相關(guān)基因tbpA、hgbA和hgbB中發(fā)現(xiàn)了共有序列Fur-box,這些基因的表達(dá)受Fur抑制[86-88]。此外,多殺性巴氏桿菌鐵載體的合成也受到Fur的負(fù)調(diào)控[89]。

5.2 Fur作為轉(zhuǎn)錄激活因子的調(diào)控機(jī)制

當(dāng)Fur-box位于轉(zhuǎn)錄起始位點(diǎn)上游-100 bp左右時(shí),F(xiàn)ur能夠促進(jìn)RNA聚合酶在DNA的-10和-35區(qū)聚集,激活DNA的轉(zhuǎn)錄[82,90](圖4B)。Fur可促進(jìn)儲(chǔ)鐵相關(guān)蛋白——細(xì)菌鐵蛋白(bacterioferritin, Bfr)的表達(dá)[91]。Bfr能夠?qū)e2+氧化為Fe3+,并將Fe3+儲(chǔ)存起來(lái),避免Fe2+過(guò)多對(duì)細(xì)菌造成損傷[92]。Bfr分為兩種類型,即不含血紅素的鐵蛋白A(ferritin A, FtnA)和含血紅素的細(xì)菌鐵蛋白B(bacterioferritin B, BfrB)[93]。以大腸桿菌為例,F(xiàn)ur與Fe2+形成Fur-Fe2+復(fù)合物,與細(xì)菌鐵蛋白基因ftnA上游-84 bp處的Fur-box結(jié)合,激活ftnA轉(zhuǎn)錄,從而將細(xì)胞質(zhì)中冗余的游離鐵儲(chǔ)存起來(lái)[94]。在多殺性巴氏桿菌中也存在表達(dá)FtnA的同源基因[7],因此,在多殺性巴氏桿菌中可能也存在Fur的轉(zhuǎn)錄激活調(diào)節(jié)功能。

6 總結(jié)與展望

巴氏桿菌病是多種動(dòng)物共患的一種重要細(xì)菌性病原菌。本文系統(tǒng)闡述了多殺性巴氏桿菌的三種攝鐵機(jī)制,為全面了解多殺性巴氏桿菌攝鐵系統(tǒng)的分子致病機(jī)理研究提供了系統(tǒng)的理論知識(shí),也為多殺性巴氏桿菌分子靶標(biāo)藥物及亞單位疫苗的研發(fā)提供了新思路。通過(guò)回顧多殺性巴氏桿菌的攝鐵系統(tǒng)及其發(fā)生與調(diào)控機(jī)制方面的重要研究進(jìn)展,可以發(fā)現(xiàn)仍有許多問(wèn)題亟待解決,總結(jié)歸納如下:

6.1 鐵載體在許多細(xì)菌攝鐵過(guò)程中發(fā)揮著重要作用,對(duì)其化學(xué)結(jié)構(gòu)的解析在大腸桿菌、根瘤菌中已取得較大進(jìn)展。目前,在多殺性巴氏桿菌中僅發(fā)現(xiàn)了羧酸鹽型鐵載體multocidin,尚需對(duì)其他鐵載體進(jìn)行篩選鑒定;同時(shí),關(guān)于鐵載體multocidin的化學(xué)結(jié)構(gòu)、合成分泌通路及其特異性外膜受體方面仍有很大的知識(shí)空缺,急需深入研究闡明。

6.2 由血紅素載體介導(dǎo)的血紅素間接轉(zhuǎn)運(yùn)系統(tǒng)轉(zhuǎn)運(yùn)效率遠(yuǎn)超血紅素直接轉(zhuǎn)運(yùn)系統(tǒng),但關(guān)于多殺性巴氏桿菌血紅素載體的研究極為匱乏,血紅素載體介導(dǎo)從宿主血紅素結(jié)合蛋白中攝取血紅素的詳細(xì)機(jī)制仍需進(jìn)一步研究。

6.3 TbpA、HgbA和HgbB等外膜受體在不同地區(qū)、不同宿主以及不同血清型的多殺性巴氏桿菌毒株中的分布程度具有較大差異[95-97]。有必要對(duì)其分子流行病學(xué)進(jìn)行系統(tǒng)分析,以便精準(zhǔn)定位,找到具有普適性的藥物或疫苗靶點(diǎn)。

