国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

旋轉(zhuǎn)式電子多臂開(kāi)口提選綜凸輪協(xié)同反求與數(shù)值實(shí)現(xiàn)

2024-12-31 00:00:00邱海飛
現(xiàn)代紡織技術(shù) 2024年8期
關(guān)鍵詞:綜框二分法協(xié)同

摘 要:針對(duì)高速電子多臂開(kāi)口復(fù)雜的機(jī)械控制構(gòu)成,通過(guò)旋轉(zhuǎn)式多臂機(jī)的功能原理解析和數(shù)值運(yùn)算,實(shí)現(xiàn)提綜變速系統(tǒng)與選綜控制單元驅(qū)動(dòng)凸輪的協(xié)同設(shè)計(jì)。將擺線修正等速運(yùn)動(dòng)規(guī)律應(yīng)用于滑塊架回轉(zhuǎn)輸出,利用Matlab對(duì)提綜共軛凸輪工作輪廓進(jìn)行設(shè)計(jì)計(jì)算,結(jié)果顯示:當(dāng)滑塊架預(yù)設(shè)停頓角度為25°時(shí),主、副凸輪最大壓力角約為40.8°,提綜擺臂行程角約為41.2°,滿足旋轉(zhuǎn)變速模式下的提綜工藝要求。采用“二分法”對(duì)提綜與選綜配合參數(shù)進(jìn)行迭代計(jì)算,確定大轉(zhuǎn)盤安全轉(zhuǎn)角約為38.79°、選綜凸輪升程角與回程角約為83°。根據(jù)選綜機(jī)構(gòu)條件及控制要求,構(gòu)建基于五次多項(xiàng)式的擺桿運(yùn)動(dòng)規(guī)律,并在Matlab環(huán)境下計(jì)算生成選綜共軛凸輪理論輪廓曲線。從數(shù)值分析層面驗(yàn)證了提選綜凸輪的運(yùn)動(dòng)配合機(jī)制,為高精度電子多臂開(kāi)口的協(xié)同設(shè)計(jì)與開(kāi)發(fā)提供了一定理論參考。

關(guān)鍵詞:多臂開(kāi)口;二分法;共軛凸輪;綜框;協(xié)同;安全角;Matlab

中圖分類號(hào):TS103.1;TH122

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1009-265X(2024)08-0091-09

收稿日期:20231106

網(wǎng)絡(luò)出版日期:20240226

基金項(xiàng)目:陜西省教育廳專項(xiàng)科研計(jì)劃資助項(xiàng)目(15JK2177);西京學(xué)院高層次人才專項(xiàng)基金資助項(xiàng)目(XJ20B09);西京學(xué)院橫向課題資助項(xiàng)目(2018610002001389)

作者簡(jiǎn)介:邱海飛(1983—),男,陜西西安人,副教授,碩士,主要從事機(jī)械系統(tǒng)動(dòng)態(tài)設(shè)計(jì)、機(jī)電產(chǎn)品數(shù)字化設(shè)計(jì)與開(kāi)發(fā)方面的研究。

旋轉(zhuǎn)式多臂機(jī)(又稱電子龍頭)是一種先進(jìn)的高速電子開(kāi)口裝置。相對(duì)于傳統(tǒng)復(fù)動(dòng)式多臂機(jī),這種基于電子控制的

多臂開(kāi)口具有結(jié)構(gòu)緊湊、效率高及穩(wěn)定性好等諸多優(yōu)點(diǎn),不僅可同時(shí)配置16~20組提綜臂,而且能夠通過(guò)獨(dú)立控制多組綜框來(lái)滿足復(fù)雜織物樣式(如小提花)的織造要求[1。作為重要的紡織機(jī)械配套裝備,旋轉(zhuǎn)式電子多臂開(kāi)口目前已廣泛應(yīng)用于各類現(xiàn)代高速織造。

根據(jù)旋轉(zhuǎn)式多臂開(kāi)口機(jī)體功能與系統(tǒng)構(gòu)成,通??蓪⑵鋭澐譃?大組成部分,即電控設(shè)備模塊、提綜模塊、電磁鐵控制模塊及選綜模塊[2。通過(guò)綜合控制與協(xié)調(diào)這些功能模塊之間的配合關(guān)系,即可按照織造要求實(shí)現(xiàn)不同工況下的多臂開(kāi)口工藝。近年來(lái),為適應(yīng)現(xiàn)代織機(jī)的高速高精化發(fā)展趨勢(shì),對(duì)多臂機(jī)提綜與選綜環(huán)節(jié)的設(shè)計(jì)控制要求愈加嚴(yán)苛。為精確控制多組綜框的升降運(yùn)動(dòng),當(dāng)前旋轉(zhuǎn)式電子多臂開(kāi)口在提綜和選綜單元均采用凸輪驅(qū)動(dòng),如何設(shè)計(jì)具有良好動(dòng)力特性的高精度提綜凸輪與選綜凸輪,一直是高速旋轉(zhuǎn)式多臂機(jī)的開(kāi)發(fā)難點(diǎn)3。以往針對(duì)提綜與選綜系統(tǒng)的探究主要集中在凸輪機(jī)構(gòu)動(dòng)力學(xué)分析、運(yùn)動(dòng)規(guī)律仿真及性能優(yōu)化等方面,如浙江理工大學(xué)的高大牛等[4、天津工業(yè)大學(xué)的金國(guó)光等5,已在旋轉(zhuǎn)式電子多臂開(kāi)口提選綜凸輪的設(shè)計(jì)研究方面做了大量工作,而且獲得了不少具有重要價(jià)值的研究成果和經(jīng)驗(yàn)方法。

