摘要:【目的】青田田魚在淺水環(huán)境中經(jīng)常面臨急性低溫脅迫,探究青田田魚在急性低溫和復(fù)溫環(huán)境下的生理響應(yīng)機制,為青田田魚科學越冬和耐低溫品種選育提供理論依據(jù)?!痉椒ā客ㄟ^液相色譜—質(zhì)譜(LC-MS)非靶向代謝組學技術(shù),提取9.0℃脅迫6 h(CO組)、升溫至28.0℃復(fù)溫恢復(fù)6 h(RE組)和28.0℃對照組(Con組)青田田魚鰓組織樣本代謝峰。預(yù)處理后的代謝組數(shù)據(jù)與數(shù)據(jù)庫匹配鑒定代謝物種類。通過主成分分析(PCA)和正交最小偏二乘判別分析(OPLS-DA)鑒定代謝組學數(shù)據(jù)的可靠性。根據(jù)Student’s test檢驗的P值(Plt;0.05)和OPLS-DA模型得到的變量權(quán)重值(VIPgt;1)篩選組間差異代謝物。對差異代謝物進行KEGG信號通路富集分析,并用Fisher精確檢驗分析篩選與急性低溫和復(fù)溫最相關(guān)的代謝通路。對重要代謝通路制作聚類熱圖,顯示組間差異和代謝物水平變化趨勢。【結(jié)果】PCA和OPLS-DA分析結(jié)果顯示,組內(nèi)樣本聚集,組間樣本分離,組間的代謝物水平存在顯著差異。OPLS-DA得分圖顯示各組Q2累計值均在0.5以上,R2Y累積值均接近1.0,模型具有較高的解釋度和可靠性;共鑒定到1222個代謝物,其中CO vs Con,RE vs CO和RE vs Con分別篩選鑒定出232、238和300種顯著差異代謝物(Plt;0.05)。各組間差異代謝物主要富集在花生四烯酸代謝、甘油磷脂代謝、類固醇激素生物合成和嘌呤代謝等代謝途徑;急性低溫脅迫下,皮質(zhì)醇水平上調(diào),而花生四烯酸及其代謝物和甘油磷脂代謝物下調(diào)。復(fù)溫后花生四烯酸、甘油磷脂代謝物和嘌呤代謝物相對Con組下調(diào),皮質(zhì)醇含量下調(diào),牛磺酸含量上調(diào)。【結(jié)論】急性低溫可導(dǎo)致青田田魚免疫、物質(zhì)轉(zhuǎn)運和信號傳遞等功能異常。皮質(zhì)醇的合成和代謝可能是青田田魚抵抗急性低溫脅迫的重要機制。復(fù)溫后青田田魚鰓組織損傷在短期內(nèi)無法得到完全恢復(fù)。?;撬岷铣煽赡苁乔嗵锾雉~在復(fù)溫過程中的重要恢復(fù)機制。
關(guān)鍵詞:青田田魚;急性低溫;復(fù)溫恢復(fù);代謝組學;鰓組織
中圖分類號:S961.4文獻標志碼:A文章編號:2095-1191(2024)09-2813-11
Effects of acute cold stress and rewarming on the metabolismof gill tissue of Qingtian paddy field carp(Cyprinuscarpio var.qingtianensis)
LIAO Jia-yi1,2,3,XIONG Zi-tong1,2,3,LI Zhi-li1,2,3,LIU Qi-gen1,2,3*,SUN Jia-min1,2,3
(1Center for Research on Environmental Ecology and Fish Nutrition,Ministry of Agriculture and Rural Affairs(ShanghaiOcean University),Shanghai 201306,China;2Key Laboratory of Integrated Rice-fish Farming,Ministry of Agricultureand Rural Affairs(Shanghai Ocean University),Shanghai 201306,China;3Shanghai Aquaculture EngineeringTechnology Research Center(Shanghai Ocean University),Shanghai 201306,China)
Abstract:【Objective】Qingtian paddy field carp(Cyprinus carpio var.Qingtianensis,PF carp)was frequently ex‐posed to the stress of acute cold stress in ambient temperatures in shallow water environments.The study aimed to investi‐gate the physiological response mechanism of PF carp in acute cold stress andrewarming,which could provide basis for scientific overwintering of PF carp and breeding of low-temperature-tolerant varieties.【Method】The metabolic peaks in gill tissue of PF carp were extracted by liquid chromatography-mass spectrometry(LC-MS)non-targeted metabolomics in the 9.0℃cold stress for 6 h(CO group)and subsequent rewarming recovery to 28.0℃for 6 h(RE group)and the28.0℃control group(Con group).The pre-processed metabolomics data were matched with the database to identify the metabolites.The reliability of metabolomics data was identified by principal component analysis(PCA)and orthogonalleast-squares discriminant analysis(OPLS-DA).The differential metabolites between groups were screened according tothe P value of Student’s test(Plt;0.05)and the variable weight value of OPLS-DA model(VIPgt;1).The KEGG signal pathway enrichment analysis of differential metabolites was performed.The metabolic pathways mostly associated with acute cold stress andrewarming were screened by Fisher test.Cluster heat maps were made for important metabolic path‐ways to show the differences between groups and the changing trend of metabolite content.【Result】The PCA and OPLS-DA analysis showed that samples were aggregated within group,and were separated between groups.There were signifi‐cant differences in metabolite levels between groups.The OPLS-DA score chart showed that the cumulative Q2 values of all groups were above 0.5,and the cumulative R2Y values were close to 1.0.The model had high interpretability andreliability.A total of 1222 metabolites were identified,among which 232,238,300 significantly different metabolites were screened and identified respectively in CO vs Con,RE vs CO and RE vs Con(Plt;0.05).Differential metabolism between groups were mainly enriched in metabolic pathways such as arachidonic acid metabolism,glycerophospholipid metabolism,steroid hormone biosynthesis and purine metabolism.Specifically,under acute cold stress,cortisol levels was up-regulated,but arachidonic acid and its metabolites,glycerophospholipid metabolites were down-regulated.Afterrewarming,the metabolism of arachidonic acid and glycerophospholipid,purine metabolism were down-regulated com‐pared with Con group,while the content of cortisol was down-regulated and the content of taurine was up-regulated.【Conclusion】Acute cold stress can lead to immunosuppression,abnormalities in substance transport and signal transmis‐sion in PF carp.Cortisol synthesis and metabolism are important mechanisms for resistance to acute cold stress.Gill tissue damage can not be fully recovered in the short term after rewarming.Taurine synthesis may be an important recovery mechanism of PF carp after rewarming.
