国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

準(zhǔn)零剛度非線性低頻隔振器理論研究及應(yīng)用

2024-12-28 00:00:00張建潤余康凡盧熹
機(jī)械制造與自動(dòng)化 2024年6期
關(guān)鍵詞:工程應(yīng)用發(fā)展趨勢

摘要:隔振器在各行業(yè)中得到廣泛應(yīng)用,傳統(tǒng)線性隔離器因其簡單、低廉、高可靠性和魯棒性被廣泛應(yīng)用于工業(yè)中,然而由于其僅能夠在激勵(lì)頻率大于2倍固有頻率時(shí)才能有效抑制振動(dòng),故存在靜態(tài)承載能力和低頻隔振性能之間的固有矛盾。近幾十年來發(fā)展起來的非線性準(zhǔn)零剛度 (QZS)隔振器可以在保證高承載能力的前提下降低動(dòng)剛度,從而將隔振頻帶拓寬到低頻區(qū)域。從QZS隔振器的構(gòu)造方法、優(yōu)化與改進(jìn)設(shè)計(jì)和工程應(yīng)用等方面綜述QZS隔振的主要研究進(jìn)展,總結(jié)現(xiàn)有研究的不足,展望未來發(fā)展方向,為相關(guān)領(lǐng)域的研究人員提供參考。

關(guān)鍵詞:非線性隔振;低頻振動(dòng)控制;準(zhǔn)零剛度隔振器;工程應(yīng)用;發(fā)展趨勢

DOI:10.19344/j.cnki.issn1671-5276.2024.06.001

中圖分類號(hào):TB535+.1文獻(xiàn)標(biāo)志碼:A文章編號(hào):1671-5276(2024)06-0001-11

Abstract:Vibration isolators are widely used in various industries. Despite the wide applications of traditional linear isolators owing to their simplicity, low cost, high reliability and robustness, there exists an inherent contradiction between the static load carrying capacity and low-frequency vibration isolation performance due to their "suppress vibration occurring only under the condition that the excitation frequency is greater than 2 times the natural frequency. Nonlinear quasi-zero stiffness (QZS) isolators developed in recent decades can reduce dynamic stiffness when high load carrying capacity is guaranteed, thus widening the isolation band to lower frequencies. This paper reviews main research progress of QZS isolators in terms of construction method, design improvement, and engineering applications, summarizes shortcomings of existing research, and looks forward to future development directions, providing reference for researchers in related fields.

Keywords:nonlinear vibration isolation; low-frequency vibration control; quasi-zero stiffness isolator; engineering application; development trend

0引言

振動(dòng)在工程和日常生活中無處不在,少數(shù)情況下,振動(dòng)會(huì)被利用以達(dá)到特定的目的,但絕大多數(shù)振動(dòng)都是有害的[1]??刂撇涣颊駝?dòng)對(duì)于保持航天設(shè)備的高精度和長壽命[2]、提高軌道車輛的乘坐舒適性[3]、降低航空發(fā)動(dòng)機(jī)的輻射噪聲[4]等至關(guān)重要。在許多情況下(例如沖擊或隨機(jī)振動(dòng)),振動(dòng)譜是寬帶的并且包含低頻成分,這些低頻成分很難消除[5]。工程中最常用的振動(dòng)控制方法是隔振,即在振源和被控對(duì)象之間利用附加系統(tǒng)隔離振動(dòng)傳遞,從而達(dá)到抑制被控對(duì)象振動(dòng)的目的。隔振技術(shù)按照有、無外界能源輸入可分為被動(dòng)隔振技術(shù)和主動(dòng)/半主動(dòng)隔振技術(shù)。

傳統(tǒng)的線性無源隔離器因其高可靠性和魯棒性被廣泛應(yīng)用于工業(yè)中[6]。然而其只有在激勵(lì)頻率大于2倍固有頻率時(shí)才能有效抑制振動(dòng),這意味著要實(shí)現(xiàn)低頻隔振只能通過降低剛度來降低固有頻率,而這會(huì)嚴(yán)重降低靜態(tài)承載能力。與被動(dòng)振動(dòng)控制相比,主動(dòng)/半主動(dòng)振動(dòng)控制具有更強(qiáng)的調(diào)節(jié)能力,能更好地改善振動(dòng)性能[7]。但由于其制造成本高,需要外部電源輸入,可靠性低等,難以方便地應(yīng)用于實(shí)際工程中。通過在被動(dòng)式隔振器中引入非線性剛度,可以實(shí)現(xiàn)高靜低動(dòng)剛度的非線性特性,從而解決上述振動(dòng)控制問題[8]。一種高靜低動(dòng)剛度形式,其設(shè)計(jì)在一定位移范圍內(nèi)具有接近于零的剛度特性,稱為準(zhǔn)零剛度(quasi-zero-stiffness, QZS),近年來引起了廣泛關(guān)注[9-10]。QZS型隔振器不僅具有被動(dòng)隔振器成本低、結(jié)構(gòu)簡單、穩(wěn)定性高等優(yōu)點(diǎn),而且能同時(shí)滿足有效低頻隔振和高承載能力的要求,彌補(bǔ)了傳統(tǒng)線性隔振器的缺陷。

本文系統(tǒng)地綜述了近幾十年來QZS隔振器在構(gòu)造方法、優(yōu)化與改進(jìn)設(shè)計(jì)及工程應(yīng)用方面的研究進(jìn)展,對(duì)QZS隔振器的未來發(fā)展方向提出了展望,為相關(guān)領(lǐng)域的研究人員提供參考和借鑒。