在旋轉(zhuǎn)式多臂開(kāi)口運(yùn)行過(guò)程中,提綜與選綜系統(tǒng)對(duì)于綜框的運(yùn)動(dòng)控制是相輔相成的,所以必須從工藝層面同時(shí)考慮提選綜凸輪的配合關(guān)系。然而,以往研究多將提綜與選綜單元獨(dú)立分開(kāi)進(jìn)行設(shè)計(jì)建?;蚍抡娣治?,而在“提綜與選綜”凸輪的聯(lián)合設(shè)計(jì)與協(xié)同開(kāi)發(fā)方面的探索則相對(duì)較少,不利于提升電子多臂開(kāi)口的研發(fā)效率和整機(jī)可靠性。本文結(jié)合電子多臂開(kāi)口的系統(tǒng)構(gòu)成和運(yùn)行原理,深入分析旋轉(zhuǎn)式電子多臂機(jī)的提選綜模塊及其配合機(jī)制,并利用Matlab對(duì)提綜凸輪與選綜凸輪進(jìn)行聯(lián)合反求,成功構(gòu)建基于數(shù)值運(yùn)算的高精度共軛凸輪輪廓曲線,可為復(fù)雜機(jī)織物及其織造設(shè)備的設(shè)計(jì)開(kāi)發(fā)提供有力支持。

1 旋轉(zhuǎn)變速系統(tǒng)

變速系統(tǒng)是電子多臂機(jī)實(shí)現(xiàn)動(dòng)力轉(zhuǎn)化的執(zhí)行基礎(chǔ)。在旋轉(zhuǎn)變速模式下,電子多臂開(kāi)口可根據(jù)花紋組織精準(zhǔn)控制多頁(yè)綜框的升降次序。旋轉(zhuǎn)式提綜變速系統(tǒng)簡(jiǎn)圖如圖1所示,其結(jié)構(gòu)主要由共軛凸輪機(jī)構(gòu)(2、3、4、6、7)、偏心盤控制單元(5、8、9)和提綜臂(10)3部分組成[6。為有序控制多組綜框的提紗運(yùn)動(dòng),旋轉(zhuǎn)多臂開(kāi)口采用大轉(zhuǎn)盤1作為動(dòng)力輸入,當(dāng)其以角速度ω繞O1點(diǎn)進(jìn)行逆時(shí)針勻速回轉(zhuǎn)時(shí),與之鉸接的擺臂2亦發(fā)生同步回轉(zhuǎn)。

由于共軛凸輪與機(jī)架固接保持靜止,所以擺臂2在回轉(zhuǎn)過(guò)程中還通過(guò)轉(zhuǎn)子3、4與主凸輪7、副凸輪6發(fā)生形鎖合,并以O(shè)2點(diǎn)為中心作往復(fù)擺動(dòng)。與此同時(shí),滑塊架5和偏心盤8在擺臂2驅(qū)動(dòng)下產(chǎn)生變速回轉(zhuǎn)運(yùn)動(dòng),并通過(guò)盤形連桿9將動(dòng)力傳遞至提綜臂10,使其繞O3點(diǎn)作往復(fù)擺動(dòng),進(jìn)而以變速輸出實(shí)現(xiàn)綜框的往復(fù)開(kāi)口運(yùn)動(dòng)。為平衡機(jī)構(gòu)轉(zhuǎn)動(dòng)慣量,減輕旋轉(zhuǎn)變速過(guò)程中的振動(dòng)沖擊,實(shí)際應(yīng)用時(shí)往往采用對(duì)稱共軛凸輪布局[7,即在旋轉(zhuǎn)變速系統(tǒng)內(nèi)部按照180°相位差對(duì)稱配裝一套相同的凸輪擺臂。

2 提綜共軛凸輪反求

2.1 滑塊架運(yùn)動(dòng)規(guī)律

為避免多臂開(kāi)口系統(tǒng)