Key words:Qingtian paddy field carp(Cyprinus carpio var.qingtianensis);acute cold stress;rewarming recovery;metabolomics;gill tissue
Foundation items:National Natural Science Foundation of China(32172995);Ability Building Project of Shanghai Committee of Science and Technology(22010502100);Shanghai Pujiang Talent Project(22PJ1404500)
0引言
【研究意義】寒潮等極端氣溫給中國、以色列和歐洲等水產(chǎn)養(yǎng)殖業(yè)發(fā)達國家和地區(qū)造成了重大經(jīng)濟損失(Sui et al.,1964;Ibarz etal.,2010),溫度快速波動對魚類的影響已成為當今研究熱點。青田田魚(Cyprinus carpio var.qingtianensis)是一種經(jīng)過1200多年稻田環(huán)境馴化的地方魚類。青田稻魚共生系統(tǒng)在2005年被聯(lián)合國糧食及農(nóng)業(yè)組織指定為首批全球重要農(nóng)業(yè)文化遺產(chǎn)系統(tǒng)(GIAHS)之一,受到國內(nèi)外學者的廣泛關(guān)注(Ren etal.,2018;Qi et al.,2020)。青田田魚能適應(yīng)急性高溫環(huán)境(Chenget al.,2024),但長期的熱生活史可能導(dǎo)致其體內(nèi)熱適應(yīng)的產(chǎn)熱平衡無法適應(yīng)急性低溫環(huán)境(P?rtner,2002)。國家地表水質(zhì)自動監(jiān)測實時數(shù)據(jù)顯示,浙江省青田縣冬季河水極端溫度達10℃以下,而青田田魚生活在淺水環(huán)境的稻田,冬季溫度變化更為劇烈,探究青田田魚對急性低溫和復(fù)溫的調(diào)控機制,對魚類科學越冬和耐低溫品種選育具有重要意義?!厩叭搜芯窟M展】溫度是影響魚類生存、生長和繁殖等生命活動的重要環(huán)境因素,溫度的急劇變動會導(dǎo)致魚類產(chǎn)生應(yīng)激反應(yīng),進而影響其代謝和免疫功能(Velmurugan et al.,2019)。研究表明,水溫急劇變化會導(dǎo)致魚類產(chǎn)生脅迫損傷(Goos and Constenet,2002;Engelsma et al.,2003)和免疫抑制(Abram etal.,2017);冷脅迫能誘導(dǎo)魚類細胞凋亡和促炎因子相關(guān)基因表達水平上調(diào),進而造成細胞損傷(Cheng et al.,2018);低溫暴露能誘導(dǎo)淡水石首魚(Aplodinotusgrunniens)肝臟、腸道、頭腎和尾腎發(fā)生炎癥反應(yīng)和細胞凋亡(Chen et al.,2022);低溫脅迫會造成軍曹魚幼魚出現(xiàn)氧化損傷,并誘導(dǎo)細胞凋亡水平升高和鰓組織損傷加?。ɡ钤サ?,2023)。經(jīng)過長期演化,魚類已進化出多種適應(yīng)機制以使其能在超出適宜生長溫度范圍的條件下維持機體生理穩(wěn)態(tài)(Wendelaar,1997;Barton,2002)。研究發(fā)現(xiàn),溫度脅迫可導(dǎo)致魚類體內(nèi)的脂質(zhì)代謝物發(fā)生顯著變化,低溫脅迫下七彩神仙魚(Sym-physodonaequifasciatus)鰓組織通過促進甘油磷脂代謝和鞘脂代謝等代謝途徑來調(diào)節(jié)抗氧化機制(Wen et al.,2018);軍曹魚(Rachycentron canadum)體內(nèi)甘油三酯含量隨低溫脅迫時間的增加呈持續(xù)降低趨勢(蔡潤佳,2021)。在鯉(Cyprinus carpio)(Shi‐kata et al.,1995)和尖吻鱸(Lates calcarifer)(Alhaz‐zaa et al.,2013)中也發(fā)現(xiàn),魚體脂肪酸不飽和度會隨溫度的降低而升高。皮質(zhì)醇與魚類應(yīng)激反應(yīng)密切相關(guān),是魚類主要的應(yīng)激激素(Bureau et al.,2008)。羅非魚(Oreochromis niloticus)在溫度脅迫下會短期內(nèi)上調(diào)體內(nèi)皮質(zhì)醇水平(He etal.,2015)。魚類還能通過動員體內(nèi)糖原、脂肪和蛋白質(zhì)等能量物質(zhì)來調(diào)節(jié)代謝率以應(yīng)對逆境所需的能量(Barrento et al.,2011)。白斑狗魚(Esox lucius)會通過消耗機體儲存的脂肪來提高脂肪代謝率,以抵御越冬期低溫的影響(Schwalme,1994);金鱸(Percaflavescens)在越冬期間會降低機體代謝強度(Feiner etal.,2016);急性冷脅迫下許氏平鲉(Sebastes schlegelii)體內(nèi)脂肪酸水平上調(diào)可能與機體能量調(diào)節(jié)有關(guān)(Song et al.,2019)?!颈狙芯壳腥朦c】鰓是魚類感知環(huán)境變化的器官之一,參與機體攝氧、呼吸、滲透調(diào)節(jié)、酸堿調(diào)節(jié)、氮排泄代謝和維持穩(wěn)態(tài)等生理活動(Chen et al.,2023)。鰓與周圍環(huán)境存在直接且持續(xù)的接觸,是研究魚類生理機制的重要器官(Cappelloetal.,2016)。代謝產(chǎn)物是細胞應(yīng)對環(huán)境變化的直觀體現(xiàn)(Fiehn,2002)。隨著生物信息學的快速發(fā)展,代謝組學技術(shù)已成為分析生物系統(tǒng)中小分子代謝產(chǎn)物的有效手段,能有效檢測響應(yīng)環(huán)境壓力源的代謝產(chǎn)物的波動,已廣泛應(yīng)用于魚類相關(guān)的研究中(Young and Alfaro,2018)。因此,采用代謝組學技術(shù)探究青田田魚鰓組織代謝產(chǎn)物的變化,能為揭示青田田魚急性低溫脅迫和復(fù)溫恢復(fù)的調(diào)節(jié)機制提供參考?!緮M解決的關(guān)鍵問題】青田田魚在淺水環(huán)境中經(jīng)常面臨急性低溫脅迫,探究青田田魚在急性低溫和復(fù)溫環(huán)境下的生理響應(yīng)機制,為青田田魚科學越冬和耐低溫品種選育提供理論依據(jù)。