1QZS隔振器的構(gòu)造方法

多數(shù)QZS隔振器的關(guān)鍵是設(shè)計(jì)一個(gè)負(fù)剛度機(jī)構(gòu),然后通過并聯(lián)線性彈簧獲得QZS特性,如圖1(a)和圖1(b)所示。為了拓寬應(yīng)用場景,一些學(xué)者采用非線性正剛度機(jī)構(gòu)去補(bǔ)償非線性負(fù)剛度從而實(shí)現(xiàn)QZS特性,如圖1 (c)所示。此外,也有少數(shù)學(xué)者不采用正負(fù)剛度補(bǔ)償?shù)姆椒ǎ苯訕?gòu)造QZS特性。圍繞這些QZS實(shí)現(xiàn)方法,本節(jié)分類介紹了3種最常用的QZS隔振器構(gòu)造方法。

1.1機(jī)構(gòu)幾何非線性QZS隔振器

結(jié)構(gòu)幾何非線性準(zhǔn)零剛度隔振器通常由剛性原件(如連桿、凸輪、滑塊等)和彈性原件(通常為彈簧)組成。通過選取合適的設(shè)計(jì)參數(shù),在機(jī)構(gòu)運(yùn)動(dòng)過程中,幾何關(guān)系的非線性能夠使得線性彈簧產(chǎn)生理想的非線性剛度。圖2展示了4種典型的機(jī)構(gòu)幾何非線性QZS隔振器。

圖2(a)所示的三彈簧隔振器是最經(jīng)典的QZS隔振器,最早由英國南安普頓大學(xué)的CARRELLA[11]于2007年提出。其中的一對(duì)斜彈簧提供對(duì)稱的負(fù)剛度,而垂向彈簧提供正剛度。為了實(shí)現(xiàn)QZS特性,斜彈簧和垂向彈簧剛度需滿足:2ko/kv=a/(L0-a),其簡單的構(gòu)造和優(yōu)異的低頻隔振性能引起了廣泛的研究[12]。另外一種經(jīng)典的QZS隔振器為圖2(b)所示的彈簧-連桿式QZS隔振器。連桿-滑塊機(jī)構(gòu)將水平彈簧的線性剛度轉(zhuǎn)換為垂向負(fù)剛度,再通過線性正剛度補(bǔ)償實(shí)現(xiàn)QZS特性,其實(shí)現(xiàn)QZS的參數(shù)條件為:k0L=2k1h。2015年,湖南大學(xué)的徐道臨教授團(tuán)隊(duì)提出了凸輪-滾子型QZS隔振器[13],如圖2(c)所示。圓形凸輪-滾子機(jī)構(gòu)可以將橫向線性剛度轉(zhuǎn)換為垂向負(fù)剛度,進(jìn)而通過線性正剛度補(bǔ)償實(shí)現(xiàn)QZS特性。在此基礎(chǔ)上,一些學(xué)者研究了凸輪輪廓曲線與隔振器性能的關(guān)系,并提出了輪廓設(shè)計(jì)方法[14]。以上3種QZS隔振器均采用的是圖1(a)所示的準(zhǔn)則構(gòu)造出對(duì)稱的QZS特性。此外,香港城市大學(xué)的JING等[15]提出了一種具有非對(duì)稱QZS特性的剪式(X型)結(jié)構(gòu),如圖2(d)所示。多連桿結(jié)構(gòu)具有較強(qiáng)的按需定制能力和工程應(yīng)用潛力。

除了上述4種經(jīng)典的幾何非線性QZS隔振器外,YE和LIU等[16-17]基于剛性三浦折紙分別提出了一種QZS隔振器,如圖3(a)和圖3(b)所示。利用折紙的幾何非線性,通過在剛性面間安裝彈簧實(shí)現(xiàn)了理想的負(fù)剛度特性,進(jìn)一步構(gòu)造出優(yōu)異的QZS特性。受彈性Kresling折紙的啟發(fā),本課題組提出了一種新型QZS隔振器[18],其忽略了面的變形,且采用軸向彈性連桿模擬折痕,如圖3(c)所示。此外,如圖3(d)、圖3(e)所示,多數(shù)仿生QZS隔振器均利用了幾何非線性實(shí)現(xiàn)QZS特性[19-20]。

1.2柔性結(jié)構(gòu)非線性QZS隔振器

許多柔性結(jié)構(gòu)在大變形下會(huì)產(chǎn)生非線性力學(xué)行為,合理地利用這種非線性可以產(chǎn)生理想的非線性剛度,進(jìn)而構(gòu)造QZS特征。一種簡單的雙屈曲梁QZS隔振器如圖4(a)所示,其采用具有軟化正剛度的屈曲梁替換經(jīng)典三彈簧QZS隔振器中的斜彈簧。一些學(xué)者[21-22]采用滑動(dòng)梁構(gòu)造QZS隔振器,如圖4(b)所示。滑動(dòng)梁通過兩端的刀邊支撐,在較大的位移激勵(lì)下能夠產(chǎn)生負(fù)剛度特性,在通過正剛度補(bǔ)償實(shí)現(xiàn)QZS特性。本課題組基于圖1(c)所示的準(zhǔn)則,利用碟簧和蝸簧大變形下產(chǎn)生的非線性負(fù)剛度和正剛度構(gòu)造出了一種新型緊湊的QZS隔振器[23],如圖4(c)所示。這得益于渦簧和碟簧的高能量密度。該QZS隔振器具有極大的承載能力,有望應(yīng)用于重型設(shè)備的低頻隔振。