6.4 雖然fur基因在許多細(xì)菌中被廣泛研究,也有越來(lái)越多受Fur調(diào)控的基因被發(fā)現(xiàn),但目前仍有許多分子機(jī)制和調(diào)節(jié)方式尚未完全闡釋清楚。此外,多殺性巴氏桿菌fur基因缺失后對(duì)毒力的影響遠(yuǎn)不如其它細(xì)菌明顯[89],因此推測(cè),該菌中存在其它的調(diào)節(jié)因子,有待進(jìn)一步探究。

另外,在細(xì)菌攝鐵系統(tǒng)的應(yīng)用研究與開發(fā)方面,當(dāng)前比較重要的方向包括:1)通過(guò)抑制致病菌攝鐵系統(tǒng)相關(guān)蛋白的合成或阻斷攝鐵通路,開發(fā)出新的靶點(diǎn)藥物;2)人工設(shè)計(jì)合成鐵載體并與藥物耦合,載運(yùn)藥物進(jìn)入致病菌細(xì)胞內(nèi),提高治療多耐藥性細(xì)菌感染;3)設(shè)計(jì)轉(zhuǎn)鐵蛋白受體、血紅素受體和鐵載體受體等多種抗原成分的亞單位疫苗或多表位疫苗;4)將攝鐵相關(guān)基因作為缺失靶基因,設(shè)計(jì)新型的基因缺失弱毒疫苗。

參考文獻(xiàn)(References):

[1] BETHE A,WIELER L H,SELBITZ H J,et al.Genetic diversity of porcine Pasteurella multocida strains from the respiratory tract of healthy and diseased swine[J].Vet Microbiol,2009,139(1-2):97-105.

[2] CARTER G R.Studies on Pasteurella multocida.I.A hemagglutination test for the identification of serological types[J].Am J Vet Res,1955,16(60):481-484.

[3] HEDDLESTON K L,GALLAGHER J E,REBERS P A.Fowl cholera:gel diffusion precipitin test for serotyping Pasteurella multocida from avian species[J].Avian Dis,1972,16(4):925-936.

[4] HARPER M,BOYCE J D,ADLER B.Pasteurella multocida pathogenesis:125 years after Pasteur[J].FEMS Microbiol Lett,2006,265(1):1-10.

[5] FLOSSMANN K D,MLLER G,HEILMANN P,et al.Effect of iron on Pasteurella multocida[J].Zentralbl Bakteriol Mikrobiol Hyg A,1984,258(1):80-93.

[6] VARSHNEY R,VARSHNEY R,CHATURVEDI V K,et al.Development of novel iron-regulated Pasteurella multocida B:2 bacterin and refinement of vaccine quality in terms of minimum variation in particle size and distribution vis-a-vis critical level of iron in media[J].Microb Pathog,2020,147:104375.

[7] JATUPONWIPHAT T,CHUMNANPUEN P,OTHMAN S,et al.Iron-associated protein interaction networks reveal the key functional modules related to survival and virulence of Pasteurella multocida[J].Microb Pathog,2019,127:257-266.

[8] POGOUTSE A K,MORAES T F.Iron acquisition through the bacterial transferrin receptor[J].Crit Rev Biochem Mol Biol,2017,52(3):314-326.

[9] JAKUBOVICS N S,JENKINSON H F.Out of the iron age:new insights into the critical role of manganese homeostasis in bacteria[J].Microbiology,2001,147(Pt 7):1709-1718.

[10] HE F,QIN X B,XU N,et al.Pasteurella multocida Pm0442 affects virulence gene expression and targets TLR2 to induce inflammatory responses[J].Front Microbiol,2020,11:e1972.

[11] JACQUES M,BLANGER M,DIARRA M S,et al.Modulation of Pasteurella multocida capsular polysaccharide during growth under iron-restricted conditions and in vivo[J].Microbiology,1994,140(Pt 2):263-270.