1材料與方法
1.1試驗動物
供試青田田魚采集自浙江省青田縣,平均體質(zhì)量87.92±6.70 g,平均體長14.25±0.50 cm。試驗于青田田魚研究中心開展。18尾健康青田田魚隨機放入3個養(yǎng)殖桶中暫養(yǎng)一周,每日投喂一次專用配合飼料,溶解氧7 mg/L左右,水溫(28.0±0.5)℃。動物試驗由上海海洋大學實驗動物倫理委員會批準,批準號SHOU-DW-2018-026。
1.2試驗設(shè)計與樣品采集
預(yù)試驗中,在(9.0±0.5)℃的急性冷應(yīng)激下,青田田魚對外界刺激不敏感,無法從應(yīng)激環(huán)境中逃脫,冷脅迫6h后不能平游,復(fù)溫至(28.0±0.5)℃后,青田田魚能恢復(fù)活力。試驗在養(yǎng)殖桶中進行,降溫策略為1 h內(nèi)用冰塊將養(yǎng)殖桶內(nèi)水溫從28.0℃降至(9.0±0.5)℃,急性低溫脅迫6 h后采集樣品,標記為CO。隨后在1 h內(nèi)用加熱棒將養(yǎng)殖桶內(nèi)水溫復(fù)溫至(28.0±0.5)℃,復(fù)溫6 h后采集復(fù)溫樣品,標記為RE。每個取樣時間點分別從3個養(yǎng)殖桶中隨機選取2尾魚,共6尾魚,盡快使用MS-222(300 mg/L)麻醉,于冰板上解剖取出鰓組織,立刻放入標記好的無菌凍存管中,液氮速凍5min后轉(zhuǎn)入-80℃超低溫冰箱儲存。試驗開始前采集對照組樣品,標記為Con。試驗過程中禁食,使用溫度探測器實時監(jiān)控水溫,冰塊和加熱棒控制水溫,溶解氧7 mg/L左右,水體pH 7.3~7.7。
1.3代謝物提取與液相色譜—質(zhì)譜聯(lián)用儀分析
50 mg樣品和400μL含0.02 mg/mL內(nèi)標(L-2-氯苯丙氨酸)的提取液(甲醇∶水=4∶1,v∶v)混合成樣品溶液;用冷凍組織研磨儀研磨6 min(-10℃,50 Hz),低溫超聲破碎30 min(5℃,40 kHz);樣品靜置30 min(-20℃),離心15 min(4℃,13000×g),取上清液進行液相色譜—質(zhì)譜(LC-MS)分析。取等體積的所有樣品上清液,混合制備3個質(zhì)控樣本(Quality control,QC),平均插入樣本隊列,用于評價系統(tǒng)的穩(wěn)定性和試驗數(shù)據(jù)的可靠性。用超高效液相色譜串聯(lián)傅里葉變換質(zhì)譜儀UHPLC-Q Exactive HF-X(ThermoFisher Scientfic公司)進行分析;使用HSS T378柱(100.0 mm×2.1 mm,1.8μm)分離樣品;流動相A為水溶液∶乙腈(95∶5,v∶v,含0.1%甲酸),流動相B為乙腈:異丙醇:水(47.5∶47.5∶5,v∶v∶v,含0.1%甲酸);柱溫40℃,流速0.4082 mL/min;采用正負離子掃描模式(70~1050 m/z)采集質(zhì)譜信號。
1.4數(shù)據(jù)預(yù)處理和代謝物鑒定
用代謝組學處理軟件Progenesis QI(WatersCor-poration,Milford,USA)對LC-MS原始數(shù)據(jù)進行基線過濾、峰識別、積分、保留時間校正和峰對齊等預(yù)處理。將MS和MSMS質(zhì)譜信息與KEGG數(shù)據(jù)庫(https://www.kegg.jp/kegg/pathway.html)、Human Me-tabolome Database(HMDB)(https://www.hmdb.ca)和美吉自建庫進行匹配,鑒定代謝物。通過美吉云平臺(https://www.cloud.majorbio.com)對代謝物鑒定得到的數(shù)據(jù)矩陣進行預(yù)處理。本研究中的數(shù)據(jù)預(yù)處理和代謝物鑒定均由上海美吉醫(yī)藥科技有限公司完成。
1.5差異代謝物篩選和KEGG信號通路富集分析
預(yù)處理后的數(shù)據(jù)矩陣用于多維統(tǒng)計分析,包括主成分分析(PCA)和正交偏最小二乘判別分析(OPLS-DA),通過7次循環(huán)交互驗證來評估PCA和OPLS-PA模型的穩(wěn)定性。根據(jù)Student’s test檢驗得到的P值和OPLS-DA模型得到的變量權(quán)重(VIP)篩選差異代謝物(VIPgt;1,Plt;0.05);利用KEGG數(shù)據(jù)庫和Python進行差異代謝物信號通路富集分析并用Fisher精確檢驗分析得到與試驗處理最相關(guān)的代謝通路;使用Python對篩選出的差異代謝物進行聚類分析,并根據(jù)結(jié)果制作熱圖顯示組間差異和變化趨勢。
2結(jié)果與分析
2.1青田田魚鰓組織代謝物多元統(tǒng)計分析結(jié)果