產(chǎn)生過(guò)大慣性沖擊,應(yīng)使綜框運(yùn)動(dòng)在無(wú)突變前提下盡量具備較小的速度和加速度[8??紤]到滑塊架輸出速度的穩(wěn)定性,本文采用擺線修正等速運(yùn)動(dòng)規(guī)律驅(qū)動(dòng)提綜臂,擺線修正等速運(yùn)動(dòng)位移規(guī)律示意圖如圖2所示。這種規(guī)律可使旋轉(zhuǎn)變速系統(tǒng)輸出部分勻速運(yùn)動(dòng),有利于減輕提綜過(guò)程的振動(dòng)和噪聲。

在旋轉(zhuǎn)變速系統(tǒng)中,0°~12.5°為靜止區(qū)段1,12.5°~42.5°為加速區(qū)段,42.5°~137.5°為等速區(qū)段,137.5°~167.5°為減速區(qū)段,167.5°~180°為靜止區(qū)段2。綜上可知,在大轉(zhuǎn)盤轉(zhuǎn)過(guò)180°過(guò)程中,滑塊架運(yùn)動(dòng)共包含兩次停頓,且每次停頓角度為12.5°。根據(jù)圖2中擺線修正等速運(yùn)動(dòng)位移規(guī)律,在0°~180°區(qū)間內(nèi)構(gòu)建滑塊架角運(yùn)動(dòng)方程[9,如式(1)—(5)所示:

式中:θ為大轉(zhuǎn)盤在擺線修正等速運(yùn)動(dòng)規(guī)律中的總轉(zhuǎn)角,155°;θ1為大轉(zhuǎn)盤在加速區(qū)段轉(zhuǎn)角,30°;θ2為大轉(zhuǎn)盤在減速區(qū)段轉(zhuǎn)角,30°;Φ為大轉(zhuǎn)盤從初始位置勻速轉(zhuǎn)過(guò)角度(即輸入運(yùn)動(dòng)旋轉(zhuǎn)角),[0°,180°];αi為滑塊架在不同運(yùn)動(dòng)區(qū)段的輸出轉(zhuǎn)角(i=1,2,3,4,5);h為滑塊架在擺線修正等速運(yùn)動(dòng)規(guī)律中的總轉(zhuǎn)角(即滑塊架轉(zhuǎn)動(dòng)行程角),180°;h1、h2為滑塊架在加速區(qū)段和減速區(qū)段的轉(zhuǎn)角,且h1=h2=21.6°,其計(jì)算方法如式(6)、式(7)所示:

根據(jù)式(1)—(7),利用Matlab編寫運(yùn)算設(shè)計(jì)程序,構(gòu)建如圖3所示滑塊架角運(yùn)動(dòng)曲線。對(duì)比圖2(a)—(c)可知,滑塊架角運(yùn)動(dòng)曲線起伏平緩、過(guò)渡光滑,且角速度、角加速度變化無(wú)突變,說(shuō)明滑塊架回轉(zhuǎn)輸出運(yùn)動(dòng)平穩(wěn)。同時(shí),在主軸回轉(zhuǎn)一周過(guò)程中,滑塊架分別在347.5°~12.5°和167.5°~192.5°區(qū)段處于靜止?fàn)顟B(tài),而且每次滑塊架停頓角度相對(duì)較大(約25°),有利于穩(wěn)定梭口和執(zhí)行引緯運(yùn)動(dòng)。

在一個(gè)旋轉(zhuǎn)變速周期內(nèi)(0~360°),滑塊架按照“靜止—加速—等速—減速—靜止”規(guī)律形成兩次開(kāi)口,其躍度曲線如圖4所示。從圖4可以看到,滑塊架躍度曲線存在多個(gè)有限極值,且曲線整體變化連續(xù)無(wú)突變,可見(jiàn)提綜變速系統(tǒng)具有良好的綜合運(yùn)動(dòng)性能,符合擺線修正等速運(yùn)動(dòng)規(guī)律設(shè)計(jì)預(yù)期。

2.2 擺臂運(yùn)動(dòng)規(guī)律

提綜變速系統(tǒng)主要由共軛凸輪與搖桿滑塊機(jī)構(gòu)組合而成,如圖5所示,當(dāng)大轉(zhuǎn)盤以恒定角速度ω輸入一個(gè)旋轉(zhuǎn)角Φ時(shí),滑塊架在擺臂驅(qū)動(dòng)下將以變角速度ω(t)對(duì)應(yīng)輸出一個(gè)旋轉(zhuǎn)角α,兩者關(guān)系如式(8)、式(9)所示:

?=ωt(8)

α=f(?)(9)

比較式(8)、式(9)可知,滑塊架轉(zhuǎn)角α是以大轉(zhuǎn)盤轉(zhuǎn)角Φ為中間變量、時(shí)間t為自變量的復(fù)合函數(shù)。

根據(jù)圖5中的機(jī)構(gòu)原理與幾何關(guān)系,可以推導(dǎo)出擺臂角運(yùn)動(dòng)規(guī)律[10,如式(10)所示:

式中:L1為滑塊架O1B的長(zhǎng)度,58 mm;L2為大轉(zhuǎn)盤中心至擺臂鉸接點(diǎn)距離O1O2,116 mm。由式(10)可知,擺臂角位移Ψ是以α、Φ為自變量的反正切函數(shù)。

將滑塊架角運(yùn)動(dòng)方程依次代入式(10),在Matlab環(huán)境下編程構(gòu)建擺臂角運(yùn)動(dòng)規(guī)律,如圖6所示,在[0,360°]區(qū)間內(nèi),當(dāng)大轉(zhuǎn)盤以角速度ω完成一個(gè)勻速回轉(zhuǎn)周期時(shí),擺臂將以正弦簡(jiǎn)諧規(guī)律沿共軛凸輪廓形發(fā)生往復(fù)擺動(dòng),且其最大擺角約41.2°。

2.3 主、副凸輪輪廓

根據(jù)擺臂角運(yùn)動(dòng)規(guī)律和旋轉(zhuǎn)變速系統(tǒng)結(jié)構(gòu)動(dòng)力參數(shù),可求出主、副凸輪理論廓線方程,如式(11)、式(12)所示[11

式中:(xp1, yp1)為主凸輪理論廓線點(diǎn)坐標(biāo);(xa1, ya1)為副凸輪理論廓線點(diǎn)坐標(biāo);L3、L4為主、副擺臂長(zhǎng)度,56.5 mm;β1、β2為主、副擺臂安裝角,53°。

考慮到旋轉(zhuǎn)變速系統(tǒng)的對(duì)稱性,在求出0°~180°區(qū)間內(nèi)的運(yùn)動(dòng)規(guī)律α=f(Φ)后,對(duì)其加上180°相位差即可獲得180°~360°區(qū)間內(nèi)的運(yùn)動(dòng)規(guī)律,對(duì)此不予贅述。根據(jù)式(11)、(12),利用Matlab編程構(gòu)建共軛凸輪理論輪廓曲線,如圖7所示。對(duì)比分析可知,主、副凸輪具有相似的理論輪廓,其輪廓向徑介于74.7~113.8 mm之間,因此,主、副凸輪理論廓線的基圓半徑均為74.7 mm。

為保證提綜變速系統(tǒng)順利實(shí)現(xiàn)動(dòng)力傳遞,應(yīng)使共軛凸輪壓力角符合傳動(dòng)設(shè)計(jì)要求,如圖8所示,主、副凸輪最大壓力角約40.8°,滿足推程階段的擺動(dòng)滾子從動(dòng)件凸輪機(jī)構(gòu)許用壓力角[α]=40°~50°,所以提綜共軛凸輪具有良好的動(dòng)力傳遞特性。

以滾子半徑r0=16 mm為參考,分別對(duì)主、副凸輪理論廓線進(jìn)行等距偏移,即可得到共軛凸輪實(shí)際工作輪廓,如圖9(a)、(b)所示,為內(nèi)偏移狀態(tài)下的主、副凸輪實(shí)際輪廓曲線,其最小曲率半徑約32 mm。由機(jī)構(gòu)學(xué)理論可知,凸輪曲率半徑越小,其輪廓曲線變化越大,能夠?qū)崿F(xiàn)的運(yùn)動(dòng)軌跡控制精度也就越高12

3 選綜-提綜配合計(jì)算

3.1 選綜實(shí)現(xiàn)原理

在旋轉(zhuǎn)多臂開(kāi)口織造過(guò)程中,為使多組綜框能在提升狀態(tài)下保持一定時(shí)間停留,需要通過(guò)選綜系統(tǒng)驅(qū)動(dòng)偏心盤控制單元來(lái)有選擇性地執(zhí)行提綜運(yùn)動(dòng)[13。相對(duì)于提綜變速機(jī)構(gòu),選綜系統(tǒng)具有更為復(fù)雜的機(jī)械控制構(gòu)成,如圖10所示。該系統(tǒng)主要包括選綜凸輪機(jī)構(gòu)和選綜控制單元兩部分,其中選綜凸輪通過(guò)主軸9與大轉(zhuǎn)盤固定連接,并可在大轉(zhuǎn)盤同步驅(qū)動(dòng)下使擺臂按照一定規(guī)律實(shí)現(xiàn)選綜控制。

選綜控制單元主要通過(guò)控制離合爪11的位置狀態(tài)來(lái)實(shí)現(xiàn)對(duì)提綜臂7的運(yùn)動(dòng)控制,即:當(dāng)離合爪11卡入驅(qū)動(dòng)盤8上的凹槽時(shí),偏心盤10與驅(qū)動(dòng)盤8將隨主軸9進(jìn)行同步旋轉(zhuǎn)運(yùn)動(dòng),進(jìn)而使提綜臂7發(fā)生擺動(dòng);當(dāng)離合爪11未與驅(qū)動(dòng)盤8發(fā)生卡合時(shí),偏心盤10與驅(qū)動(dòng)盤8處于分離狀態(tài),在此條件下,由于主軸1轉(zhuǎn)動(dòng)不會(huì)影響偏心盤10的靜止?fàn)顟B(tài),所以提綜臂7亦不發(fā)生擺動(dòng)。