此外,通過對(duì)柔性結(jié)構(gòu)進(jìn)行優(yōu)化設(shè)計(jì),能夠直接實(shí)現(xiàn)QZS特性而不需要線性彈簧的正剛度補(bǔ)償。DALELA等[24]利用兩種不同形式的曲梁組合成一種緊湊的結(jié)構(gòu)非線性QZS隔振器,如圖4(d)所示。兩種不同形式的曲梁能夠分別產(chǎn)生垂向正剛度和負(fù)剛度,通過選擇合理的結(jié)構(gòu)參數(shù)能夠構(gòu)造出QZS特性。相較于DALELA提出的結(jié)構(gòu),圖4(e)和圖4(f)所示的結(jié)構(gòu)[25-26]則更為簡潔,通過設(shè)計(jì)平面梁的輪廓形狀和截面形狀,能夠直接實(shí)現(xiàn)QZS特性。

上述結(jié)構(gòu)非線性QZS隔振器往往具有更少的裝配關(guān)系,從而能夠避免裝配誤差與關(guān)節(jié)摩擦,提升隔振性能。但是,其由于無法方便地調(diào)節(jié)結(jié)構(gòu)尺寸,不具有較好的隔振靈活性。

1.3磁性彈簧非線性QZS隔振器

磁性彈簧自身具有非線性剛度特性并且結(jié)構(gòu)緊湊。通過不同磁化方向磁鐵的組合,能夠輕易實(shí)現(xiàn)負(fù)剛度特性,如圖5(a)所示[27]。通過對(duì)圖5(a)中的3種負(fù)剛度機(jī)構(gòu)進(jìn)行排列組合,再利用線性正剛度補(bǔ)償能夠輕松地實(shí)現(xiàn)QZS特性,例如XU等[28]提出的圖5(b)所示的和YAN等[29]提出的圖5(c)所示的QZS隔振器。除此之外,還有一些學(xué)者提出采用易調(diào)節(jié)非線性特性的電磁鐵構(gòu)造QZS隔振器[30]。

2QZS隔振器的優(yōu)化與設(shè)計(jì)

QZS隔振器具有優(yōu)異的低頻隔振性能,但經(jīng)典的QZS隔振器具有隔振方向單一、僅適用于小幅激勵(lì)、承載能力單一、個(gè)性化程度強(qiáng)等不足。為了解決這些問題,許多學(xué)者已經(jīng)進(jìn)行了廣泛的研究,主要研究方向有:多方向QZS隔振設(shè)計(jì)、拓寬QZS范圍設(shè)計(jì)、多級(jí)承載能力設(shè)計(jì)、(半)主動(dòng)控制QZS隔振器設(shè)計(jì)[31]、引入非線性慣性/阻尼的復(fù)合QZS隔振器設(shè)計(jì)[32]等。受限于文章篇幅,本章總結(jié)近年來主要的3個(gè)前沿研究方向。

2.1多方向QZS隔振器的設(shè)計(jì)

多數(shù)情況下,主結(jié)構(gòu)會(huì)受到多方向的干擾,或者單個(gè)激勵(lì)源可能會(huì)在多次放大后引起多方向的響應(yīng)[33]。因此,多方向QZS隔振器應(yīng)運(yùn)而生。

多數(shù)學(xué)者通過正交組合單向QZS隔振單元實(shí)現(xiàn)多方向QZS特性。LIU等[34]將兩組水平QZS隔振器組裝在一起工作,設(shè)計(jì)了一種平面雙向QZS隔振器,如圖6(a)所示。ZHANG等[35]利用球面凸輪、球面滾子和彈簧設(shè)計(jì)了一種扭轉(zhuǎn)-平動(dòng)耦合2自由度QZS隔振器,如圖6(b)所示。對(duì)于三向QZS隔振器的設(shè)計(jì),SUN等[36]提出一種三向平動(dòng)QZS隔振結(jié)構(gòu),如圖6(c)所示。通過在水平方向采用4個(gè)對(duì)稱的剪式(X-型)結(jié)構(gòu),實(shí)現(xiàn)平面兩自由度QZS特性,再結(jié)合垂向線性彈簧構(gòu)造出最終的3自由度QZS特性。相較于上述的組合式多向QZS設(shè)計(jì),CHAI等[37]直接提出了一種由連桿和彈簧組成的3自由度隔振平臺(tái),如圖6(d)所示。對(duì)于一些精密儀器,往往需要6個(gè)自由度的全方向隔振。為此,ZHU等[38]提出了一種6自由度的磁懸浮隔振器,如圖6(e)所示,采用控制算法穩(wěn)定被動(dòng)不穩(wěn)定的磁懸浮系統(tǒng),通過對(duì)稱的磁懸浮組件排布實(shí)現(xiàn)了6個(gè)方向的零剛度。

許多學(xué)者在線性6自由度隔振平臺(tái)(如Stewart 平臺(tái)[39]、八腿正交支撐平臺(tái)[40]、四角金字塔支撐平臺(tái)[41])的基礎(chǔ)上,通過將線性彈性支柱替換為開發(fā)的QZS支柱實(shí)現(xiàn)6自由度QZS的設(shè)計(jì),從而將支柱的QZS特性映射到6自由度。比如,WANG等提出一種可調(diào)電磁Stewart平臺(tái),采用電磁QZS支柱充當(dāng)彈性單元,實(shí)現(xiàn)了6個(gè)自由度的低頻隔振,如圖6(f)所示。這種構(gòu)造多方向隔振的方式能夠輕易實(shí)現(xiàn)6自由度的QZS特性。相較于直接正交組合QZS單元的方式,這種方式能夠通過改變QZS單元的組裝角度調(diào)節(jié)每個(gè)方向的剛度,應(yīng)用較為靈活。

2.2寬QZS位移范圍QZS隔振器的設(shè)計(jì)