PCA得分圖顯示,QC聚集性較高,說明試驗設(shè)備運行穩(wěn)定、數(shù)據(jù)質(zhì)量高、試驗方法可靠;組內(nèi)樣本聚集,組間樣本分離,表明急性低溫脅迫和復(fù)溫下青田田魚代謝物水平有明顯變化(圖1)。為最大限度地區(qū)分3個組別,使用OPLS-DA測定Con組、CO組和RE組之間代謝物水平的差異。訓(xùn)練集中LC-MS數(shù)據(jù)的分數(shù)散點圖顯示,組間區(qū)分明顯,組內(nèi)聚類良好(圖2-A~圖2-F);OPLS-DA得分圖顯示,各組Q2累計值均在0.5以上,R2Y累計值均接近1.0(圖2-G~圖2-L),表明模型具有較高的解釋度和可靠性,可用于后續(xù)分析。
2.2急性低溫脅迫和復(fù)溫條件下青田田魚鰓組織代謝物鑒定結(jié)果
LC-MS/MS分析在正離子模式和負離子模式下共采集到7950個代謝峰,其中正離子模式下采集到4386個代謝峰,負離子模式下采集到3564個代謝峰。KEGG數(shù)據(jù)庫、HMDB代謝公共數(shù)據(jù)庫和美吉自建庫共鑒定到1222個代謝物,注釋到HMDB公共數(shù)據(jù)庫的代謝物1125個,注釋到KEGG數(shù)據(jù)庫的代謝物662個。用火山圖可視化正負離子模式下各組代謝物含量的差異及其統(tǒng)計學意義。在CO vs Con篩選鑒定出232個顯著差異代謝物(rlt;0.05,下同),其中48個上調(diào),184個下調(diào)(圖3-A);在RE vs CO篩選鑒定出238個顯著差異代謝物,其中104個上調(diào),134個下調(diào)(圖3-B);在RE vs Con篩選鑒定出300個顯著差異代謝物,其中有58個上調(diào),242個下調(diào)(圖3-C)。
2.3青田田魚組間差異代謝物KEGG信號通路富集分析結(jié)果
對青田田魚組間差異代謝物進行KEGG信號通路富集分析,結(jié)果顯示,CO vs Con差異代謝物富集了40條通路,顯著富集通路為花生四烯酸代謝(Ara-chidonic acid metabolism)、類固醇激素生物合成(Steroid hormone biosynthesis)、神經(jīng)活性配體受體相互作用(Neuroactive ligand-receptor interaction)、精氨酸生物合成(Arginine biosynthesis)和丙氨酸、天冬氨酸、谷氨酸代謝(Alanine,aspartate and gluta-mate metabolism)及嘧啶代謝(Pyrimidine metabo-lism)信號通路(圖4-A);RE vs CO差異代謝物富集了63條通路,顯著富集通路為ABC轉(zhuǎn)運蛋白(ABCtransporters)、甘油磷脂代謝(Glycerophospholipid metabolism)、嘌呤代謝(Purine metabolism)、類固醇激素生物合成、神經(jīng)活性配體受體相互作用、苯丙氨酸代謝(Phenylalanine metabolism)、氨酰tRNA生物合成(Aminoacyl-tRNA biosynthesis)、血管平滑肌收縮(Vascular smooth muscle contraction)、C型凝集素受體信號通路(C-type lectin receptor signaling path-way)、脂肪細胞因子信號通路(Adipocytokine signa-ling pathway)、黑素生成(Melanogenesis)和鞘脂代謝(Sphingolipid metabolism)信號通路(圖4-B);RE vs Con差異代謝物富集了46條通路,其中顯著富集通路為ABC轉(zhuǎn)運蛋白、花生四烯酸代謝、苯丙氨酸和酪氨酸及色氨酸生物合成(Phenylalanine,tyrosine and tryptophan biosynthesis)、苯丙氨酸代謝、嘌呤代謝、氨酰tRNA生物合成、類固醇激素生物合成和神經(jīng)活性配體受體相互作用信號通路(圖4-C)。組間差異代謝物主要富集在花生四烯酸代謝、甘油磷脂代謝、類固醇激素生物合成、ABC轉(zhuǎn)運蛋白和嘌呤代謝信號通路,推測這些信號通路可能是青田田魚應(yīng)對急性低溫脅迫的關(guān)鍵通路。
2.4青田田魚組間差異代謝物聚類分析結(jié)果
對各組間差異代謝物富集程度較高的4個信號通路(花生四烯酸代謝、ABC轉(zhuǎn)運蛋白、甘油磷脂代謝和類固醇激素生物合成信號通路)相關(guān)的65個代謝物(表1)進行聚類分析,并制作熱圖對其相對含量變化趨勢進行可視化。結(jié)果(圖5)顯示,子集1和子集3顯示部分甘油磷脂代謝物溶血磷脂酰膽堿、花生四烯酸及其代謝物前列腺素等含量在CO組和RE組均呈降低趨勢;磷脂酰膽堿和部分溶血磷脂酰膽堿聚類到子集4,其含量在CO組降低,RE組略有回升,但仍低于Con組平均水平;皮質(zhì)醇、18-羥基皮質(zhì)酮和硫酸脫氫表雄酮等類固醇激素聚類在子集2,其含量在CO組升高,在RE組降低;牛磺酸聚類到子集5,其含量在RE組最高。
3討論
臨界溫度是指使動物活動受到干擾,失去逃離潛在致命環(huán)境能力的溫度(Prodocimo and Freire,2001)。預(yù)試驗中,在(9.0±0.5)℃急性低溫脅迫下,試驗魚變得對外界刺激不敏感,無法從應(yīng)激環(huán)境中逃脫,并在冷脅迫6 h后不能平游,選擇9.0℃作為急性低溫脅迫試驗溫度,探究急性低溫脅迫下青田田魚的生理調(diào)節(jié)機制,為魚類科學越冬和優(yōu)良品種選育提供參考依據(jù)。
3.1急性低溫對青田田魚鰓組織皮質(zhì)醇合成的影響