3.2 大轉(zhuǎn)盤安全轉(zhuǎn)角

根據(jù)多臂開(kāi)口選綜與提綜運(yùn)動(dòng)配合機(jī)理,旋轉(zhuǎn)變速系統(tǒng)和選綜凸輪均由大轉(zhuǎn)盤提供動(dòng)力輸入。為避免選綜機(jī)構(gòu)與提綜機(jī)構(gòu)發(fā)生機(jī)械碰撞或運(yùn)動(dòng)干涉,要求受控信號(hào)擺桿(5和12)與偏心盤10在選綜控制過(guò)程中的某一時(shí)段處于脫離狀態(tài),因此,必須對(duì)偏心盤10設(shè)定一個(gè)“安全轉(zhuǎn)角”[14。已知變量a=12.5°、b=42.5°、θ1=30°,則在式(2)基礎(chǔ)上,可將滑塊架加速區(qū)段的運(yùn)動(dòng)規(guī)律改寫為如式(13)所示形式:

令偏心盤安全角αs=12°,采用“二分法”求解大轉(zhuǎn)盤安全轉(zhuǎn)角Φs。“二分法”(又稱二分區(qū)間法)是一種基于區(qū)間不斷縮小的迭代方法,常被用于解決非線性方程求解、函數(shù)尋極值等數(shù)學(xué)問(wèn)題15,其實(shí)現(xiàn)流程如圖11所示:假設(shè)函數(shù)f(x)在區(qū)間[a,b]內(nèi)有根,在給定精度ε條件下對(duì)求根區(qū)間進(jìn)行二等分,并通過(guò)判斷f(a)f(x)的符號(hào)來(lái)確定零點(diǎn)所在區(qū)間,進(jìn)而將有根區(qū)間逐步縮小,直至求得符合精度要求的近似根。

將“二分法”求解精度設(shè)定在小數(shù)點(diǎn)后三位(即ε=0.001),利用Matlab編程對(duì)大轉(zhuǎn)盤安全轉(zhuǎn)角Φs進(jìn)行迭代計(jì)算,求得近似解:Φs≈38.79°。由此可知,當(dāng)大轉(zhuǎn)盤轉(zhuǎn)過(guò)約38.79°、偏心盤轉(zhuǎn)過(guò)12°時(shí),旋轉(zhuǎn)多臂開(kāi)口能夠順利實(shí)現(xiàn)選綜與提綜的配合控制。

4 選綜共軛凸輪反求

4.1 升程角與回程角

由選綜與提綜配合控制計(jì)算結(jié)果可知,當(dāng)大轉(zhuǎn)盤驅(qū)動(dòng)選綜共軛凸輪從近休角轉(zhuǎn)過(guò)約38.79°時(shí),受控信號(hào)擺桿與偏心盤必須符合“安全角”設(shè)定要求,假設(shè)此時(shí)所對(duì)應(yīng)的選綜凸輪擺桿從動(dòng)件轉(zhuǎn)角ζs=3°,則選綜凸輪升程角δ1的計(jì)算方法如式(14)所示[16

式中:h0為擺桿最大升程角,8°;δ1∈[3°,90°]。

在[3°,90°]區(qū)間內(nèi),設(shè)定求解精度ε=0.001,利用“二分法”對(duì)式(14)進(jìn)行迭代運(yùn)算,求出選綜凸輪升程角δ1=82.7351°。據(jù)此可知,當(dāng)δ1≥82.7351°時(shí),選綜凸輪機(jī)構(gòu)能夠正常完成選綜控制過(guò)程。令升程角等于回程角(即δ12=83°)。已知選綜共軛凸輪在0°~180°區(qū)間內(nèi)存在兩處近休停頓,即:0°~3°和177°~180°,則在0°~360°區(qū)間內(nèi),其單次近休角度為6°、單次遠(yuǎn)休角度為8°。

4.2 擺桿運(yùn)動(dòng)規(guī)律

考慮到選綜控制過(guò)程的平穩(wěn)性,將運(yùn)動(dòng)沖擊較小的五次多項(xiàng)式規(guī)律應(yīng)用于選綜共軛凸輪設(shè)計(jì)。由于選綜運(yùn)動(dòng)亦具有對(duì)稱性特征,所以只需構(gòu)建0°~180°區(qū)間內(nèi)的從動(dòng)件運(yùn)動(dòng)規(guī)律,如式(15)—(19)所示[9

式中:Φ為大轉(zhuǎn)盤轉(zhuǎn)角;ζi為擺桿角位移(i=1,2,3,4,5);h0為擺桿行程角,8°;δ1為升程角,83°;δ2為回程角,83°。對(duì)式(15)—(19)加上180°相位差后,即可獲得完整的選綜凸輪擺桿運(yùn)動(dòng)規(guī)律。