如圖1所示,QZS隔振器在平衡位置剛度通常為0或趨于0。在大激勵(lì)下,物體往往偏離平衡位置較遠(yuǎn),從而剛度迅速增加,惡化了隔振性能。因此,許多學(xué)者致力于拓寬低剛度位移范圍。ZHAO等改進(jìn)了經(jīng)典的三彈簧QZS隔振器,將斜彈簧對(duì)從1個(gè)增加到3個(gè),如圖7(a)所示。附加的斜彈簧增加了可調(diào)參數(shù),從而能夠輕松實(shí)現(xiàn)更寬的低剛度范圍。凸輪滾子隔振器的凸輪輪廓具有可設(shè)計(jì)性,這使其能夠根據(jù)所需的剛度特性反向設(shè)計(jì)凸輪輪廓。YAO等[42]通過凸輪輪廓逆向設(shè)計(jì)實(shí)現(xiàn)了比較寬的零剛度位移范圍,如圖7(b)所示。SHI等[43]采用帶有曲線夾具的懸臂梁替換三彈簧隔振器中的垂向彈簧,如圖7(c)所示。通過設(shè)計(jì)合理的夾具輪廓,能夠使懸臂梁產(chǎn)生的非線性正剛度精確地抵消斜彈簧產(chǎn)生的負(fù)剛度,從而實(shí)現(xiàn)大位移范圍的連續(xù)QZS特性。除了對(duì)經(jīng)典QZS隔振器的改進(jìn)外,ZHOU等[44]提出了一種簡單的雙圓弧柔性梁QZS隔振器,如圖7(d)所示。通過設(shè)計(jì)弧形梁的形狀能夠?qū)崿F(xiàn)超寬的QZS范圍,這在小型化、集成化要求方面具有良好的前景和應(yīng)用價(jià)值。

2.3多級(jí)承載QZS隔振器設(shè)計(jì)

通常QZS隔振器承載能力是單一的,當(dāng)載荷發(fā)生較大變化時(shí),靜平衡位置附近便不再呈現(xiàn)QZS特性。為了應(yīng)對(duì)不同負(fù)載下的有效低頻隔振,LIU等[45]提出一種由多個(gè)具有不同承載能力的QZS單元串聯(lián)組成的新型隔振系統(tǒng),如圖8(a)所示。通過串聯(lián)n個(gè)不同的X型結(jié)構(gòu),能夠在支撐n個(gè)有效載荷的同時(shí)保持n個(gè)QZS特性,如圖8(b)所示。ZHENG等[46]也通過串聯(lián)不同的柔性梁QZS單元構(gòu)造了具有多級(jí)承載能力的QZS結(jié)構(gòu),如圖8(c)所示。相比之下,采用改進(jìn)的凸輪滾子QZS隔振器實(shí)現(xiàn)多級(jí)QZS特性則更加簡潔。YE等[47]將圓形凸輪周期性地垂向排列,每個(gè)凸輪對(duì)應(yīng)于垂直彈簧的特定靜態(tài)撓度,使系統(tǒng)能夠在多個(gè)QZS區(qū)域支撐多個(gè)不同的載荷,如圖8(d)所示。在此基礎(chǔ)上,LI等[48]采用了拋物線凸輪并且改進(jìn)了凸輪輪廓,從而拓寬了每個(gè)QZS區(qū)域的范圍,縮短了不同承載能力之間的切換位移。

3QZS隔振器的工程應(yīng)用

鑒于QZS隔振器優(yōu)異的低頻隔振性能,其已被廣泛應(yīng)用于工程領(lǐng)域以期提升車輛乘坐舒適性、抑制高樓和橋體振動(dòng)、提升衛(wèi)星等精密儀器操作精度等。本節(jié)主要論述QZS隔振器在車輛工程、土木工程及航空航天領(lǐng)域的應(yīng)用現(xiàn)狀。

3.1在車輛工程中的應(yīng)用

QZS隔振器在通行車輛中的應(yīng)用場景主要為座椅懸置、懸架和車載設(shè)備。為了提升乘坐的舒適性,LE等[49]基于彈簧連桿QZS隔振器設(shè)計(jì)了如圖9(a)所示的車輛座椅。從圖9(b)能夠看出,對(duì)于0.1Hz~10Hz的隨機(jī)激勵(lì),座椅具有良好的低頻隔振性能。在此基礎(chǔ)上,LIAO等[50]在QZS座椅中引入非線性慣性,從而增強(qiáng)其在大激勵(lì)、小阻尼情況下的低頻隔振性能。DU[51]在X型結(jié)構(gòu)基礎(chǔ)上增加了凸輪和旋轉(zhuǎn)阻尼器,提出了升級(jí)的座椅QZS懸置,如圖9(c)所示。通過設(shè)計(jì)凸輪輪廓能夠?qū)崿F(xiàn)更加優(yōu)異的按需調(diào)節(jié)的QZS特性,而電磁阻尼器或磁流變阻尼器給予了該座椅更強(qiáng)的主動(dòng)調(diào)節(jié)能力。在此基礎(chǔ)上,又提出了如圖9(d)所示的3自由度QZS座椅。通過增加兩個(gè)旋轉(zhuǎn)致動(dòng)器實(shí)現(xiàn)了額外的兩個(gè)旋轉(zhuǎn)方向主動(dòng)隔振能力。