皮質(zhì)醇是類固醇激素生物合成的代表性代謝物,參與維持離子平衡,與應(yīng)激反應(yīng)密切相關(guān),是魚類主要的應(yīng)激激素(Bureau et al.,2008)。當水溫降至9.0℃時,青田田魚18-羥基皮質(zhì)酮等皮質(zhì)醇后體和皮質(zhì)醇水平上調(diào),17α,21-二羥基孕烯醇酮等皮質(zhì)醇前體含量水平降低,表明9.0℃急性低溫脅迫導(dǎo)致青田田魚產(chǎn)生應(yīng)激反應(yīng),且促進了皮質(zhì)醇合成和代謝。皮質(zhì)類固醇釋放所引起的主要代謝過程是通過糖酵解和糖異生來調(diào)動儲存的能量,以滿足動物體內(nèi)的能量需求(Dennis and Norris,2015)。急性低溫脅迫促進CO組青田田魚鰓組織皮質(zhì)醇合成和代謝可能是為了維持鰓組織細胞離子平衡和利用糖原代謝提供抵抗急性低溫脅迫所需的必要能量。研究表明,皮質(zhì)醇水平具有物種特異性,多種魚類暴露于溫度應(yīng)激時皮質(zhì)醇水平會增加,如羅非魚(Oreo-chromis niloticus L.)在短期低溫脅迫下會上調(diào)其皮質(zhì)醇水平(He etal.,2015),而虹鱒魚(Oncorhynchus mykiss)(LeBlanc et al.,2011;張旭,2023)和溪鱒(Salvelinus fontinalis)(Chadwick et al.,2015)在短期低溫脅迫下會下調(diào)其皮質(zhì)醇水平。皮質(zhì)醇在魚類急性低溫脅迫中的作用機制仍需進一步探究。
3.2急性低溫對青田田魚鰓組織免疫的影響
花生四烯酸和其他多不飽和脂肪酸的釋放觸發(fā)了一系列涉及環(huán)加氧酶和脂加氧酶的細胞過程,對前列腺素和血栓素等類二十烷的生物合成至關(guān)重要(Mommsen et al.,1999)。CO組青田田魚花生四烯酸、血栓素和前列腺素水平相比于Con組出現(xiàn)了顯著下調(diào),可能是急性低溫刺激影響了魚體酶活性和合成,進而導(dǎo)致花生四烯酸代謝受抑制。低溫脅迫可影響脂質(zhì)代謝等分子代謝過程,且魚類中不飽和脂肪酸的代謝對低溫脅迫非常敏感(Qian and Xue,2016)。低溫脅迫影響變溫動物中不飽和脂肪酸比例(Zehmer and Hazel,2005),多不飽和脂肪酸缺乏會引起異常的生化反應(yīng),進而影響魚類免疫、健康、生長發(fā)育和生存(Buczynskiet al.,2009)?;ㄉ南┧釋儆诙嗖伙柡椭舅?,在魚類應(yīng)激反應(yīng)相關(guān)基因表達中發(fā)揮主要作用(Xu etal.,2022),對魚類生長、繁殖、應(yīng)激耐受性、免疫和骨骼發(fā)育等至關(guān)重要(Bureau et al.,2008)。本研究發(fā)現(xiàn)急性低溫脅迫下青田田魚花生四烯酸水平降低,表明急性低溫脅迫可能導(dǎo)致了青田田魚免疫抑制,降低了其應(yīng)激耐受性,使其無法適應(yīng)低溫環(huán)境。溶血磷脂酰膽堿是甘油磷脂代謝產(chǎn)物,與先天性免疫和適應(yīng)性免疫有關(guān)(Kabarowski et al.,2002),急性低溫脅迫下溶血磷脂酰膽堿水平降低進一步說明急性低溫脅迫對青田田魚免疫存在影響。
3.3急性低溫對青田田魚鰓組織細胞膜流動性的影響
細胞膜磷脂富含花生四烯酸和其他多不飽和脂肪酸(Liu et al.,2022),甘油磷脂是細胞膜的重要成分,在維持細胞膜流動性及促進細胞膜能量和物質(zhì)轉(zhuǎn)運等方面發(fā)揮重要作用(Farooqui et al.,2000)。磷脂酰膽堿在維持膜結(jié)構(gòu)和細胞信號傳導(dǎo)過程中發(fā)揮重要作用(Fokina,2014;Kertyset al.,2020)。長吻鮠(Leiocassis longirostris)(Liu et al.,2022)和雌性印鯪(Cirrhinus mrigala)(Li etal.,2024)在低溫脅迫下通過調(diào)節(jié)脂質(zhì)代謝與合成影響細胞膜流動性。本研究發(fā)現(xiàn)急性低溫脅迫下花生四烯酸、溶血磷脂酰膽堿和磷脂酰膽堿水平降低,提示急性低溫脅迫可能影響青田田魚細胞膜流動性,進而導(dǎo)致細胞物質(zhì)轉(zhuǎn)運和信號傳遞等功能異常。
3.4復(fù)溫對青田田魚鰓組織免疫、細胞凋亡和氨基酸代謝的影響
本研究發(fā)現(xiàn),復(fù)溫后青田田魚花生四烯酸相關(guān)代謝物水平仍下調(diào),溶血磷脂酰膽堿等甘油磷脂代謝物水平仍然沒有完全恢復(fù),說明復(fù)溫后青田田魚可能受到持續(xù)的免疫抑制,需更長時間的復(fù)溫才能恢復(fù)至正常水平。嘌呤在應(yīng)激和免疫調(diào)節(jié)中發(fā)揮重要作用(Kuo et al.,2022),本研究發(fā)現(xiàn)復(fù)溫后黃嘌呤水平顯著降低,表明復(fù)溫可能通過調(diào)節(jié)嘌呤代謝來影響青田田魚的免疫功能。?;撬崮芫徑饧毎蛲龊虳NA氧化損傷(Cheng et al.,2018),而低溫可以使魚類細胞凋亡水平升高(Chen et al.,2022)。本研究中,RE組?;撬岷可?,提示復(fù)溫可能通過合成牛磺酸來抑制細胞凋亡,進而恢復(fù)組織功能。ABC轉(zhuǎn)運蛋白的主要功能涉及小分子的主動轉(zhuǎn)運(Yao et al.,2020),復(fù)溫下參與ABC轉(zhuǎn)運蛋白途徑的氨基酸代謝產(chǎn)物含量下降,提示復(fù)溫下調(diào)了氨基酸代謝,這可能與復(fù)溫后能量分配調(diào)整有關(guān)(Aguilar et al.,2022)。
4結(jié)論
急性低溫可導(dǎo)致青田田魚免疫、物質(zhì)轉(zhuǎn)運和信號傳遞等功能異常。皮質(zhì)醇的合成和代謝可能是青田田魚抵抗急性低溫脅迫的重要機制。復(fù)溫后青田田魚鰓組織損傷在短期內(nèi)無法得到完全恢復(fù)。?;撬岷铣煽赡苁乔嗵锾雉~在復(fù)溫過程中的重要恢復(fù)機制。
參考文獻(References):
