摘 要: 旨在研究卵母細胞中篩選的差異表達microRNAs對Npm2(nucleoplasmin 2)基因的調(diào)控作用。本研究采集屠宰場卵巢,收集GV期卵母細胞進行體外成熟培養(yǎng),收集MⅡ期卵母細胞。使用qPCR檢測篩選的差異表達miRNAs在GV、MⅡ期卵母細胞的表達水平;雙熒光素酶報告試驗驗證預測的miRNA是否與靶基因Npm2存在結(jié)合位點;在體外成熟培養(yǎng)液中添加miRNAs模擬物/抑制物,驗證miRNA對卵母細胞體外成熟和孤雌胚胎體外發(fā)育能力的影響。添加最適濃度的miRNAs模擬物/抑制物后,使用花生凝集素染色試驗檢測皮質(zhì)顆粒分布和qPCR檢測Npm2 mRNA表達水平。結(jié)果表明,MⅡ期卵母細胞中miR-150、miR-7138-5p表達顯著高于GV期卵母細胞(Plt;0.05),miR-296-3p、miR-423-3p表達水平極顯著低于GV期卵母細胞(Plt;0.01),表達趨勢與測序結(jié)果一致。miR-32表達水平無顯著差異(Pgt;0.05)。雙熒光素酶報告試驗結(jié)果表明,miR-32、miR-7138-5p、miR-296-3p與Npm2存在結(jié)合位點,熒光強度極顯著下調(diào)(Plt;0.01);miR-150與Npm2存在結(jié)合位點,熒光強度顯著下調(diào)(Plt;0.05);miR-296-5p、miR-423-3p與Npm2不存在結(jié)合位點,熒光強度無顯著變化(Pgt;0.05)。通過在體外成熟培養(yǎng)液中添加不同濃度miRNAs模擬物/抑制物以確定最適濃度,添加miR-32抑制物、miR-296-5p模擬物、miR-296-5p抑制物、miR-423-3p模擬物、miR-423-3p抑制物、miR-7138抑制物、miR-150模擬物、miR-150抑制物后皮質(zhì)顆粒熒光強度極顯著下調(diào)(Plt;0.01);添加miR-296-3p抑制物、miR-7138-5p模擬物后皮質(zhì)顆粒熒光強度顯著下調(diào)(Plt;0.05)。MⅡ期卵母細胞Npm2 mRNA 表達量極顯著高于GV期卵母細胞,添加最適濃度miR-150、miR-296-3p、miR-296-5p、miR-7138-5p模擬物和/或抑制物Npm2 mRNA表達量與對照組有顯著差異(Plt;0.05),添加miR-32、miR-423-3p模擬物/抑制物后MⅡ期卵母細胞Npm2 mRNA表達量與對照組無顯著差異(Pgt;0.05)。篩選的差異miRNA(如miR-296-3p、miR-7138-5p)可能通過調(diào)控Npm2表達影響卵母細胞體外成熟及早期胚胎體外發(fā)育,可為豬卵母細胞microRNAs與靶基因復雜調(diào)控網(wǎng)絡研究提供基礎。
關(guān)鍵詞: 豬;卵母細胞;microRNA;Npm2
中圖分類號: S828.3
文獻標志碼:A
文章編號:0366-6964(2024)11-5035-15
收稿日期:2024-03-29
基金項目:云南省“興滇英才支持計劃”青年人才項目(YNWR-QNBJ-2020-156);云南省基礎研究專項重點項目(202201AS070078);國家自然科學基金地區(qū)項目(31660656)
作者簡介:李河林(1998-),男,云南昆明人,碩士,主要從事動物胚胎生物技術(shù)研究,E-mail:sonnyspike@163.com;蔣玉芬(1993-),女,云南曲靖人,碩士,主要從事動物胚胎生物技術(shù)研究,E-mail:2962181956@qq.com。李河林和蔣玉芬為同等貢獻作者
*通信作者:成文敏,主要從事動物胚胎生物技術(shù)研究,E-mail:cheng_8097@163.com;魏紅江,主要從事動物基因編輯與體細胞克隆技術(shù)研究,E-mail:hongjiangwei@126.com
The Study of Regulatory Effect of Differentially Expressed microRNAs on the Npm2 Expression in
Pig Oocytes
LI" Helin1,3, JIANG" Yufen1,3, CHENG" Na1,3, HAN" Yuchen1,3, HUO" Xiaoying2,3, SU" Hongding3," CHANG Yue1,3, FANG" Yuzhu2,3, WANG" Pei1,3, JIA" Baoyu2,3," WEI" Hongjiang2,3*, CHENG" Wenmin1,3*
(1.College of Animal Science and Technology, Yunnan Agricultural University,
Kunming 650201," China;
2.College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201," China;
3.Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201," China)