對(duì)于QZS隔振器在大型車載設(shè)備中的應(yīng)用,CHEN等將三彈簧QZS隔振器應(yīng)用于大型車載光電設(shè)備,實(shí)現(xiàn)了20Hz以上90%的振動(dòng)隔離效果。對(duì)于礦卡等卡車,其駕駛室和車廂往往需要隔振裝置隔離來自車架的振動(dòng)。XU等[52]提出一種新型的半主動(dòng)QZS空氣懸架,如圖9(e)所示。該結(jié)構(gòu)由1個(gè)正剛度空氣彈簧、1對(duì)負(fù)剛度油缸和2個(gè)阻尼器組成,聯(lián)合仿真和試驗(yàn)結(jié)果表明:所提出的QZS半主動(dòng)空氣懸架能夠在很小的網(wǎng)絡(luò)通信負(fù)擔(dān)下,顯著提高商用車在不同工況下的多目標(biāo)性能。

3.2在路橋、建筑中的應(yīng)用

橋梁的過度振動(dòng)不僅會(huì)導(dǎo)致橋體本身被破壞,還會(huì)造成車輛和行人的通行危險(xiǎn)。為此,BOUNA等[53]利用多個(gè)QZS隔振器對(duì)多跨連續(xù)橋進(jìn)行振動(dòng)控制,如圖10(a)所示。結(jié)果表明:即使橋上存在移動(dòng)質(zhì)量,多個(gè)QZS隔振器仍然能夠有效抑制橋體低頻振動(dòng)。ATTARY等[54]設(shè)計(jì)了一種用于公路橋的QZS地震反應(yīng)控制裝置,如圖10(b)所示。該裝置由負(fù)剛度和正剛度結(jié)構(gòu)并聯(lián)而成,振動(dòng)臺(tái)測試表明其可以顯著降低地震激勵(lì)下的基礎(chǔ)剪力。

為了降低高樓在地震中的振動(dòng)幅值,避免傾覆與樓體被破壞,ZHOU等[55]設(shè)計(jì)了一種新型三維隔振器并將其用于高層建筑防震,如圖10(c)所示。其垂向?yàn)镼ZS結(jié)構(gòu),水平方向采用摩擦擺組合而成。結(jié)果表明:在最大考慮地震作用下,結(jié)構(gòu)的傾覆運(yùn)動(dòng)可控制在安全范圍內(nèi)。GUNER等[56]開發(fā)了一種有限局部共振多自由度單元地基,用于保證核反應(yīng)堆在地震下的安全性能,如圖 10(d)所示。其中的非線性層采用QZS隔振單元平面陣列得到,能夠?qū)Φ卣鸫怪陛d荷實(shí)現(xiàn)有效的隔離和耗散。

此外,DING等[57]采用兩個(gè)三彈簧QZS隔振器對(duì)流體輸送管道進(jìn)行振動(dòng)隔離,如圖10(e)所示。結(jié)果表明:該方法能夠有效隔離高頻激勵(lì)并且降低管道在低頻區(qū)的彎曲振動(dòng)。

3.3在航空航天工程中的應(yīng)用

通常的QZS隔振器不可展開且又大又重,這會(huì)增大在航空航天工程中的應(yīng)用成本。HAN等[58]受折紙啟發(fā)提出了一種可展開且輕量化的QZS結(jié)構(gòu),如圖11(a)所示。該結(jié)構(gòu)在合適的設(shè)計(jì)參數(shù)下能夠完全折疊且具有優(yōu)異的低頻隔振性能。DAI等[59]在衛(wèi)星平臺(tái)和捕獲機(jī)構(gòu)間安裝X型QZS結(jié)構(gòu),如圖11(b)所示,實(shí)現(xiàn)了在軌柔性捕獲,避免碰撞造成的航天器不穩(wěn)定甚至翻滾。結(jié)果表明:無論是在周期力還是在脈沖力下,加裝X型結(jié)構(gòu)后捕獲系統(tǒng)均具有更好的性能。YAN等[60]構(gòu)造了一種基于磁負(fù)剛度各線性彈簧正剛度的QZS結(jié)構(gòu),并且將其用于降低衛(wèi)星天線反射器在突然沖擊或低頻振動(dòng)激勵(lì)下的振動(dòng)水平,如圖11(c)所示。抑制天線的振動(dòng)避免了反射器結(jié)構(gòu)失真,保證了其性能和精度。

4結(jié)語

QZS非線性隔振器突破了傳統(tǒng)線性隔振中大靜態(tài)承載能力和低動(dòng)態(tài)剛度的矛盾,從而實(shí)現(xiàn)超低的有效隔振頻帶,為機(jī)械工程、土木工程、航空航天工程、車輛工程、交通運(yùn)輸工程、儀器儀表工程等領(lǐng)域的低頻隔振問題提供了有效的解決方案。本文綜述近20年來QZS隔振技術(shù)的研究進(jìn)展,重點(diǎn)概述了QZS隔振器的構(gòu)造方法、優(yōu)化及改進(jìn)設(shè)計(jì)及部分工程應(yīng)用。圍繞QZS的實(shí)現(xiàn)方法,QZS隔振器的構(gòu)造方法主要有3種:利用幾何非線性、利用可變性結(jié)構(gòu)和利用磁力非線性。這些方法通常通過設(shè)計(jì)負(fù)剛度組件再與線性正剛度組件并聯(lián)來實(shí)現(xiàn)QZS特性。本文從多方向隔振設(shè)計(jì)、拓寬QZS范圍和多級(jí)承載能力設(shè)計(jì)等方面綜合闡述了可進(jìn)一步提升QZS隔振器性能和拓寬QZS隔振器應(yīng)用場景的前沿技術(shù),并討論了QZS隔振器的工程應(yīng)用情況。

盡管QZS隔振器已經(jīng)取得了許多研究成果,但仍有一些問題尚未解決。因此,提出如下QZS隔振器今后極具潛力的發(fā)展方向。

1)高性能緊湊QZS隔振器的設(shè)計(jì)。現(xiàn)有的QZS隔振器往往體積較大,且空間能量密度低。為了加速Q(mào)ZS低頻隔振技術(shù)的工程應(yīng)用進(jìn)程,高性能緊湊QZS隔振器需要進(jìn)一步研究。