蔡潤佳.2021.低溫脅迫下軍曹魚幼魚脂代謝的變化[D].湛江:廣東海洋大學,2021.[Cai R J.2021.Changes in lipid metabolism of juvenile cobia under low temperature stress[D].Zhanjaing:Guangdong Ocean University.]doi:10.27788/d.cnki.ggdhy.2021.000182.
李豫,黃建盛,陳有銘,溫震威,歐光海,黃鑒鵬,蔣鑫濤,謝瑞濤,馬騫,陳剛.2023.低溫脅迫對軍曹魚幼魚鰓組織抗氧化能力、細胞凋亡和組織結(jié)構(gòu)的影響[J].南方水產(chǎn)科學,19(3):68-77.[Li Y,Huang J S,Chen Y M,Wen Z W,Ou G H,Huang J P,Jiang X T,Xie R T,Ma Q,Chen G.2023.Effect of low temperature stress on antioxidantstress,apoptosis and histological structure of gills in cobia(Rachycentron canadum)[J].South China Fisheries Scien-ce,19(3):68-77.]doi:10.12131/20220227.
張旭.2023.溫度和光照對洄游型硬頭鱒(Oncorhynchus mykiss)行為和耐鹽能力的影響[D].大連:大連海洋大學.[Zhang X.2023.The effects of temperature and photope-riod on the behavior and salt tolerance of migratory steel-head trout(Oncorhynchus mykiss)[D].Dalian:Dalian Ocean University.]doi:10.27821/d.cnki.gdlhy.2023.000469.
Abram Q H,Dixon B,Katzenback B A.2017.Impacts of lowtemperature on the teleost immune system[J].Biology,6(4):39.doi:10.3390/biology6040039.
Aguilar A,Mattos H,Carnicero B,Sanhueza N,Mu?oz D,Teles M,Tort L,Bolta?a S.2022.Metabolomic profiling reveals changes in amino acid and energy metabolism path-ways in liver,intestine and brain of zebrafish exposed to different thermal conditions[J].Frontiers in Marine Scien-ce,9:835379.doi:10.3389/fmars.2022.835379.
Alhazzaa R,Bridle AR,Nichols P D,Carter C G.2013.Coping with sub-optimal water temperature:Modifications in fatty acid profile of barramundi as influenced by dietary lipid[J].Comparative Biochemistry and Physiology.Part A:Molecularamp;Integrative Physiology,165(2):243-253.doi:10.1016/j.cbpa.2013.03.019.
Barrento S,Marques A,Vaz-Pires P,Nunes M L.2011.Cancer pagurus(Linnaeus,1758)physiological responses to simu-lated live transport:Influence of temperature,air exposure and AQUI-S?[J].Journal of Thermal Biology,36(2):128-137.doi:10.1016/j.jtherbio.2010.12.006.
Barton B A.2002.Stress in fishes:A diversity of responses with particular reference to changes in circulating cortico-steroids[J].Integrative and Comparative Biology,42(3):517-525.doi:10.1093/icb/42.3.517.
Buczynski M W,Dumlao D S,Dennis E A.2009.Thematic review series:Proteomics.An integrated omics analysis of eicosanoid biology[J].Journal of Lipid Research,50(6):1015-1038.doi:10.1194/jlr.R900004-JLR200.
Bureau D P,Hua K,Harris A M.2008.The effect of dietary lipid and long-chain n-3 PUFA levels on growth,energy utilization,carcass quality,and immune function of rain-bow trout,Oncorhynchus mykiss[J].Journal of the WorldAquaculture Society,39(1):1-21.doi:10.1111/j.1749-7345.2007.00146.x.