Abstract:" This study aimed to explore the regulatory effect of differentially expressed microRNAs on Npm2 (nucleoplasmin 2) in pig oocytes. The GV-stage oocytes were collected from slaughterhouse ovaries, cultured in vitro. The expression levels of screened miRNA in GV and MⅡstage oocytes were detected using qPCR. The dual-luciferase reporter experiment was performed to verify the binding site of predicted miRNA with target gene Npm2. Further, miRNAs mimics/inhibitors were added to in vitro maturation medium to evaluate the effect of miRNA on the developmental ability of oocytes and parthenogenetic activated embryos. After the optimal concentration of miRNAs mimics/inhibitors were added, peanut agglutinin staining test was used to detect cortical granule distribution and Npm2 mRNA expression level was detected using qPCR. The results showed that, compared with GV stage oocytes, the expression levels of miR-150 and miR-7138-5p were significantly higher (Plt;0.05) and the expression levels of miR-296-3p and miR-423-3p were significantly lower in MⅡ oocytes (Plt;0.01), which were consistent with the previous sequencing results. There was no significant difference in the expression levels of miR-32 (Pgt;0.05). The double luciferase assay showed that miR-32, miR-7138-5p, miR-296-3p and miR-150 had binding sites with Npm2, while the fluorescence intensity was significantly down-regulated (Plt;0.05). miR-150 had binding site with Npm2 and the fluorescence intensity was significantly down-regulated (Plt;0.05). There was no binding site between miR-296-5p, miR-423-3p and Npm2, as the fluorescence intensity was comparable (Pgt;0.05). The optimal concentration of miRNAs mimics/inhibitors was determined. After addition of miR-32 inhibitor, miR-296-5p mimics, miR-296-5p inhibitor, miR-423-3p mimics, miR-423-3p inhibitor, miR-7138 inhibitor, miR-150 mimics and miR-150 inhibitor, cortical particle fluorescence intensity was significantly decreased (Plt;0.01). The cortical particle fluorescence intensity was significantly decreased after the addition of miR-296-3p inhibitor and miR-7138-5p mimics (Plt;0.05). The expression of Npm2 mRNA in MⅡ oocytes was significantly higher than that in GV oocytes, and after the addition of the optimal concentration of miR-150, miR-296-3p, miR-296-5p, miR-7138-5p mimics and/or inhibitors, the expression of Npm2 in MⅡ oocytes had significant differences compared with the GV oocytes (Plt;0.05). There was no significant difference in the expression of Npm2 mRNA after miR-32 and miR-423-3p mimics/inhibitors in MⅡ oocytes compared with control group (Pgt;0.05). These findings indicated that the screened miRNAs may affect oocyte maturation and early embryo development in vitro by regulating Npm2 expression.
Key words: pig; oocyte; microRNA; Npm2
*Corresponding authors: CHENG Wenmin, E-mail:cheng_8097@163.com; WEI Hongjiang, E-mail: hongjiangwei@126.com