2)小型化、集成化QZS隔振單元的設(shè)計(jì)。工程中常需要對(duì)連續(xù)柔性結(jié)構(gòu)進(jìn)行振動(dòng)控制,通過QZS微單元的周期排列形成連續(xù)隔振層,極具應(yīng)用潛力。此外,將QZS微單元融合進(jìn)結(jié)構(gòu)本身而不是采用附加QZS結(jié)構(gòu)的形式更利于工程應(yīng)用。未來應(yīng)考慮QZS微單元的開發(fā)。

3)高魯棒性和高可靠性QZS隔振器設(shè)計(jì)。QZS隔振器作為非線性系統(tǒng),在極端條件下可能會(huì)出現(xiàn)不確定動(dòng)力學(xué)行為,造成隔振失效。此外,QZS隔振器可能存在熱、聲、電、磁耦合等多物理場,需要較高可靠性。因此,提高QZS隔離器的魯棒性和可靠性需要進(jìn)一步研究。

4)QZS隔振和能量采集協(xié)同設(shè)計(jì)。隔振意味著在傳遞路徑上隔離輸入隔振對(duì)象的動(dòng)能,而通過在能量傳遞路徑上加入電磁、壓電、摩擦電等能量轉(zhuǎn)換裝置,將部分動(dòng)能轉(zhuǎn)換為電能,從而也能實(shí)現(xiàn)減少輸入隔振對(duì)象能量的功能。產(chǎn)生的電能可以維持設(shè)備運(yùn)行或用于自供電隔振器。如何協(xié)同隔振性能和采集能量兩個(gè)目標(biāo)也值得進(jìn)一步研究。

參考文獻(xiàn):

[1] ZHANG T L,SHI D P,WANG Z,et al. Vibration-based structural damage detection via phase-based motion estimation using convolutional neural networks[J]. Mechanical Systems and Signal Processing,2022,178:109320.

[2] YUN H,LIU L,LI Q,et al. Development of an isotropic Stewart platform for telescope secondary mirror[J]. Mechanical Systems and Signal Processing,2019,127:328-344.

[3] WU K,LIU Z W,DING Q,et al. Vibration responses of rotor systems in diesel multiple units under dynamic spatial misalignments and base motions[J]. Journal of Sound and Vibration,2021,492:115817.

[4] BAI B,LI H,ZHANG W,et al. Application of extremum response surface method-based improved substructure component modal synthesis in mistuned turbine bladed disk[J]. Journal of Sound and Vibration,2020,472:115210.

[5] ZENG R,YIN S,WEN G L,et al. A non-smooth quasi-zero-stiffness isolator with displacement constraints[J]. International Journal of Mechanical Sciences,2022,225:107351.

[6] SUN X J,ZHANG C,F(xiàn)U Q D,et al. Measurement and modelling for harmonic dynamic characteristics of a liquid-filled isolator with a rubber element and high-viscosity silicone oil at low frequency[J]. Mechanical Systems and Signal Processing,2020,140:106659.

[7] JIANG X H,GUO M X,LI B Z. Active control of high-frequency tool-workpiece vibration in micro-grinding[J]. "The International Journal of Advanced Manufacturing Technology,2018,94(1):1429-1439.

[8] WANG X J,LIU H,CHEN Y Q,et al. Beneficial stiffness design of a high-static-low-dynamic-stiffness vibration isolator based on static and dynamic analysis[J]. International Journal of Mechanical Sciences,2018,142/143:235-244.

[9] LIU X T,HUANG X C,HUA H X. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector[J]. Journal of Sound and Vibration,2013,332(14):3359-3376.

[10] CHEN Z B,YU S B,WANG B,et al. The research about application of quasi-zero stiffness vibration isolation technology in a large vehicle-mounted optic-electronic equipment[J]. Ain Shams Engineering Journal,2023,14(2):101841.

[11] CARRELLA A,BRENNAN M J,WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound Vibration,2007,301(3/4/5):678-689.

[12] ZHAO F,JI J C,YE K,et al. An innovative quasi-zero stiffness isolator with three pairs of oblique springs[J]. International Journal of Mechanical Sciences,2021,192:106093.

[13] ZHOU J X,WANG X L,XU D L,et al. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms[J]. Journal of Sound Vibration,2015,346:53-69.

[14] LI M,CHENG W,XIE R L. Design and experiments of a quasi-zero-stiffness isolator with a noncircular cam-based negative-stiffness mechanism[J]. Journal of Vibration and Control,2020,26(21/22):1935-1947.

[15] BIAN J,JING X J. Analysis and design of a novel and compact X-structured vibration isolation mount (X-mount) with wider quasi-zero-stiffness range[J]. Nonlinear Dynamics,2020,101(4):2195-2222.

[16] YE K,JI J C. An origami inspired quasi-zero stiffness vibration isolator using a novel truss-spring based stack Miura-ori structure[J]. Mechanical Systems and Signal Processing,2022,165:108383.

[17] LIU S W,PENG G L,LI Z X,et al. Low-frequency vibration isolation via an elastic origami-inspired structure[J]. International Journal of Mechanical Sciences,2023,260:108622.

[18] YU K F,CHEN Y W,YU C Y,et al. Origami-inspire quasi-zero stiffness structure for flexible low-frequency vibration isolation[J]. International Journal of Mechanical Sciences,2024,276:109377.