[12] VARSHNEY R,CHATURVEDI V,AGRAWAL A,et al.Growth kinetics of Pasteurella multocida B:2 in iron controlled conditions in broth media[J].Int J Livest Res,2018,8(5):205-212.

[13] FLOSSMANN K D,ROSNER H,GRNKE U,et al.Modification of virulence and immunogenicity of Pasteurella multocida by iron in vitro[J].Z Allg Mikrobiol,1984,24(4):231-7.

[14] GKOUVATSOS K,PAPANIKOLAOU G,PANTOPOULOS K.Regulation of iron transport and the role of transferrin[J].Biochim Biophys Acta Gen Subj,2012,1820(3):188-202.

[15] PAUSTIAN M L,MAY B J,KAPUR V.Pasteurella multocida gene expression in response to iron limitation[J].Infect Immun,2001,69(6):4109-4115.

[16] PALMER L D,SKAAR E P.Transition metals and virulence in bacteria[J].Annu Rev Genet,2016,50:67-91.

[17] BEINERT H,HOLM R H,MNCK E.Iron-sulfur clusters:nature’s modular,multipurpose structures[J].Science,1997,277(5326):653-659.

[18] THAYER M M,AHERN H,XING D,et al.Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure[J].EMBO J,1995,14(16):4108-4120.

[19] GRANDONI J A,SWITZER R L,MAKAROFF C A,et al.Evidence that the iron-sulfur cluster of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase determines stability of the enzyme to degradation in vivo[J].J Biol Chem,1989,264(11):6058-6064.

[20] BEHRINGER M,PLTZKY L,BAABE D,et al.RirA of Dinoroseobacter shibae senses iron via a [3Fe-4S]1+ cluster co-ordinated by three cysteine residues[J].Biochem J,2020,477(1):191-212.

[21] GAUDU P,WEISS B.SoxR,a [2Fe-2S] transcription factor,is active only in its oxidized form[J].Proc Natl Acad Sci U S A,1996,93(19):10094-10098.

[22] STOJILJKOVIC I,PERKINS-BALDING D.Processing of heme and heme-containing proteins by bacteria[J].DNA Cell Biol,2002,21(4):281-295.

[23] JORDAN R M M.The nutrition of Pasteurella septica.I.The action of haematin[J].Br J Exp Pathol,1952,33(1):27-35.

[24] 潘 梅.大腸桿菌血紅素合成調(diào)節(jié)及其對(duì)血紅素過(guò)氧化物酶的影響[D].無(wú)錫:江南大學(xué),2020.

PAN M.Regulation of heme synthesis and its effect on heme peroxidase in Escherichia coli[D].Wuxi:Jiangnan University,2020.(in Chinese)

[25] HAMMER N D,RENIERE M L,CASSAT J E,et al.Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host[J].mBio,2013,4(4):e00241-13.

[26] 劉 琪.大腸桿菌過(guò)氧化物酶EfeB的生理功能及其對(duì)血紅素代謝的影響[D].無(wú)錫:江南大學(xué),2022.

LIU Q.Physiological function of Escherichia coli peroxidase EfeB and its effect on heme metabolism[D].Wuxi:Jiangnan University,2022.(in Chinese)

[27] SHI X J,ZHAO G Y,LI H,et al.Hydroxytryptophan biosynthesis by a family of heme-dependent enzymes in bacteria[J].Nat Chem Biol,2023,19(11):1415-1422.

[28] MIETHKE M,MARAHIEL M A.Siderophore-based iron acquisition and pathogen control[J].Microbiol Mol Biol Rev,2007,71(3):413-451.

[29] RATLEDGE C,DOVER L G.Iron metabolism in pathogenic bacteria[J].Annu Rev Microbiol,2000,54:881-941.

[30] PENG Z,WANG X R,ZHOU R,et al.Pasteurella multocida:genotypes and genomics[J].Microbiol Mol Biol Rev,2019,83(4):e00014-19.

[31] SUN Y,WANG X H,GONG Q W,et al.Extraintestinal pathogenic Escherichia coli utilizes surface-located elongation factor g to acquire iron from holo-transferrin[J].Microbiol Spectr,2022,10(2):e0166221.