卵母細胞成熟過程中產(chǎn)生和儲存的RNAs和蛋白質(zhì)在卵母細胞核質(zhì)成熟、早期胚胎母源基因組向合子基因組轉(zhuǎn)化等過程中發(fā)揮重要的作用[1]。核質(zhì)蛋白2(nucleoplasmin2,NPM2)是卵母細胞中存在的一種母源因子,最早在非洲爪蟾的卵子提取物中被分離出來[2],受精后,精子染色質(zhì)中的魚精蛋白被快速清除并被卵母細胞中招募的組蛋白替換形成新的染色質(zhì)[3],在此過程中,NPM2能夠與精子核堿性蛋白(sperm nuclear basic proteins,SNBP)結(jié)合,以促進受精后精子染色質(zhì)的解聚和重塑[4],合子形成過程中能夠招募組蛋白H_2A-H_2B形成八聚體,以支持核小體的形成以及組蛋白偶聯(lián)基因組的快速復制[5]。研究證明,NPM2的翻譯后修飾(post-translational modification,PTMs)通過調(diào)節(jié)空間結(jié)構(gòu)改變和NPM2與組蛋白之間的相互作用來調(diào)節(jié)NPM2的伴侶活性[6];在核小體組裝過程中,NPM2還能夠中和組蛋白的堿性電荷,抑制與DNA的非特異性結(jié)合[7]。使用NPM2處理小鼠胚胎癌細胞系F9可誘導卵母細胞特異性基因表達[8],表明NPM2可能通過調(diào)節(jié)染色質(zhì)結(jié)構(gòu)從而在核重編程中發(fā)揮作用[9],此外,人Npm2在293T細胞中的異位表達可誘導多能性相關(guān)基因的表達[10]。Npm2基因的表達在生長中的卵母細胞中受到限制,靶向破壞小鼠Npm2基因會導致卵母細胞和早期胚胎的核結(jié)構(gòu)形成異常[11]。因此,NPM2在胚胎早期發(fā)育過程中對染色質(zhì)結(jié)構(gòu)的調(diào)控起著重要作用,但其調(diào)控機制尚不清楚。
microRNA(miRNA)是一類在生物體內(nèi)廣泛存在的內(nèi)源性非編碼小RNA,能夠結(jié)合mRNA的3′ UTR端基因調(diào)控區(qū)域,啟動RNA沉默復合物(RNA-induced silencing complex,RISC)調(diào)控機制,直接降解mRNA或者抑制其翻譯,是基因表達重要的轉(zhuǎn)錄后調(diào)控因子。miRNA涉及多種功能,發(fā)育過程中miRNA參與細胞的代謝[12]、調(diào)節(jié)干細胞的增殖與分化[13]、細胞周期調(diào)節(jié)、配子發(fā)生等[14],它們大量存在于轉(zhuǎn)錄靜止的卵母細胞和早期胚胎中,并且許多同源miRNA在哺乳動物胚胎中都很豐富[15],暗示其在胚胎發(fā)育中表達相對保守且具有重要作用。在胚胎附植前miRNA是小RNA的主要組成部分,具備了靶向mRNA的能力,合子基因組激活之前miRNA保持較低的表達,合子基因組激活后其豐度增加[16]。有研究發(fā)現(xiàn),在斑馬魚、非洲爪蟾和果蠅中,早期發(fā)育時期母源基因的產(chǎn)物由miRNA清除,這對于保證胚胎發(fā)育正常必不可少[17]。miRNA在牛胚胎植入前發(fā)育中起重要作用,利用siRNA/MO(嗎啡啉)法靶向敲除 DGCR8,不僅降低了miRNAs的表達,還抑制了桑葚胚向囊胚的轉(zhuǎn)變。也有研究發(fā)現(xiàn),miRNA可能會延長合子基因組激活時間,豬的合子基因組激活發(fā)生在4細胞期,抑制miR-21將會抑制4細胞到8細胞期后發(fā)育。顯微注射miR-21抑制劑可降低小鼠的胚胎發(fā)育能力,但尚不明確靶基因與其之間的調(diào)控關(guān)系[18]。miR-92b-3p可通過PFKM調(diào)節(jié)豬囊胚滋養(yǎng)層細胞的增殖[19],miR-155 抑制物通過上調(diào) ZEB2 和下調(diào) ATF4 來增強豬胚胎植入前的發(fā)育能力[20]。盡管許多miRNAs對靶基因的調(diào)控作用已被探明,但除miR-181a調(diào)控牛Npm2的表達外[21],miRNA對豬Npm2基因的調(diào)控研究鮮有報道。
本課題組前期對豬GV期和M Ⅱ期卵母細胞的miRNAs進行了高通量測序,預測和篩選了5個可能與NPM2存在調(diào)控關(guān)系的差異表達miRNAs(miR-150、miR-7138-5p、miR-423-3p、miR-296-3p、miR-32)[22]。本試驗旨在確定篩選的miRNAs與Npm2基因是否有結(jié)合位點,添加miRNAs的模擬物/抑制物后是否能提高卵母細胞內(nèi)源性Npm2基因表達,研究結(jié)果將對提高豬體細胞核移植效率和促進對復雜的基因表達調(diào)控網(wǎng)絡的理解具有重要意義。
1 材料與方法
1.1 卵母細胞的體外成熟培養(yǎng)及RNA提取
將采集的新鮮豬卵巢裝入盛有37℃生理鹽水的保溫瓶中運送回實驗室,將卵巢切碎,使用80目和100目的篩網(wǎng)初步篩下沉淀物,使用PBS沖洗,在體視顯微鏡下挑選多層卵丘細胞包裹、胞質(zhì)均勻的卵丘卵母細胞復合體(cumulus-oocyte complex,COCs)。將COCs放入成熟培養(yǎng)液(M199基礎液+10% FBS(胎牛血清)+25 nmol·L-1 Hepes鹽+ 10%豬卵泡液+0.55 mg·mL-1丙酮酸鈉+10 ng·mL-1表皮生長因子(epidernal growth factor,EGF)+ 10 IU·mL-1 hCG+10 IU·mL-1 eCG+100 IU青霉素+100 IU鏈霉素)中,在38.5℃、5%CO2、飽和濕度的二氧化碳培養(yǎng)箱中培養(yǎng)44 h。收集的GV/M Ⅱ期卵母細胞使用0.1 mg·mL-1透明質(zhì)酸酶消化,使用0.5 mg·mL-1鏈霉蛋白酶消化透明帶,處理的卵母細胞放入PBS中,Trizol法提取總RNA,放入-80℃冰箱中保存。
1.2 實時熒光定量PCR