Cappello T,Brand?o F,Guilherme S,Santos M A,Maisano M,MauceriA,Canário J,Pacheco M,Pereira P.2016.Insightsinto the mechanisms underlying mercury-induced oxida-tive stress in gills of wild fish(Liza aurata)combining 1H NMR metabolomics and conventional biochemical assays[J].The Science of the Total Environment,548-549:13-24.doi:10.1016/j.scitotenv.2016.01.008.
Chadwick Jr J G,Nislow K H,McCormick S D.2015.Thermal onset of cellular and endocrine stress responses correspondto ecological limits in brook trout,an iconic cold-water fish[J].Conservation Physiology,3(1):cov017.doi:10.1093/conphys/cov017.
Chen J X,Li H X,Xu P,Tang Y K,Su S Y,Liu G X,Wu N Y,Xue M M,Yu F,F(xiàn)eng W R,Song C Y,Wen H B.2022.Hypothermia-mediated apoptosis and inflammation con-tribute to antioxidant and immune adaption in freshwater drum,Aplodinotusgrunniens[J].Antioxidants,11(9):1657.doi:10.3390/antiox 11091657.
Chen X Y,Liu S B,Ding Q W,Teame T,Yang Y L,Ran C,Zhang Z,Zhou Z G.2023.Research advances in the struc-ture,function,and regulation of the gill barrier in teleost fish[J].Water Biology and Security,2(2):100139.doi:10.1016/j.watbs.2023.100139.
Cheng C H,Guo Z X,Wang A L.2018.The protective effects of taurine on oxidative stress,cytoplasmic free-Ca2+and apoptosis of pufferfish(Takifugu obscurus)under low temperature stress[J].Fishamp;Shellfish Immunology,77:457-464.doi:10.1016/j.fsi.2018.04.022.
Cheng X B,Li F C,Lu J J,Wen Y L,Li Z L,Liao J Y,Cao J W,He X M,Sun J M,Liu Q G.2024.Transcriptomeanaly-sis in gill reveals the adaptive mechanism of domesticated common carp to the high temperature in shallow rice pad-dies[J].Aquaculture,578:740107.doi:10.1016/j.aquacul-ture.2023.740107.
Dennis E A,Norris P C.2015.Eicosanoid storm in infection and inflammation[J].Nature Reviews Immunology,15(8):511-523.doi:10.1038/nri3859.
Engelsma M Y,Hougee S,Nap D,Hofenk M,Rombout J H,van Muiswinkel W B,Lidy Verburg-van Kemenade B M.2003.Multiple acute temperature stress affects leucocyte populations and antibody responses in common carp,Cyp-rinus carpio L.[J].Fishamp;Shellfish Immunology,15(5):397-410.doi:10.1016/s 1050-4648(03)00006-8.
Farooqui A A,Horrocks L A,F(xiàn)arooqui T.2000.Glycerophos-pholipids in brain:Their metabolism,incorporation into membranes,functions,and involvement in neurological disorders[J].Chemistry and Physics of Lipids,106(1):1-29.doi:10.1016/s0009-3084(00)00128-6.
Feiner Z S,Coulter D P,Guffey S C,H??k T O.2016.Does overwinter temperature affect maternal body composition and egg traits in yellow perch Percaflavescens?[J].Jour-nal of Fish Biology,88(4):1524-1543.doi:10.1111/jfb.12929.
Fiehn O.2002.Metabolomics-the link between genotypes and phenotypes[J].Plant Molecular Biology,48:155-171.doi:10.1023/A:1013713905833.
Fokina N N,Bakhmet I N,Shklyarevich G A,Nemova N N.2014.Effect of seawater desalination and oil pollution on the lipid composition of blue mussels Mytilus edulis L.from the White Sea[J].Ecotoxicology and Environmental Safety,110:103-109.doi:10.1016/j.ecoenv.2014.08.010.
Goos H J T,Consten D.2002.Stress adaptation,cortisol and pubertal development in the male common carp,Cyprinus carpio[J].Molecular and Cellular Endocrinology,197(1-2):105-116.doi:10.1016/s0303-7207(02)00284-8.
He J,Qiang J,Yang H,Xu P,Zhu Z X,Yang R Q.2015.Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile geneti-cally improved farmed tilapia Oreochromis niloticus(L.),subjected to short-term low temperature stress[J].Journal of Thermal Biology,53:90-97.doi:10.1016/j.jtherbio.2015.08.010.
IbarzA,Padrós F,Gallardo Má,F(xiàn)ernández-Borràs J,Blasco J,Tort L.2010.Low-temperature challenges to gilthead sea bream culture:Review of cold-induced alterations and‘Winter Syndrome’[J].Reviews in Fish Biology and Fishe-ries,20:539-556.doi:10.1007/s 11160-010-9159-5.
Kabarowski J H S,Xu Y,Witte O N.2002.Lysophosphatidyl-choline as a ligand for immunoregulation[J].Biochemical Pharmacology,64(2):161-167.doi:10.1016/s0006-2952(02)01179-6.
Kertys M,Grendar M,Kosutova P,Mokra D,Mokry J.2020.Plasma based targeted metabolomic analysis reveals altera-tions of phosphatidylcholines and oxidative stress markersin guinea pig model of allergic asthma[J].Biochimica et Biophysica Acta(BBA)-Molecular Basis of Disease,1866(1):165572.doi:10.1016/j.bbadis.2019.165572.
Kuo C H,Ballantyne B,Huang P L,Ding S W,Hong M C,Lin T Y,Wu F C,Xu Z Y,Chiu K,Chen B,Liu C H.2022.Sarcodia suae modulates the immunity and disease resis-tance of white shrimp Litopenaeus vannamei against Vib-rio alginolyticus via the purine metabolism and phenylala-nine metabolism[J].Fishamp;Shellfish Immunology,127:766-777.doi:10.1016/j.fsi.2022.07.011.