[32] SHIVACHANDRA S B,KUMAR A A,AMARANATH J,et al.Cloning and characterization of tbpA gene encoding transferrin-binding protein (TbpA) from Pasteurella multocida serogroup B:2 (strain P52)[J].Vet Res Commun,2005,29(6):537-542.

[33] CORNELISSEN C N,HOLLANDER A.TonB-dependent transporters expressed by Neisseria gonorrhoeae[J].Front Microbiol,2011,2:117.

[34] SAMANTARRAI D,LAKSHMAN SAGAR A,GUDLA R,et al.TonB-dependent transporters in Sphingomonads:unraveling their distribution and function in environmental adaptation[J].Microorganisms,2020,8(3):359.

[35] VEKEN J W,OUDEGA B,LUIRINK J,et al.Binding of bovine transferrin by Pasteurella multocida serotype B:2,5,a strain which causes haemorrhagic septicaemia in buffalo and cattle[J].FEMS Microbiol Lett,1994,115(2-3):253-257.

[36] BOSHUIZEN M,VAN DER PLOEG K,VON BONSDORFF L,et al.Therapeutic use of transferrin to modulate anemia and conditions of iron toxicity[J].Blood Rev,2017,31(6):400-405.

[37] MOECK G S,COULTON J W.TonB-dependent iron acquisition:mechanisms of siderophore-mediated active transport[J].Mol Microbiol,1998,28(4):675-681.

[38] TUCKMAN M,OSBURNE M S.In vivo inhibition of TonB-dependent processes by a TonB box consensus pentapeptide[J].J Bacteriol,1992,174(1):320-323.

[39] SILALE A,VAN DEN BERG B.TonB-dependent transport across the bacterial outer membrane[J].Annu Rev Microbiol,2023,77:67-88.

[40] KLEBBA P E.ROSET Model of TonB action in gram-negative bacterial iron acquisition[J].J Bacteriol,2016,198(7):1013-1021.

[41] LARSEN R A,DECKERT G E,KASTEAD K A,et al.His20 provides the sole functionally significant side chain in the essential TonB transmembrane domain[J].J Bacteriol,2007,189(7):2825-2833.

[42] BELZER C A,TABATABAI L B,F(xiàn)RANK G H.Purification and characterization of the Pasteurella haemolytica 35 kilodalton periplasmic iron-regulated protein[J].Prep Biochem Biotechnol,2000,30(4):343-355.

[43] CHAN C,NG D,F(xiàn)RASER M E,et al.Structural and functional insights into iron acquisition from lactoferrin and transferrin in Gram-negative bacterial pathogens[J].Biometals,2023,36(3):683-702.

[44] SHOULDICE S R,DOUGAN D R,WILLIAMS P A,et al.Crystal structure of Pasteurella haemolytica ferric ion-binding protein A reveals a novel class of bacterial iron-binding proteins[J].J Biol Chem,2003,278(42):41093-41098.

[45] ADHIKARI P,BERISH S A,NOWALK A J,et al.The fbpABC locus of Neisseria gonorrhoeae functions in the periplasm-to-cytosol transport of iron[J].J Bacteriol,1996,178(7):2145-2149.

[46] 李紅敏,龍章彪,韓 冰.鐵穩(wěn)態(tài)的維持及鐵代謝相關(guān)疾?。跩].中華血液學(xué)雜志,2018,39(9):790-792.

LI H M,LONG Z B,HAN B.Iron homeostasis and iron-related disorders[J].Chinese Journal of Hematology,2018,39(9):790-792.(in Chinese)

[47] TOLOSANO E,F(xiàn)AGOONEE S,MORELLO N,et al.Heme scavenging and the other facets of hemopexin[J].Antioxid Redox Signal,2010,12(2):305-320.

[48] PAUSTIAN M L,MAY B J,CAO D W,et al.Transcriptional response of Pasteurella multocida to defined iron sources[J].J Bacteriol,2002,184(23):6714-6720.

[49] GELL D A.Structure and function of haemoglobins[J].Blood Cells Mol Dis,2018,70:13-42.

[50] 程興軍,劉馬峰,程安春.革蘭氏陰性菌血紅素轉(zhuǎn)運(yùn)系統(tǒng)結(jié)構(gòu)及功能特點(diǎn)[J].中國(guó)生物化學(xué)與分子生物學(xué)報(bào),2014,30(9):848-855.