對GV/M Ⅱ期卵母細胞篩選的差異表達miRNAs進行熒光定量檢測,單個樣品約200個卵母細胞,Trizol法提取GV/M Ⅱ期卵母細胞總RNA,由上海生工生物工程有限公司合成U6、miRNAs反轉(zhuǎn)錄引物和qPCR引物(表1),以U6為內(nèi)參基因,使用miRNA 第一鏈 cDNA 合成(莖環(huán)法)試劑盒反轉(zhuǎn)錄獲得目的miRNA的cDNA,使用miRNA 熒光定量 PCR 試劑盒(染料法)對篩選的miRNA進行實時熒光定量檢測,其中miR-7138-5p、miR-423-3p引物由廣州銳博生物技術(shù)有限公司提供。按照表2配制mix,設置Real time反應條件為95℃預變性30 s;95℃ 5 s,60℃ 30 s,60℃ 30 s,40個循環(huán);Bio-Rad CFX96記錄熒光信號讀數(shù),熔解曲線65℃~95℃每5 s記錄,每個樣本設置3個重復,以U6 基因作為內(nèi)參基因校正試驗誤差。
對GV/MⅡ期卵母細胞Npm2以及添加了最適濃度miRNAs模擬物/抑制物后的MⅡ期卵母細胞Npm2轉(zhuǎn)錄水平進行熒光定量檢測,單個樣品約200個卵母細胞,GV/MⅡ期卵母細胞提取總RNA,使用TaKaRa公司生產(chǎn)的PrimeScriptTM RT reagent Kit with gDNA Eraser(Perfect Real Time)試劑盒反轉(zhuǎn)錄獲得總cDNA,上海生工生物工程有限公司合成GAPDH、Npm2引物(表1),使用TaKaRa公司生產(chǎn)的TB Green Premix Ex TaqTM II (Tli RNaseH Plus)試劑盒對Npm2轉(zhuǎn)錄水平進行實時熒光定量檢測。按照表3配制mix,設置Real time反應條件為95℃預變性30 s;95℃ 5 s,58℃ 30s,72℃ 30s,40個循環(huán);Bio-Rad CFX96記錄熒光信號讀數(shù),熔解曲線65℃~95℃每5s記錄,每個樣本設置3個重復,以GAPDH基因作為內(nèi)參基因校正試驗誤差。
1.3 雙熒光素酶報告試驗
雙熒光素酶報告試驗是將目的基因的轉(zhuǎn)錄調(diào)控元件構(gòu)建到帶有熒光素酶(firefly luciferase)的表達載體上,形成報告基因質(zhì)粒,調(diào)控熒光素酶的轉(zhuǎn)錄表達,可以靈敏、準確地檢測出 miRNA是否作用于靶基因 3′ UTR。將野生型以及突變體Npm2的3′UTR區(qū)域序列克隆在pmirGLO載體(圖1)的Firefly luciferase基因下游,與目的miRNA模擬物共轉(zhuǎn)染到293T細胞中,裂解細胞,以海腎熒光素酶為內(nèi)參,用螢火蟲熒光素酶測定得到的RLU值除以海腎熒光素酶測定得到的RLU值,根據(jù)得到的比值比較不同樣品間目的報告基因的激活程度。
野生型(WT)Npm2 3′ UTR區(qū)域序列如下:GGAGCCAAGAGTGGCCTGGCCACAGTGACCGA-
GGGAGGGCCCGTGAGACCACCATGCTGAGTC-
CGAATGTGATGGATGTGTTGGGAGGCAATA-
CAAGAGACCCTAACCCCAACTTTCGGTTTCA-
TCAGGACCTGAAGGGAAGAGCCCCAACCTC-
AAGAGCACAATAAAGTTTGCTTTGCTGC;
突變型(MT)Npm2 3′ UTR區(qū)域序列如下:GGAGCCAAGAGTGGCCTGGCCGTGATAGCC-AAA
AAAAAATTTGTGAGACCACCATGCTG-
AGTCCGAATGTGATGGATGTGTTGGGAGG-
CAATACAAGAGACCCTAACCCCAACTTTCG-
GTTTCATCAGGACCTGAAGGGAAGAGCCCC-
AACCTCAAGAGCACAATAAAGTTTGCTTT-GCTGC。
1.4 在卵母細胞體外成熟液中添加不同濃度miRNA mimic/inhibitor
將不同濃度(0、50、100、150、200 nmol·L-1)目的miRNA的模擬物/抑制物添加到成熟培養(yǎng)液中,44 h后使用0.1 mg·mL-1透明質(zhì)酸酶消化卵丘細胞,對MⅡ期卵母細胞計數(shù),統(tǒng)計卵母細胞成熟率(成熟率=MⅡ期卵母細胞數(shù)/體外成熟培養(yǎng)的卵母細胞數(shù))。
1.5 孤雌激活
將MⅡ期卵母細胞放入激活液中(0.25 mol·L-1 D-山梨醇、0.01 mmol·L-1Ca(C2H3O2)2、0.05 mmol·L-1 Mg(C2H3O2)2、0.1 mg·mL-1 BSA),直接進行電激活(150 v·mm-1、脈沖持續(xù)時間為100 μs,脈沖次數(shù)為1次),將孤雌激活后的卵母細胞放入PZM-3中培養(yǎng),2 d統(tǒng)計卵裂率,7 d統(tǒng)計囊胚率。
1.6 皮質(zhì)顆粒染色
收集GV期、MⅡ期卵母細胞,透明質(zhì)酸酶消化卵丘細胞后,使用GENMED公司的花生凝集素熒光標記染色試劑盒對皮質(zhì)顆粒進行染色,熒光顯微鏡下觀察,使用ImageJ軟件將熒光信號進行量化。
1.7 統(tǒng)計分析
試驗結(jié)果描述為“平均數(shù)±標準誤”,運用SPSS 26軟件進行t-test和方差分析,*Plt;0.05認為差異顯著,**Plt;0.01認為差異極顯著。
2 結(jié) 果
2.1 miRNA在GV/MⅡ期卵母細胞的表達
對前期測序篩選的對Npm2基因有調(diào)控作用的miRNAs進行qPCR驗證(圖2),MⅡ期卵母細胞中miR-150、miR-7138-5p表達水平顯著高于GV期卵母細胞(Plt;0.05),miR-296-3p、miR-423-3p表達水平極顯著低于GV期卵母細胞(Plt;0.01),與測序結(jié)果相一致。MⅡ期和GV期卵母細胞中miR-32表達無顯著差異(Pgt;0.05)。
2.2 miRNAs與Npm2基因結(jié)合位點檢測