[19] LING P,MIAO L L,ZHANG W M,et al. Cockroach-inspired structure for low-frequency vibration isolation[J]. Mechanical Systems and Signal Processing,2022,171:108955.

[20] PU H Y,LIU J,WANG M,et al. Bio-inspired quasi-zero stiffness vibration isolator with quasilinear negative stiffness in full stroke[J]. Journal of Sound Vibration,2024,574:118240.

[21]HUANG X C,LIU X T,HUA H X. On the characteristics of an ultra-low frequency nonlinear isolator using sliding beam as negative stiffness[J]. Journal of Mechanical Science and Technology,2014,28(3):813-822.

[22] QI W H,YAN G,LU J J,et al. Magnetically modulated sliding structure for low frequency vibration isolation[J]. Journal of Sound Vibration,2022,526:116819.

[23] YU K F,CHEN Y W,YU C Y,et al. A compact nonlinear stiffness-modulated structure for low-frequency vibration isolation under heavy loads[J]. Nonlinear Dynamics,2024,112(8):5863-5893.

[24] DALELA S,BALAJI P S,JENA D P. Design of a metastructure for vibration isolation with quasi-zero-stiffness characteristics using bistable curved beam[J]. Nonlinear Dynamics,2022,108(3):1931-1971.

[25] FENG X,F(xiàn)ENG J,AN E T,et al. Palm petiole inspired nonlinear anti-vibration ring with deformable crescent-shaped cross-section[J]. Nonlinear Dynamics,2024,112(9):6919-6945.

[26] HOU S,WEI J Z. A quasi-zero stiffness mechanism with monolithic flexible beams for low-frequency vibration isolation[J]. Mechanical Systems and Signal Processing,2024,210:111154.

[27] ZHANG F,XU M L,SHAO S B,et al. A new high-static-low-dynamic stiffness vibration isolator based on magnetic negative stiffness mechanism employing variable reluctance stress[J]. Journal of Sound and Vibration,2020,476:115322.

[28] XU D L,YU Q P,ZHOU J X,et al. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound Vibration,2013,332(14):3377-3389.

[29] YAN B,MA H Y,ZHANG L,et al. A bistable vibration isolator with nonlinear electromagnetic shunt damping[J]. Mechanical Systems and Signal Processing,2020,136:106504.

[30] PU H Y,YUAN S J,PENG Y,et al. Multi-layer electromagnetic spring with tunable negative stiffness for semi-active vibration isolation[J]. Mechanical Systems and Signal Processing,2019,121:942-960.

[31] LENG D X,F(xiàn)ENG W H,NING D H,et al. Analysis and design of a semi-active X-structured vibration isolator with magnetorheological elastomers[J]. Mechanical Systems and Signal Processing,2022,181:109492.

[32] FENG X,JING X J. Human body inspired vibration isolation:beneficial nonlinear stiffness,nonlinear damping amp; nonlinear inertia[J]. Mechanical Systems and Signal Processing,2019,117:786-812.

[33] YANG T,CAO Q J,LI Q Q,et al. A multi-directional multi-stable device:modeling,experiment verification and applications[J]. Mechanical Systems and Signal Processing,2021,146:106986.

[34] LIU T,LI A Q,ZHANG H Y. Quasi-zero stiffness interval optimization design and dynamics analysis of a new bi-directional horizontal isolation system[J]. Mechanical Systems and Signal Processing,2024,206:110852.

[35] ZHANG Q L,XIA S Y,XU D L,et al. A torsion–translational vibration isolator with quasi-zero stiffness[J]. Nonlinear Dynamics,2020,99(2):1467-1488.

[36] SUN X T,JING X J. Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity[J]. Mechanical Systems and Signal Processing,2015,62:149-163.

[37] CHAI Y Y,JING X J. Low-frequency multi-direction vibration isolation via a new arrangement of the X-shaped linkage mechanism[J]. Nonlinear Dynamics,2022,109(4):2383-2421.

[38] ZHU T,CAZZOLATO B,ROBERTSON W S P,et al. Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation[J]. Journal of Sound Vibration,2015,358:48-73.

[39] WANG M,HU Y Y,SUN Y,et al. An adjustable low-frequency vibration isolation Stewart platform based on electromagnetic negative stiffness[J]. International Journal of Mechanical Sciences,2020,181:105714.

[40] LIU C R,YU K P,PANG S W. A novel eight-legged vibration isolation platform with dual-pyramid-shape struts[J]. Meccanica,2019,54(6):873-899.

[41] ZHOU J X,XIAO Q Y,XU D L,et al. A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform[J]. Journal of Sound and Vibration,2017,394:59-74.

[42] YAO Y H,LI H G,LI Y,et al. Analytical and experimental investigation of a high-static-low-dynamic stiffness isolator with cam-roller-spring mechanism[J]. International Journal of Mechanical Sciences,2020,186:105888.

[43] SHI W J,LIU W Q,HUA C R,et al. Wide quasi-zero stiffness region isolator with decoupled high static and low dynamic stiffness[J]. Mechanical Systems and Signal Processing,2024,215:111452.

[44] ZHOU C Y,SUI G D,CHEN Y F,et al. A nonlinear low frequency quasi zero stiffness vibration isolator using double-arc flexible beams[J]. International Journal of Mechanical Sciences,2024,276:109378.

[45] LIU L X,CHAI Y Y,GUO Z K,et al. A novel isolation system with enhanced QZS properties for supporting multiple loads[J]. Aerospace Science and Technology,2023,143:108719.

[46] ZHENG Y W,SHANGGUAN W B,YIN Z H,et al. Design and modeling of a quasi-zero stiffness isolator for different loads[J]. Mechanical Systems and Signal Processing,2023,188:110017.