CHENG X J,LIU M F,CHENG A C.Structural and functional properties of the Heme acquisition system in gram-negative bacteria[J].Chinese Journal of Biochemistry and Molecular Biology,2014,30(9):848-855.(in Chinese)

[51] PRASANNAVADHANA A,KUMAR S,THOMAS P,et al.Outer membrane proteome analysis of Indian strain of Pasteurella multocida serotype B:2 by MALDI-TOF/MS analysis[J].Sci World J,2014,2014:617034.

[52] SRIKUMAR R,MIKAEL L G,PAWELEK P D,et al.Molecular cloning of haemoglobin-binding protein HgbA in the outer membrane of Actinobacillus pleuropneumoniae[J].Microbiology,2004,150(Pt 6):1723-1734.

[53] QASEM-ABDULLAH H,PERACH M,LIVNAT-LEVANON N,et al.ATP binding and hydrolysis disrupt the high-affinity interaction between the heme ABC transporter HmuUV and its cognate substrate-binding protein[J].J Biol Chem,2017,292(35):14617-14624.

[54] THOMPSON J M,JONES H A,PERRY R D.Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization[J].Infect Immun,1999,67(8):3879-3892.

[55] EXNER T E,BECKER S,BECKER S,et al.Binding of HasA by its transmembrane receptor HasR follows a conformational funnel mechanism[J].Eur Biophys J,2020,49(1):39-57.

[56] ARNOUX P,HASER R,IZADI N,et al.The crystal structure of HasA,a hemophore secreted by Serratia marcescens[J].Nat Struct Biol,1999,6(6):516-520.

[57] GAO J L,NGUYEN K A,HUNTER N.Characterization of a hemophore-like protein from Porphyromonas gingivalis[J].J Biol Chem,2010,285(51):40028-40038.

[58] HANSON M S,PELZEL S E,LATIMER J,et al.Identification of a genetic locus of Haemophilus influenzae type b necessary for the binding and utilization of heme bound to human hemopexin[J].Proc Natl Acad Sci U S A,1992,89(5):1973-1977.

[59] SMALLEY J W,OLCZAK T.Heme acquisition mechanisms of Porphyromonas gingivalis-strategies used in a polymicrobial community in a heme-limited host environment[J].Mol Oral Microbiol,2017,32(1):1-23.

[60] BATEMAN T J,SHAH M,HO T P,et al.A Slam-dependent hemophore contributes to heme acquisition in the bacterial pathogen Acinetobacter baumannii[J].Nat Commun,2021,12(1):6270.

[61] CESCAU S,CWERMAN H,LTOFF S,et al.Heme acquisition by hemophores[J].Biometals,2007,20(3-4):603-613.

[62] GU H W,LU C P.Selection of immunodominant mimics of IROMP-99 of rabbit Pasteurella multocida from a random 12-peptide library[J].Vet Microbiol,2006,115(4):339-348.

[63] ROSSI M S,F(xiàn)ETHERSTON J D,LTOFF S,et al.Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis[J].Infect Immun,2001,69(11):6707-6717.

[64] HOLDEN V I,BACHMAN M A.Diverging roles of bacterial siderophores during infection[J].Metallomics,2015,7(6):986-995.

[65] SAHA M,SARKAR S,SARKAR B,et al.Microbial siderophores and their potential applications:a review[J].Environ Sci Pollut Res Int,2016,23(5):3984-3999.

[66] KHAN A,SINGH P,SRIVASTAVA A.Synthesis,nature and utility of universal iron chelator - siderophore:a review[J].Microbiol Res,2018,212-213:103-111.

[67] 殷奧杰,王 齊,葛淼淼,等.微生物鐵載體的應(yīng)用研究進(jìn)展[J].環(huán)境保護(hù)與循環(huán)經(jīng)濟(jì),2021,41(7):20-24,69.

YIN A J,WANG Q,GE M M,et al.The application and research progress of siderophore[J].Environmental Protection and Circular Economy,2021,41(7):20-24,69.(in Chinese)

[68] HU S P,F(xiàn)ELICE L J,SIVANANDAN V,et al.Siderophore production by Pasteurella multocida[J].Infect Immun,1986,54(3):804-810.