在Matlab環(huán)境下編程構(gòu)建選綜擺桿角運(yùn)動(dòng)規(guī)律,如圖12所示。分析可知,隨著凸輪軸在0~360°區(qū)間內(nèi)轉(zhuǎn)動(dòng)一周,擺桿從動(dòng)件按照“近休—升程—遠(yuǎn)休—回程”規(guī)律完成兩次往復(fù)擺動(dòng),如圖12(a)所示,其最大擺角約8°,符合擺桿運(yùn)動(dòng)規(guī)律預(yù)設(shè)條件。此外,擺桿角速度、角加速度峰值較小,且曲線光滑無(wú)突變,如圖12(b)、(c)所示,說(shuō)明選綜控制過(guò)程振動(dòng)沖擊較小,有利于旋轉(zhuǎn)式多臂開(kāi)口平穩(wěn)運(yùn)行。

4.3 凸輪輪廓曲線

選綜共軛凸輪由兩組同軸擺動(dòng)滾子從動(dòng)件凸輪機(jī)構(gòu)組合而成,其理論廓線方程如式(20)、式(21)所示[17

式中:(xp2,yp2)為主凸輪理論廓線點(diǎn)坐標(biāo);(xa2,ya2)為副凸輪理論廓線點(diǎn)坐標(biāo);Φ為大轉(zhuǎn)盤轉(zhuǎn)角;ζ為擺桿角位移;L5為凸輪中心距,203 mm;L6為主擺桿長(zhǎng)度,116 mm;L7為副擺桿長(zhǎng)度,113 mm;η1為主擺桿安裝角,46°;η2為副擺桿安裝角,52°。

將擺臂運(yùn)動(dòng)規(guī)律及相關(guān)設(shè)計(jì)參數(shù)分別代入理論廓線方程,通過(guò)Matlab編程計(jì)算主凸輪輪廓點(diǎn)坐標(biāo)(xp2,yp2)和副凸輪輪廓點(diǎn)坐標(biāo)(xa2,ya2),設(shè)計(jì)生成如圖13所示選綜共軛凸輪理論輪廓曲線。對(duì)比分析可知,主、副凸輪理論輪廓與橢圓類似,其基圓半徑分別為113.9 mm和110.8 mm。將主、副凸輪理論輪廓線以滾子半徑大小進(jìn)行等距偏移后,即可獲得選綜共軛凸輪實(shí)際工作輪廓。

5 結(jié)語(yǔ)

通過(guò)原理分析、機(jī)構(gòu)設(shè)計(jì)、理論推演、數(shù)值運(yùn)算及程序編譯等,實(shí)現(xiàn)了提綜變速凸輪與選綜控制凸輪的協(xié)同開(kāi)發(fā),明確了Matlab環(huán)境下的共軛凸輪反求設(shè)計(jì)思路與數(shù)值實(shí)現(xiàn)方法。結(jié)果表明:將擺線修正等速規(guī)律和五次多項(xiàng)式規(guī)律應(yīng)用于旋轉(zhuǎn)式電子多臂開(kāi)口,同時(shí)構(gòu)建基于“二分法”的提選綜凸輪協(xié)同配合運(yùn)算方案,能夠有效提升凸輪輪廓曲線的數(shù)值精度及可靠性,符合提綜變速系統(tǒng)與選綜控制單元的設(shè)計(jì)預(yù)期。本文研究?jī)H限于數(shù)值運(yùn)算范疇,后續(xù)工作可建模仿真

、CAE和樣機(jī)實(shí)驗(yàn)等方面開(kāi)展縱深探索,以期驗(yàn)證文中研究思路和設(shè)計(jì)方法的實(shí)踐可行性。

參考文獻(xiàn):

[1]周國(guó)慶,龔文強(qiáng),袁汝旺,等.旋轉(zhuǎn)式電子多臂提綜機(jī)構(gòu)運(yùn)動(dòng)特性分析[J].天津工業(yè)大學(xué)學(xué)報(bào),2019, 38(6): 58-62.

ZHOU Guoqing, GONG Wenqiang, YUAN Ruwang, et al. Kinematic characteristic analysis of rotary electronic dobby heald lifting mechanism[J]. Journal of Tiangong University, 2019, 38(6): 58-62.

[2]李志祥,沈毅,方圓,等.旋轉(zhuǎn)多臂機(jī)原理及其電子控制[J].絲綢技術(shù),1997(3):12-17.

LI Zhixiang, SHEN Yi, FANG Yuan, et al. Principle and electronic control of rotating dobby[J].Silk Technology, 1997(3):12-17.

[3]肖志濤,尹洪環(huán),于鴻彬,等.多臂機(jī)旋轉(zhuǎn)變速機(jī)構(gòu)凸輪廓線建模與重構(gòu)[J].紡織學(xué)報(bào),2020, 41(5): 159-166.