雙熒光素酶報告試驗結(jié)果表明,miR-32、miR-150、miR-296-3p、miR-7138-5p與Npm2 3′ UTR有結(jié)合位點,熒光素酶活性降低,突變結(jié)合位點后熒光素酶恢復到對照水平。miR-296-5p、miR-423-3p與Npm2 3′ UTR無結(jié)合位點,加入miR-296-5p、miR-423-3p模擬物和突變結(jié)合位點后,熒光素酶活性無顯著變化(Pgt;0.05,圖3)。
2.3 不同濃度miRNAs的模擬物/抑制物對卵母細胞體外成熟及孤雌胚胎體外發(fā)育能力的影響
成熟液中分別添加50、100、150、200 nmol·L-1的miRNAs模擬物或抑制物,以未添加組作為對照。結(jié)果如圖4所示,添加不同濃度的miR-32模擬物或抑制物、miR-150模擬物或抑制物、miR-296-5p抑制物、miR-296-3p模擬物、miR-423-3p模擬物均對卵母細胞成熟率、孤雌胚胎的卵裂率和囊胚率無顯著影響(Pgt;0.05)。添加150 nmol·L-1 miR-296-5p模擬物可顯著提高卵母細胞成熟率(Plt;0.05),但對卵裂率和囊胚率無顯著影響(Pgt;0.05)。添加200 nmol·L-1 miR-296-3p抑制物對卵母細胞成熟率無顯著影響(Pgt;0.05),但可顯著提高孤雌胚胎的卵裂率(Plt;0.05)。添加不同濃度的miR-423-3p抑制物后卵母細胞成熟率和卵裂率無顯著變化(Pgt;0.05),添加150 nmol·L-1 miR-423-3p抑制物后其囊胚率顯著高于添加50 nmol·L-1組和200 nmol·L-1組(Plt;0.05)。添加不同濃度miR-7138-5p模擬物對卵母細胞成熟率和卵裂率無顯著影響(Pgt;0.05),但200 nmol·L-1組囊胚率極顯著高于其他各組(Plt;0.01),150 nmol·L-1組囊胚率極顯著高于對照組(Plt;0.01)。添加不同濃度miR-7138-5p抑制物后各組間卵母細胞成熟率差異不顯著(Pgt;0.05),添加100 nmol·L-1組卵裂率顯著高于其他各組(Plt;"" 0.05),但囊胚率顯著低于對照組(Plt;0. 05)。上述結(jié)果表明,miR-7138-5p可能通過調(diào)控Npm2基因表達影響卵母細胞成熟和早期胚胎發(fā)育。
2.4 最適濃度miRNAs的模擬物/抑制物對卵母細胞皮質(zhì)顆粒分布和熒光強度的影響
皮質(zhì)顆粒是卵母細胞特有的細胞器,其在卵母細胞成熟和受精過程中能夠確保正常的受精和胚胎發(fā)育。即將排卵的成熟卵母細胞中皮質(zhì)顆粒分布于皮質(zhì)區(qū),鄰近質(zhì)膜處最多,是判斷卵母細胞質(zhì)成熟的依據(jù)之一。成熟液中分別添加miRNAs模擬物/抑制物的最適濃度,以未添加組作為對照,檢測卵母細胞皮質(zhì)顆粒分布及強度。結(jié)果如圖5所示,添加150 nmol·L-1 miR-296-3p抑制物、200 nmol·L-1" miR-7138-5p模擬物后皮質(zhì)顆粒熒光強度顯著下調(diào)(Plt;0.05);添加100 nmol·L-1 miR-32抑制物、150 nmol·L-1 miR-296-5p模擬物、200 nmol·L-1 miR-296-5p抑制物、100 nmol·L-1 miR-423-3p模擬物、150 nmol·L-1 miR-423-3p抑制物、150 nmol·L-1 miR-7138-5p抑制物后皮質(zhì)顆粒熒光強度極顯著下調(diào)(Plt;0.01);添加150 nmol·L-1 miR-150模擬物、50 nmol·L-1 miR-150抑制物后皮質(zhì)顆粒熒光強度極顯著下調(diào)(Plt;0.001)。
2.5 添加最適濃度miRNAs模擬物/抑制物對卵母細胞Npm2 mRNA表達水平的影響
為檢測miRNAs模擬物/抑制物對Npm2基因表達的影響,體外成熟液中添加最適濃度miRNAs模擬物/抑制物,結(jié)果表明MⅡ期卵母細胞Npm2 mRNA表達量極顯著高于GV期卵母細胞(Plt;0.01)。添加miR-32、miR-423-3p模擬物/抑制物Npm2表達與對照組無顯著差異(Pgt;0.05),添加miR-150模擬物后MⅡ期卵母細胞中Npm2表達水平顯著升高(Plt;0.01),添加miR-150抑制物與對照組無顯著差異(Pgt;0.05),添加miR-296-5p、miR-296-3p模擬物/抑制物均上調(diào)MⅡ期卵母細胞中Npm2表達(Plt;0.05),添加miR-7138-5p模擬物Npm2表達水平與對照組無顯著差異(Pgt;0.05),添加miR-7138-5p抑制物后上調(diào)了MⅡ期卵母細胞中Npm2表達(Plt;0.05)(圖6)。
3 討 論
卵母細胞中的NPM2對精子染色質(zhì)DNA的釋放以及核小體的生成具有重要作用,在卵母細胞體外成熟過程中提高其內(nèi)源性Npm2的表達,可能有利于支持合子基因組激活以及后續(xù)重構(gòu)胚發(fā)育。
不同時期差異顯著的miRNA暗示其可能在卵母細胞發(fā)育過程中發(fā)揮作用。本研究中,qPCR結(jié)果顯示miR-150、miR-296-3p、miR-423-3p、miR-7138-5p在GV/MⅡ期卵母細胞的表達水平與先前的測序結(jié)果一致[22],進一步說明測序結(jié)果的正確。有研究預測,miR-296是與雌性生殖發(fā)育高度相關(guān)的印記基因[23],除軟件篩選的miR-296-3p外,本研究還選擇了其前體的5′端產(chǎn)物miR-296-5p作為目的miRNA以探究其作用,miR-296-5p在GV期和MⅡ期卵母細胞中的相對表達量都較低且沒有差異,也與前期測序結(jié)果一致。值得注意的是,先前測序結(jié)果顯著下調(diào)的miR-32經(jīng)qPCR驗證后無顯著差異,可能由于獲取卵母細胞的批次不同,導致miR-32的驗證試驗結(jié)果與測序結(jié)果不一致。本試驗中,雙熒光素酶報告試驗結(jié)果與軟件預測結(jié)果基本一致,結(jié)果證明miR-32、miR-150、miR-296-3p、miR-7138-5p與Npm2存在結(jié)合位點,結(jié)合qPCR結(jié)果,它們可能在卵母細胞發(fā)育過程中與Npm2的mRNA結(jié)合。但結(jié)果顯示,miR-423-3p與Npm2沒有結(jié)合位點,先前預測到的GV期和MⅡ期卵母細胞中無差異表達的miR-296-5p與Npm2也沒有結(jié)合位點。