[69] CHOI-KIM K,MAHESWARAN S K,F(xiàn)ELICE L J,et al.Relationship between the iron regulated outer membrane proteins and the outer membrane proteins of in vivo grown Pasteurella multocida[J].Vet Microbiol,1991,28(1):75-92.

[70] REISSBRODT R,ERLER W,WINKELMANN G.Iron supply of Pasteurella multocia and Pasteurella haemolotica[J].J Basic Microbiol,1994,34(1):61-63.

[71] OGIERMAN M,BRAUN V.Interactions between the outer membrane ferric citrate transporter FecA and TonB:studies of the FecA TonB box[J].J Bacteriol,2003,185(6):1870-1885.

[72] NOINAJ N,GUILLIER M,BARNARD T J,et al.TonB-dependent transporters:regulation,structure,and function[J].Annu Rev Microbiol,2010,64:43-60.

[73] SUN Y,ZHANG Y,HOLLIBAUGH J T,et al.Ecotype diversification of an abundant Roseobacter lineage[J].Environ Microbiol,2017,19(4):1625-1638.

[74] AHMED E,HOLMSTRM S J M.Siderophores in environmental research:roles and applications[J].Microb Biotechnol,2014,7(3):196-208.

[75] WILSON B R,BOGDAN A R,MIYAZAWA M,et al.Siderophores in iron metabolism:from mechanism to therapy potential[J].Trends Mol Med,2016,22(12):1077-1090.

[76] CORNELIS P,WEI Q,ANDREWS S C,et al.Iron homeostasis and management of oxidative stress response in bacteria[J].Metallomics,2011,3(6):540-549.

[77] COSTA D,AMARELLE V,VALVERDE C,et al.The irr and RirA proteins participate in a complex regulatory circuit and act in concert to modulate bacterioferritin expression in Ensifer meliloti 1021[J].Appl Environ Microbiol,2017,83(16):e00895-17.

[78] O’BRIAN M R.Perception and homeostatic control of iron in the rhizobia and related bacteria[J].Annu Rev Microbiol,2015,69:229-245.

[79] NONOYAMA S,KISHIDA K,SAKAI K,et al.A transcriptional regulator,IscR,of Burkholderia multivorans acts as both repressor and activator for transcription of iron-sulfur cluster-biosynthetic isc operon[J].Res Microbiol,2020,171(8):319-330.

[80] POHL E,HALLER J C,MIJOVILOVICH A,et al.Architecture of a protein central to iron homeostasis:crystal structure and spectroscopic analysis of the ferric uptake regulator[J].Mol Microbiol,2003,47(4):903-915.

[81] BAICHOO N,HELMANN J D.Recognition of DNA by Fur:a reinterpretation of the Fur box consensus sequence[J].J Bacteriol,2002,184(21):5826-5832.

[82] DELANY I,RAPPUOLI R,SCARLATO V.Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis[J].Mol Microbiol,2004,52(4):1081-1090.

[83] ESCOLAR L,DE LORENZO V,PREZ-MARTN J.Metalloregulation in vitro of the aerobactin promoter of Escherichia coli by the Fur (ferric uptake regulation) protein[J].Mol Microbiol,1997,26(4):799-808.

[84] TROXELL B,HASSAN H M.Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria[J].Front Cell Infect Microbiol,2013,3:59.

[85] BOSCH M,TARRAG R,GARRIDO M E,et al.Expression of the Pasteurella multocida ompH gene is negatively regulated by the Fur protein[J].FEMS Microbiol Lett,2001,203(1):35-40.

[86] EKINS A,NIVEN D F.Identification of fur and fldA homologs and a Pasteurella multocida tbpA homolog in Histophilus ovis and effects of iron availability on their transcription[J].J Bacteriol,2002,184(9):2539-2542.

[87] BAHRAMI F,NIVEN D F.Iron acquisition by Actinobacillus suis:identification and characterization of a single-component haemoglobin receptor and encoding gene[J].Microb Pathog,2005,39(1-2):45-51.