XIAO Zhitao, YIN Honghuan, YU Hongbin, et al. Modeling and reconstruction of cam profile for dobby modulator[J]. Journal of Textile Research, 2020, 41(5): 159-166.

[4]高大牛,沈毅,劉春雷.GT421型多臂機(jī)選綜共軛凸輪設(shè)計(jì)[J].現(xiàn)代紡織技術(shù),2012, 20(1):27-31.

GAO Daniu, SHEN Yi, LIU Chunlei. The design of election comprehensive conjugate cam of GT421 dobby[J]. Advanced Textile Technology,2012, 20(1): 27-31.

[5]金國(guó)光,魏曉勇,魏展,等.旋轉(zhuǎn)式多臂機(jī)提綜機(jī)構(gòu)動(dòng)力學(xué)分析與優(yōu)化[J].紡織學(xué)報(bào),2018, 39(9): 160-168.

JIN Guoguang, WEI Xiaoyong, WEI Zhan, et al. Dynamic analysis and optimization of rotary dobby lifting comprehensive mechanism[J]. Journal of Textile Research, 2018, 39(9): 160-168.

[6]張遠(yuǎn)華,茍向鋒,陳曉芳,等.電子多臂機(jī)旋轉(zhuǎn)變速機(jī)構(gòu)共軛凸輪再設(shè)計(jì)[J].機(jī)械傳動(dòng),2018, 42(4): 57-61.

ZHANG Yuanhuan, GOU Xiangfeng, CHEN Xiaofang, et al. Redesign of conjugate cam of rotation variable speed mechanism of electronic dobby[J]. Journal of Mechanical Transmission, 2018, 42(4): 57-61.

[7]高大牛.基于旋轉(zhuǎn)原理的電子多臂機(jī)研究[D].杭州:浙江理工大學(xué), 2012:12-14.

GAO Daniu. Research on Electronic Dobby Based on the Principle of Rotary[D]. Hangzhou: Zhejiang Sci-Tech University, 2012:12-14.

[8]袁汝旺,祝雷雷,呂雪奎,等.旋轉(zhuǎn)多臂變速運(yùn)動(dòng)規(guī)律建模及其對(duì)開(kāi)口機(jī)構(gòu)傳動(dòng)影響[J].紡織學(xué)報(bào), 2019, 40(12): 127-133.

YUAN Ruwang, ZHU Leilei, Lü Xuekui, et al.Modeling of rotary shifting motion characteristics of electronic dobby and influence thereof on shedding mechanisms driving[J]. Journal of Textile Research, 2019, 40(12): 127-133.

[9]劉春雷.高速旋轉(zhuǎn)式多臂機(jī)機(jī)構(gòu)分析及設(shè)計(jì)[D].杭州:浙江理工大學(xué),2012:21-47.

LIU Chunlei. Structural Analysis and Design of High-speed Rotary Dobby[D]. Hangzhou: Zhejiang Sci-tech University, 2012:21-47.

[10]季海彬,周香琴,成小軍.基于開(kāi)口工藝要求的多臂機(jī)機(jī)構(gòu)參數(shù)分析[J].浙江理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016,35(2):205-210.

JI Haibin, ZHOU Xiangqin, CHENG Xiaojun. Analysis on mechanism parameters of dobby based on requirement of opening process[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2016, 35(2): 205-210.

[11]沈毅,劉春雷,高大牛,等.共軛凸輪—滑塊搖桿組合機(jī)構(gòu)的設(shè)計(jì)與應(yīng)用[J].機(jī)械設(shè)計(jì)與研究,2012, 28(4): 22-25.

SHEN Yi, LIU Chunlei, GAO Daniu, et al. Design and application of a combined mechanism with conjugate cam and slider rocker[J]. Machine Design amp; Research, 2012, 28(4): 22-25.

[12]邱海飛,李春風(fēng),陳銘,等.一種外置式高速織機(jī)共軛凸輪開(kāi)口設(shè)計(jì)[J].機(jī)械設(shè)計(jì), 2022,39(11):1-6.

QIU Haifei, LI Chunfeng, CHEN Ming, et al. Design of high-speed loom' s external conjugate cam shedding mechanism[J].Journal of Machine Design, 2012, 28(4): 22-25.

[13]王奇霞. 旋轉(zhuǎn)電子多臂機(jī)選綜系統(tǒng)分析與設(shè)計(jì)[D].杭州:浙江理工大學(xué),2013:9-12.

WANG Qixia. Analysis and Design of Heald System of Rotary Electronic Dobby[D].Hangzhou: Zhejiang Sci-Tech University, 2013:9-12.

[14]袁嫣紅.旋轉(zhuǎn)式電子多臂機(jī)與織機(jī)配合的原理[J].絲綢,2000, 37(8):24-25.