本研究探討體外成熟培養(yǎng)液中添加miRNAs模擬物/抑制物對豬卵母細胞體外成熟、早期胚胎體外發(fā)育能力以及目的基因表達變化的影響。目前對于miR-32的研究主要集中在慢性疾病干預手段或作為某些疾病的標志物,也有研究報道m(xù)iR-32與miR-25、miR-125a、miR-222的組合可能會增加復發(fā)性胚胎植入失敗的風險[24]。使用10和50μmol·L-1的過氧化物酶體增殖物激活受體δ激動劑(Pparδ)處理的孤雌激活囊胚孵化率顯著提高,并且處理后miR-32 的水平降低[25],miR-32能夠沉默含WW結(jié)構(gòu)域的E3泛素蛋白連接酶2(WWP2)以維持人的羊膜上皮干細胞的多能性[26]。前人報道,miR-32是一種植入相關(guān)miRNA,主要與著床失敗有關(guān)[27],本研究中添加miR-32模擬物/抑制物對卵母細胞體外成熟和早期胚胎體外發(fā)育能力均未產(chǎn)生影響,Npm2基因表達也未發(fā)生變化,說明miR-32未參與卵母細胞成熟和早期胚胎發(fā)育,miR-32是否參與豬早期胚胎著床仍需進一步研究。
牛卵母細胞中含有的miR-150呈現(xiàn)典型的母源表達模式,成熟前后miR-150表達急劇下降,在胚胎植入前階段表達水平提高,8細胞階段后表達水平隨著母本的轉(zhuǎn)錄組下降[28],說明miR-150通過調(diào)節(jié)母系mRNA和蛋白質(zhì)的降解,參與牛在8~
16細胞期胚胎基因組激活。miR-150也可靶向c-Myb或Notch3調(diào)控胚胎發(fā)育[29],本研究結(jié)果表明MⅡ期卵母細胞中miR-150表達水平升高,與牛卵母細胞中miR-150表達模式不同,這可能是由于物種差異所導致。添加miR-150模擬物后盡管可以提高Npm2表達,但皮質(zhì)顆粒熒光強度減弱,未對卵母細胞成熟和早期胚胎發(fā)育產(chǎn)生影響,推測其可能主要作用于其他靶基因,參與其他的生理過程。
對于miR-423-3p的研究目前多集中于腫瘤方面,如Wang 等[30]發(fā)現(xiàn)在肺癌組織和細胞系中miR-423-3p表達上調(diào),其過表達促進了肺癌細胞的增殖、遷移和侵襲。在繁殖領(lǐng)域,研究結(jié)果表明miR-423-3p 參與人高漿液性卵巢癌的發(fā)生[31]。Rao 等[32]采用高通量測序技術(shù)分析小鼠睪丸暴露于熱應激時microRNAs 變化,結(jié)果發(fā)現(xiàn)熱應激后11個miRNAs 出現(xiàn)表達差異,其中miR-423-3p 表達下調(diào),可通過直接或間接調(diào)節(jié)凋亡相關(guān)通路來影響生殖細胞凋亡。本研究中,雙熒光素酶報告試驗表明miR-423-3p與Npm2基因無結(jié)合位點,添加其模擬物/抑制物對卵母細胞成熟、早期胚胎體外發(fā)育、Npm2基因表達均未產(chǎn)生影響,說明miR-423-3p未通過與Npm2基因結(jié)合參與卵母細胞成熟過程。
本研究探討了miR-7138-5p對豬卵母細胞體外成熟和早期胚胎體外發(fā)育能力的影響,結(jié)果表明MⅡ期卵母細胞中miR-7138-5p表達水平極顯著上調(diào),并與Npm2基因有結(jié)合位點,添加miR-7138-5p模擬物后Npm2基因表達水平升高,并顯著提高囊胚發(fā)育率,說明卵母細胞成熟過程中儲存的miR-7138-5p可能通過調(diào)控Npm2基因表達對早期胚胎發(fā)育產(chǎn)生影響。miR-7138-5p的靶基因除Npm2外還包括TBX21和PAQR8基因,其中TBX21基因編碼一種轉(zhuǎn)錄因子,可激活干擾素和趨化因子受體基因,招募包括KDM6B、SWI/SNF復合體和H3K4me2甲基轉(zhuǎn)移酶在內(nèi)的染色體重組復合物,建立松散的染色質(zhì)狀態(tài),有利于轉(zhuǎn)錄激活。PAQR8為孕激素和脂聯(lián)素Q受體家族成員,通過G蛋白信號通路參與卵母細胞成熟,在金魚卵母細胞中注射PAQR8的反義寡核苷酸抑制其表達,可抑制卵母細胞成熟誘導[33],推測miR-7138-5p可能通過作用于多個靶基因參與卵母細胞減數(shù)分裂成熟和早期胚胎發(fā)育,但具體的調(diào)控機制仍需進一步深入研究。
有研究預測,miR-296是與母源生殖發(fā)育高度相關(guān)的印記基因[23],其中miR-296-3p在小鼠卵巢中表達[34],可抑制不同腫瘤細胞系的細胞可塑性,促進肝臟和胰腺細胞的凋亡。miR-296-3p可調(diào)控與代謝和激素調(diào)節(jié)相關(guān)基因的表達,還可作為表觀修飾因子調(diào)控印記基因[35],本研究中miR-296-3p在MⅡ期卵母細胞表達量顯著降低,添加其抑制物后可以提高早期胚胎體外發(fā)育能力和卵母細胞中Npm2表達水平,表明miR-296-3p參與卵母細胞成熟和早期胚胎發(fā)育,但是否通過調(diào)控代謝或表觀修飾發(fā)揮作用還需進一步研究。miR-296-5p同樣是前體miR-296產(chǎn)生的成熟產(chǎn)物,盡管在GV期和MⅡ期卵母細胞中表達無顯著差異,也與Npm2基因無結(jié)合位點,但添加其模擬物/抑制物后可改變卵母細胞中Npm2表達,表明miR-296-5p可能作用于信號通路的上游基因,如miR-296-5p可通過作用于STAT3(signal transducer and activator of transcription 3)信號通路[36],調(diào)控多能性轉(zhuǎn)錄網(wǎng)絡的關(guān)鍵因子KLF4,參與調(diào)節(jié)細胞周期、凋亡、代謝等多種細胞過程,但其在卵母細胞成熟和早期胚胎發(fā)育的作用仍需進一步探索。