[88] COX A J,HUNT M L,BOYCE J D,et al.Functional characterization of HgbB,a new hemoglobin binding protein of Pasteurella multocida[J].Microb Pathog,2003,34(6):287-296.

[89] LIU Q,HU Y L,LI P,et al.Identification of Fur in Pasteurella multocida and the potential of its mutant as an attenuated live vaccine[J].Front Vet Sci,2019,6:5.

[90] TEIXID L,CARRASCO B,ALONSO J C,et al.Fur activates the expression of Salmonella enterica pathogenicity island 1 by directly interacting with the hilD operator in vivo and in vitro[J].PLoS One,2011,6(5):e19711.

[91] BERESWILL S,GREINER S,VAN VLIET A H M,et al.Regulation of ferritin-mediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori[J].J Bacteriol,2000,182(21):5948-5953.

[92] GUO M L,GAO M M,LIU J J,et al.Bacterioferritin nanocage:Structure,biological function,catalytic mechanism,self-assembly and potential applications[J].Biotechnol Adv,2022,61:108057.

[93] YAO H L,SOLDANO A,F(xiàn)ONTENOT L,et al.Pseudomonas aeruginosa bacterioferritin is assembled from FtnA and BfrB subunits with the relative proportions dependent on the environmental oxygen availability[J].Biomolecules,2022,12(3):366.

[94] NANDAL A,HUGGINS C C O,WOODHALL M R,et al.Induction of the ferritin gene (ftnA) of Escherichia coli by Fe2+-Fur is mediated by reversal of H-NS silencing and is RyhB independent[J].Mol Microbiol,2010,75(3):637-657.

[95] EWERS C,LBKE-BECKER A,BETHE A,et al.Virulence genotype of Pasteurella multocida strains isolated from different hosts with various disease status[J].Vet Microbiol,2006,114(3-4):304-317.

[96] KATSUDA K,HOSHINOO K,UENO Y,et al.Virulence genes and antimicrobial susceptibility in Pasteurella multocida isolates from calves[J].Vet Microbiol,2013,167(3-4):737-741.

[97] LIU S T,LIN L,YANG H,et al.Pasteurella multocida capsular:lipopolysaccharide types D:L6 and A:L3 remain to be the main epidemic genotypes of pigs in China[J].Anim Dis,2021,1(1):26.

(編輯 范子娟)

猜你喜歡
鐵載體
銅綠假單胞菌Gxun-2 產(chǎn)鐵載體發(fā)酵條件優(yōu)化及其抑菌效果
產(chǎn)鐵載體真菌Ti-11的篩選鑒定及應(yīng)用
肺炎克雷伯菌鐵載體含量對(duì)耐碳青霉烯類抗生素的影響
微生物鐵載體的應(yīng)用研究進(jìn)展
1株高產(chǎn)鐵載體菌株的篩選鑒定以及化感作用的驗(yàn)證
黃海希瓦氏菌鐵載體及其產(chǎn)生條件研究
鐵載體細(xì)菌對(duì)植物缺鐵性黃化病生物防治的研究現(xiàn)狀
微生物鐵載體轉(zhuǎn)運(yùn)調(diào)控機(jī)制及其在環(huán)境污染修復(fù)中的應(yīng)用
枯草芽孢桿菌MB8兒茶酚型鐵載體的合成與結(jié)構(gòu)分析
創(chuàng)傷弧菌產(chǎn)鐵載體菌株的篩選及其誘導(dǎo)條件的響應(yīng)面優(yōu)化
通许县| 霞浦县| 海晏县| 凤台县| 广丰县| 建宁县| 太和县| 旅游| 荣昌县| 文昌市| 抚松县| 河西区| 泸州市| 临泉县| 罗江县| 密云县| 昆山市| 东兴市| 深水埗区| 峨眉山市| 黑河市| 鄱阳县| 博兴县| 威海市| 卫辉市| 海阳市| 阿鲁科尔沁旗| 平和县| 灵武市| 镇巴县| 孟村| 平江县| 肥西县| 孟连| 富源县| 保靖县| 塔河县| 平远县| 元朗区| 临城县| 奉贤区|