LeBlanc S,Middleton S,Gilmour K M,Currie S.2011.Chronic social stress impairs thermal tolerance in the rain-bow trout(Oncorhynchus mykiss)[J].Journal of Experi-mental Biology,214(10):1721-1731.doi:10.1242/jeb.056135.
Li H Q,Li W H,Su J S,Zhou Z X,Miao Y,Tian X L,Tao M,Zhang C,Zhou Y,Qin Q B,Yang H R,Liu S J.2024.Inte-gration of transcriptome and metabolome reveals molecu-lar mechanisms responsive to cold stress in gynogenetic mrigal carp(Cirrhinus mrigala)[J].Aquaculture,579:740200.doi:10.1016/j.aquaculture.2023.740200.
Liu M,Zhou Y L,Guo X F,Wei W Y,Li Z,Zhou L,Wang Z W,Gui J F.2022.Comparative transcriptomes and metabo-lomes reveal different tolerance mechanisms to cold stress in two different catfish species[J].Aquaculture,560:738 543.doi:10.1016/j.aquaculture.2022.738543.
Mommsen T P,Vijayan M M,Moon T W.1999.Cortisol in teleosts:Dynamics,mechanisms of action,and metabolic regulation[J].Reviews in Fish Biology and Fisheries,9:211-268.doi:10.1023/a:1008924418720.
P?rtner H O.2002.Climate variations and the physiological basis of temperature dependent biogeography:Systemic to molecular hierarchy of thermal tolerance in animals[J].Comparative Biochemistry and Physiology Part A:Molecu-laramp;Integrative Physiology,132(4):739-761.doi:10.1016/s1095-6433(02)00045-4.
Prodocimo V,F(xiàn)reire C A.2001.Critical thermal maxima and minima of the platyfish Xiphophorus maculatus Günther(Poecillidae,Cyprinodontiformes):A tropical species of ornamental freshwater fish[J].Revista Brasileira de Zoolo-gia,18:97-106.doi:10.1590/S0101-81752001000500007.
Qi M,Wu Q Q,Liu T,Hou Y L,Miao Y X,Hu M H,Liu Q G.2020.Hepatopancreas transcriptome profiling analysis reveals physiological responses to acute hypoxia and reoxygenation in juvenile Qingtian paddy field carp Cypri-nus carpio var qingtianensis[J].Frontiers in Physiology,11:1110.doi:10.3389/fphys.2020.01110.
Qian B,Xue L.2016.Liver transcriptome sequencing and de novo annotation of the large yellow croaker(Larimichthy crocea)under heat and cold stress[J].Marine Genomics,25:95-102.doi:10.1016/j.margen.2015.12.001.
Ren W Z,Hu L L,Guo L,Zhang J,Tang L,Zhang E T,Zhang J E,Luo S M,Tang J J,Chen X.2018.Preservation of the genetic diversity of a local common carp in the agricultural heritage rice-fish system[J].Proceedings of the National Academy of Sciences,115(3):E546-E554.doi:10.1073/pnas.1709582115.
Schwalme K.1994.Reproductive and overwintering adapta-tions in northern pike(Esox lucius L.):Balancing essen-tial fatty acid requirements with dietary supply[J].Physio-logical Zoology,67(6):1507-1522.doi:10.1086/physzool.67.6.30163909.
Shikata T,Iwanaga S,Shimeno S.1995.Metabolic response of acclimation temperature in carp[J].Fisheries Science,61(3):512-516.doi:10.2331/fishsci.61.512.
Song M,Zhao J,Wen H S,Li Y,Li J F,Li L M,Tao Y X.2019.The impact of acute thermal stress on the metabolome ofthe blackrockfish(Sebastes schlegelii)[J].PLoS One,14(5):e0217133.doi:10.1371/journal.pone.0217133.
Sui C J,Zhang Z H,Cai Y,Wu H D.1964.Using the physical decomposition method to study the effects of Arctic factors on wintertime temperatures in the Northern Hemisphere and China[J].Advances in Polar Science,25(4):213-221.doi:10.13679/j.advps.2014.4.00213.
Velmurugan B K,Chan C R,Weng C F.2019.Innate-immuneresponses of tilapia(Oreochromis mossambicus)exposureto acute cold stress[J].Journal of Cellular Physiology,234(9):16125-16135.doi:10.1002/jcp.28270.
Wen B,Jin S R,Chen Z Z,Gao J Z.2018.Physiological responses to cold stress in the gills of discus fish(Symphy-sodon aequifasciatus)revealed by conventional biochemi-cal assays and GC-TOF-MS metabolomics[J].Science of The Total Environment,640:1372-1381.doi:10.1016/j.sci-totenv.2018.05.401.
Wendelaar Bonga S E.1997.The stress response in fish[J].Physiological Reviews,77(3):591-625.doi:10.1152/phy-srev.1997.77.3.591.
Xu H G,Meng X X,Wei Y L,Ma Q,Liang M Q,Turchini G M.2022.Arachidonic acid matters[J].Reviews in Aqua-culture,14(4):1912-1944.doi:10.1111/raq.12679.
Yao H Z,Li X,Tang L,Wang H,Wang C L,Mu C K,Shi C.2020.Metabolic mechanism of the mud crab(Scylla para-mamosain)adapting to salinity sudden drop based on GC-MS technology[J].Aquaculture Reports,18:100533.doi:10.1016/j.aqrep.2020.100533.
Young T,Alfaro AC.2018.Metabolomic strategies for aquacul-ture research:A primer[J].Reviews in Aquaculture,10(1):26-56.doi:10.1111/raq.12146.
Zehmer J K,Hazel J R.2005.Thermally induced changes in lipid composition of raft and non-raft regions of hepato-cyte plasma membranes of rainbow trout[J].Journal of Experimental Biology,208(22):4283-4290.doi:10.1242/jeb.01899.
(責任編輯 蘭宗寶)