[47] YE K,JI J C,BROWN T. Design of a quasi-zero stiffness isolation system for supporting different loads[J]. Journal of Sound Vibration,2020,471:115198.

[48] LI Y L,WU Z Y,PENG Y,et al. Full-band vibration isolation of multi-step quasi-zero stiffness systems[J]. International Journal of Mechanical Sciences,2024,274:109277.

[49] LE T D,AHN K K. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat[J]. Journal of Sound Vibration,2011,330(26):6311-6335.

[50] LIAO X,ZHANG N,DU X F,et al. Theoretical modeling and vibration isolation performance analysis of a seat suspension system based on a negative stiffness structure[J]. Applied Sciences,2021,11(15):6928.

[51] DU H. Advanced seat suspension control system design for heavy duty vehicles[M]. London:Academic Press,2020.

[52] XU X,JIANG X W,CHEN L,et al. Semi-active control of a new quasi-zero stiffness air suspension for commercial vehicles based on event-triggered[J]. Nonlinear Dynamics,2023,111(13):12161-12180.

[53] BOUNA H S,NANA NBENDJO B R,WOAFO P. Isolation performance of a quasi-zero stiffness isolator in vibration isolation of a multi-span continuous beam bridge under pier base vibrating excitation[J]. Nonlinear Dynamics,2020,100(2):1125-1141.

[54] ATTARY N,SYMANS M,NAGARAJAIAH S,et al. Numerical simulations of a highway bridge structure employing passive negative stiffness device for seismic protection[J]. Earthquake Engineering amp; Structural Dynamics,2015,44(6):973-995.

[55] ZHOU Y,CHEN P,MOSQUEDA G. Numerical studies of three-dimensional isolated structures with vertical quasi-zero stiffness property[J]. Journal of Earthquake Engineering,2022,26(7):3601-3622.

[56] GUNER T,BURSI O S,ERLICHER S. Optimization and performance of metafoundations for seismic isolation of small modular reactors[J]. Computer-Aided Civil and Infrastructure Engineering,2023,38(12):1558-1582.

[57] DING H,JI J C,CHEN L Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics[J]. Mechanical Systems and Signal Processing,2019,121:675-688.

[58] HAN H S,SOROKIN V,TANG L H,et al. Lightweight origami isolators with deployable mechanism and quasi-zero-stiffness property[J]. Aerospace Science and Technology,2022,121:107319.

[59] DAI H H,CAO X Y,JING X J,et al. Bio-inspired anti-impact manipulator for capturing non-cooperative spacecraft:theory and experiment[J]. Mechanical Systems and Signal Processing,2020,142:106785.

[60] YAN B,LING P,ZHOU Y L,et al. Shock isolation characteristics of a bistable vibration isolator with tunable magnetic controlled stiffness[J]. Journal of Vibration and Acoustics,2022,144(2):021008.

收稿日期:20240906

基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(52275092)

第一作者簡介:張建潤 (1962—),男,江蘇鎮(zhèn)江人,教授, 博導(dǎo),中國機(jī)械動(dòng)力學(xué)學(xué)會(huì)常務(wù)理事,江蘇省振動(dòng)工程學(xué)會(huì)常務(wù)理事,江蘇省數(shù)控機(jī)床中心副主任。近年來先后承擔(dān)、參與了歐共體項(xiàng)目、大量國家、部省和地方的自然科學(xué)基金、重大專項(xiàng)項(xiàng)目、863項(xiàng)目等。長期從事機(jī)械動(dòng)力學(xué)、噪聲與振動(dòng)控制、結(jié)構(gòu)動(dòng)態(tài)設(shè)計(jì)與優(yōu)化等研究,發(fā)表SCI及EI收錄論文80余篇,撰寫教材3部,獲得省、部級(jí)獎(jiǎng)10余項(xiàng),擁有10多項(xiàng)發(fā)明專利,zhangjr@seu.edu.cn。

猜你喜歡
工程應(yīng)用發(fā)展趨勢
聯(lián)梁型鋼大跨度懸挑腳手架技術(shù)在工程中的應(yīng)用
基于EDA平臺(tái)支撐的軌道交通信控專業(yè)電子技術(shù)課程教學(xué)
試論當(dāng)前國際金融的形勢與發(fā)展趨勢
國有企業(yè)經(jīng)濟(jì)市場條件下營銷戰(zhàn)略發(fā)展
論企業(yè)管理模式與企業(yè)管理現(xiàn)代化
快速原型技術(shù)在機(jī)械制造中的應(yīng)用及發(fā)展趨勢
鄉(xiāng)鎮(zhèn)配網(wǎng)規(guī)劃及未來發(fā)展趨勢
分析我國品牌營銷的管理及發(fā)展問題
中國市場(2016年35期)2016-10-19 01:55:52
一種適用于輸電線路跨線牽引無人機(jī)的飛行方案設(shè)計(jì)
科技視界(2016年22期)2016-10-18 14:30:27
材料專業(yè)工程應(yīng)用式畢業(yè)設(shè)計(jì)改革
科技視界(2016年20期)2016-09-29 11:24:32
瑞昌市| 浦江县| 武安市| 宜丰县| 东乡县| 河北省| 景谷| 兴隆县| 麻阳| 九寨沟县| 秦安县| 灵武市| 兴仁县| 洮南市| 平远县| 新干县| 基隆市| 花莲县| 明光市| 溧阳市| 玉林市| 三原县| 通江县| 湟源县| 越西县| 防城港市| 阳春市| 丰顺县| 永丰县| 库伦旗| 赤城县| 方城县| 东光县| 荆门市| 应用必备| 永登县| 夏邑县| 肃北| 渭源县| 叶城县| 彭水|