4 結(jié) 論
綜上所述,在豬卵母細胞體外成熟和早期胚胎體外發(fā)育過程中,篩選的差異miRNA(如miR-296-3p、miR-7138-5p)可能通過調(diào)控Npm2表達影響卵母細胞體外成熟及早期胚胎體外發(fā)育,可為豬卵母細胞microRNAs與靶基因復雜調(diào)控網(wǎng)絡研究提供基礎。
參考文獻(References):
[1] READER K L, STANTON J A L, JUENGEL J L. The role of oocyte organelles in determining developmental competence[J]. Biology (Basel),2017,6(3):35.
[2] MILLS A D, LASKEY R A, BLACK P, et al. An acidic protein which assembles nucleosomes in vitro is the most abundant protein in Xenopus oocyte nuclei[J]. J Mol Biol,1980,139(3):561-568.
[3] 姚順發(fā),許慶龍,張君正,等.精細胞中促進組蛋白-魚精蛋白替換的分子機制研究進展[J].中國畜牧雜志,2024, 60(7): 60-65.
YAO S F, XU Q L, ZHANG J Z, et al. Research progress on the molecular mechanism of promoting histone-protamine replacement in spermatids[J]. Chinese Journal of Animal Science,2024,60(7):60-65.(in Chinese)
[4] FREHLICK L J, EIRN-LPEZ J M, AUSI J. New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones[J]. BioEssays,2007,29(1):49-59.
[5] LASKEY R A, HONDA B M, MILLS A D, et al. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA[J]. Nature,1978,275(5679):416-420.
[6] ONIKUBO T, NICKLAY J J, XING L, et al. Developmentally regulated post-translational modification of nucleoplasmin controls histone sequestration and deposition[J]. Cell Rep,2015,10(10):1735-1748.
[7] OKUWAKI M, SUMI A, HISAOKA M, et al. Function of homo- and hetero-oligomers of human nucleoplasmin/ nucleophosmin family proteins NPM1,NPM2 and NPM3 during sperm chromatin remodeling[J]. Nucleic Acids Res,2012, 40(11): 4861-4878.
[8] TAMADA H, VAN THUAN N, REED P, et al. Chromatin decondensation and nuclear reprogramming by nucleoplasmin[J]. Mol Cell Biol,2006,26(4):1259-1271.
[9] 張宸藝博,余 彤,任斌斌,等.動物早期胚胎發(fā)育中表觀重編程的機制[J].畜牧獸醫(yī)學報,2023,54(12):4898-4909.
ZHANG C Y B, YU T, REN B B, et al. Mechanism of epigenetic reprogramming of early animal embryos[J]. Acta Veterinaria et Zootechnica Sinica,2023,54(12):4898-4909.(in Chinese)
[10] OKUWAKI M, MATSUMOTO K, TSUJIMOTO M, et al. Function of nucleophosmin/B23,a nucleolar acidic protein,as a histone chaperone[J]. FEBS Lett,2001,506(3):272-276.
[11] BURNS K H, VIVEIROS M M, REN Y S, et al. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos[J]. Science,2003,300(5619):633-636.
[12] WEN J, FRIEDMAN J R. miR-122 regulates hepatic lipid metabolism and tumor suppression[J]. J Clin Invest,2012,122(8): 2773-2776.
[13] BRENNECKE J, HIPFNER D R, STARK A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila[J]. Cell,2003,113(1):25-36.