YUAN Yanhong. Matching mechanism for rotary electronic dobby and loom[J]. Journal of Silk, 2000, 37(8):24-25.

[15]陳長(zhǎng)興,林興,任曉岳,等.基于二分法迭代的頻譜感知節(jié)能優(yōu)化策略[J].空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017,18(5):61-66.

CHEN Changxing, LIN Xing, REN Xiaoyue, et al. An optimization strategy of energy efficient in spectrum sensing based on bisection and iteration[J].Journal of Air Force Engineering University (Natrnal Science Edition), 2017,18(5): 61-66.

[16]王奇霞,袁嫣紅.HQ3620旋轉(zhuǎn)式電子多臂機(jī)選綜共軛凸輪機(jī)構(gòu)分析與設(shè)計(jì)[J].現(xiàn)代紡織技術(shù),2013, 21(6): 9-12.

WANG Qixia,YUAN Yanhong. Analysis and design of heald selecting conjugate cam mechanism of HQ3620 rotary electronic dobby[J]. Advanced Textile Technology,2013, 21(6): 9-12.

[17]邱海飛.高速打緯共軛凸輪理論廓線反求實(shí)現(xiàn)[J].機(jī)械強(qiáng)度,2021,43(4):1002-1006.

QIU Haifei. Reverse realization of pitch curve on conjugate cam with high speed beating-up[J]. Journal of Mechanical Strength, 2021, 43(4): 1002-1006.

Collaborative reverse design and numerical implementation of heald frame lifting and selection cams on a rotary electronic dobby

QIU Haifei

(School of Mechanical Engineering, Xijing University, Xi'an 710123, China)

Abstract: "The rotary electronic dobby has many advantages, such as compact structure, high efficiency, and good stability. In order to control the lifting motion of multi-page heald frames precisely, the current mechanical system of electronic dobby chooses a cam drive in both lifting and selection units. Designing high-precision lifting and selection cams with good dynamic characteristics has always been problematic in developing high-speed electronic dobby. In addition, the motion control of the lifting and selection systems for the heald frame is complementary, so it is necessary to consider the cooperating factors of the lifting and selection process from the process level. This paper combines the composition and operating principle of the rotary electronic dobby and realizes the joint reverse design of the lifting and selecting cams in Matlab software, which is conducive to a deep understanding of the rotary electronic dobby's lifting and selection coordination mechanism.

By analyzing the process, designing the mechanism, deducing equations, and conducting theoretical calculations, the cycloidal, corrected and constant velocity motion law was applied to the rotation output of the slider rod. A reverse design program for the profile curve of the lifting conjugate cam was developed by Matlab software. The \"bisection method\" was used to iteratively calculate the coordination parameters of the lifting and selection cams, thereby determining the safety angle of the large disk, the lifting angle, and the return angle of the selection cam. On this basis, combined with the requirements of selection and control, a swinging rod motion law based on a quintic polynomial was constructed, and the theoretical profile curve of the selection conjugate cam was designed and generated through Matlab software. The joint development of the lifting and selection conjugate cams was achieved, and the feasibility of the cooperation between the lifting and selection system was verified. The lifting and selecting cam mechanism has good motion performance and coordination relationship when the motion laws of cycloidal, corrected and constant velocity and the quintic polynomial are employed.

The reverse design ideas and numerical implementation method of lifting and selecting conjugate cams have been clarified, providing an essential reference for designing and developing high-precision rotary electronic dobby.

Keywords: electronic dobby; bisection method; conjugate cam; heald frame; collaboration; safe angle; Matlab

猜你喜歡
綜框二分法協(xié)同
提高噴氣織機(jī)用綜框通用性的改造方案
紡織器材(2022年1期)2022-11-22 01:42:25
基于二進(jìn)制/二分法的ETC狀態(tài)名單查找算法
“二分法”求解加速度的分析策略
“二分法”求解加速度的分析策略
蜀道難:車與路的協(xié)同進(jìn)化
自動(dòng)加油綜框?qū)Р鄣膽?yīng)用
紡織器材(2020年5期)2020-12-21 04:05:16
一種綜框轉(zhuǎn)移裝置的研制
Groz-Beckert:用于織造工藝的組合式綜框
“四化”協(xié)同才有出路
汽車觀察(2019年2期)2019-03-15 06:00:50
估算的妙招——“二分法”
开远市| 闽侯县| 融水| 金川县| 建平县| 蚌埠市| 霞浦县| 昭苏县| 临湘市| 山东省| 库尔勒市| 噶尔县| 沁阳市| 西乡县| 黎城县| 保山市| 满洲里市| 伊吾县| 汾阳市| 玛沁县| 瓮安县| 揭西县| 枣阳市| 同江市| 宣城市| 华池县| 湖南省| 上虞市| 巍山| 田东县| 大庆市| 临夏县| 西华县| 灵台县| 临颍县| 松江区| 永顺县| 安岳县| 修文县| 米脂县| 云南省|