[14] SALILEW-WONDIM D, GEBREMEDHN S, HOELKER M, et al. The role of MicroRNAs in mammalian fertility:from gametogenesis to embryo implantation[J]. Int J Mol Sci,2020,21(2):585.
[15] ROSENBLUTH E M, SHELTON D N, SPARKS A E T, et al. MicroRNA expression in the human blastocyst[J]. Fertil Steril, 2013, 99(3): 855-861.e3.
[16] PAULSON E E, FISHMAN E L, MA J, et al. Embryonic microRNAs are essential for bovine preimplantation embryo development[J]. Proc Natl Acad Sci U S A,2022,119(45):e2212942119.
[17] GIRALDEZ A J, MISHIMA Y, RIHEL J, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs[J]. Science,2006,312(5770):75-79.
[18] LV C, YU W X, WANG Y, et al. MiR-21 in extracellular vesicles contributes to the growth of fertilized eggs and embryo development in mice[J]. Biosci Rep,2018,38(4):BSR20180036.
[19] WANG Y Z, ZHOU C, MENG F M, et al. Ssc-miR-92b-3p regulates porcine trophoblast cell proliferation and migration via the PFKM gene[J]. Int J Mol Sci,2022,23(24):16138.
[20] TANGA B M, FANG X, BANG S, et al. MiRNA-155 inhibition enhances porcine embryo preimplantation developmental competence by upregulating ZEB2 and downregulating ATF4[J]. Theriogenology,2022,183:90-97.
[21] LINGENFELTER B M, TRIPURANI S K, TEJOMURTULA J, et al. Molecular cloning and expression of bovine nucleoplasmin 2 (NPM2):a maternal effect gene regulated by miR-181a[J]. Reprod Biol Endocrinol,2011,9:40.
[22] 張 珂,嚴繼猛,劉耀文,等.豬GV/MⅡ期卵母細胞miRNAs表達譜及Npm2基因相關(guān)miRNAs篩選[J].畜牧獸醫(yī)學報, 2021, 52(4):996-1009.
ZHANG K, YAN J M, LIU Y W, et al. miRNAs expression profile of porcine GV/MⅡ-stage oocytes and screening of miRNAs related to Npm2 gene[J]. Acta Veterinaria et Zootechnica Sinica,2021,52(4):996-1009.(in Chinese)
[23] KOBAYASHI H. Imprinting genes associated with endometriosis[J]. EXCLI J,2014,13:252-264.
[24] LEE J Y, AHN E H, KIM J O, et al. Associations between microRNA (miR-25,miR-32,miR-125,and miR-222) polymorphisms and recurrent implantation failure in Korean women[J]. Hum Genomics,2019,13(1):68.
[25] GUO J, LU W F, LIANG S, et al. Peroxisome proliferator-activated receptor δ improves porcine blastocyst hatching via the regulation of fatty acid oxidation[J]. Theriogenology,2017,90:266-275.
[26] ZOU G, LIU T, GUO L H, et al. MicroRNA-32 silences WWP2 expression to maintain the pluripotency of human amniotic epithelial stem cells and β islet-like cell differentiation[J]. Int J Mol Med,2018,41(4):1983-1991.
[27] REVEL A, ACHACHE H, STEVENS J, et al. MicroRNAs are associated with human embryo implantation defects[J]. Hum Reprod,2011,26(10):2830-2840.
[28] ABD EL NABY W S, HAGOS T H, HOSSAIN M M, et al. Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos[J]. Zygote,2013,21(1):31-51.
[29] LIN Y C, KUO M W, YU J, et al. c-Myb is an evolutionary conserved miR-150 target and miR-150/c-Myb interaction is important for embryonic development[J]. Mol Biol Evol,2008,25(10):2189-2198.
[30] WANG R K, LI G F, ZHUANG G Y, et al. Overexpression of microRNA-423-3p indicates poor prognosis and promotes cell proliferation,migration,and invasion of lung cancer[J]. Diagn Pathol,2019,14(1):53.
[31] BIGNOTTI E, CALZA S, TASSI R A, et al. Identification of stably expressed reference small non-coding RNAs for microRNA quantification in high-grade serous ovarian carcinoma tissues[J]. J Cell Mol Med,2016,20(12):2341-2348.
[32] RAO M, ZENG Z Y, TANG L, et al. Next-generation sequencing-based microRNA profiling of mice testis subjected to transient heat stress[J]. Oncotarget,2017,8(67):111672-111682.
[33] TOKUMOTO T, TOKUMOTO M, OSHIMA T, et al.Characterization of multiple membrane progestin receptor (mPR) subtypes from the goldfish ovary and their roles in the induction of oocyte maturation[J]. Gen Comp Endocrinol, 2012, 177(1):168-176.
[34] SCHNEIDER A, MATKOVICH S J, VICTORIA B, et al. Changes of ovarian microRNA profile in long-living ames dwarf mice during aging[J]. PLoS One,2017,12(1):e0169213.
[35] CAPRA E, LAZZARI B, RUSSO M, et al. Seasonal effects on miRNA and transcriptomic profile of oocytes and follicular cells in buffalo (Bubalus bubalis)[J]. Sci Rep,2020,10(1):13557.
[36] GALOCZOVA M, COATES P, VOJTESEK B. STAT3,stem cells,cancer stem cells and p63[J]. Cell Mol Biol Lett,2018,23: 12.
(編輯 郭云雁)