[摘要]口腔微生物群落結(jié)構(gòu)的穩(wěn)定是保持口腔健康的基礎。正畸矯治器改變了口腔微環(huán)境,可導致菌群失調(diào),進而引起脫礦、齲齒、牙齦炎甚至牙周炎等牙體、牙周病損。相關(guān)研究結(jié)果表明,正畸治療過程中,口腔微生物群落變化的總體特征為多樣性增加、機會致病菌豐度上升,具體表現(xiàn)可受到矯治器種類、觀測位點、結(jié)扎方式、弓絲材質(zhì)等因素影響。深入了解正畸過程中微生物的動態(tài)變化及其與口腔病損的內(nèi)在聯(lián)系將是未來的研究熱點,這對降低正畸并發(fā)癥風險有重要的臨床指導意義,亦可為口腔疾病防治提供新的思路。本文就正畸矯治器對口腔微生物影響的研究進展作一綜述。
[關(guān)鍵詞]口腔微生物;正畸矯治器;菌群失調(diào);高通量測序;微生物多樣性;正畸托槽;隱形矯治器;口腔疾病
[中圖分類號]R783.5" " [文獻標志碼]A" " [文章編號]1008-6455(2025)02-0171-05
Research Progress of the Impact Orthodontic Appliance on Oral Microbiota
LI Bosheng, LI Yongming
( Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China )
Abstract:" Stability of oral microbiota is the basis of oral health. Orthodontic appliances may have an impact on oral microenvironment, which can lead to dysbacteriosis, and even induce endodontic or periodontal lesions including enamel decalcification, caries, gingivitis or periodontitis. This paper reviews the research progress of the impact orthodontic appliance on oral microbiota. Studies have shown the alteration of oral microbiota during orthodontic treatment is charactered by higer diversity and increased abundence of opportunistic pathogens. The specific performance varied from appliance types, observation site, ligation method and arch wire material. In-depth understanding dynamic of microbiota during treatment procedure and its mechanic relationship with oral lesions will be the focus of research in future. It is of great significance in reducing the risk of orthodontic complications, and also provides a new idea for the prevention and treatment of oral diseases.
Key words: oral microbiota; orthodontic appliance; dysbacteriosis; high-throughput sequencing technology; microbial diversity; orthodontic Brackets; clear aligners; oral diseases
正畸治療過程中常見的并發(fā)癥包括白斑、齲齒、牙齦炎、牙周炎、口臭等,它們的出現(xiàn)與口腔微生物群落組成的改變、牙周微生態(tài)平衡的打破密切相關(guān)。健康的人體口腔中存在700余種微生物,其中細菌占了絕大部分[1]。正常情況下,微生物定植于口腔軟硬組織表面,形成生物膜,它們彼此之間存在廣泛的協(xié)同與拮抗作用,以保持種類與數(shù)量的相對穩(wěn)定,達到一種動態(tài)平衡[2],這種平衡是保持口腔健康的基礎。既往觀點認為,正畸矯治器,特別是傳統(tǒng)的固定矯治器,改變了牙齒的解剖外形,為細菌提供了更豐富的黏附位點,有利于牙菌斑形成、滯留、累積,進而引起多種牙體、牙周病損。
1" 固定矯治器引起患者口腔微生物改變
1.1 傳統(tǒng)唇側(cè)固定矯治器:根據(jù)菌斑的位置不同,以齦緣為界可分為齦上菌斑及齦下菌斑。齦上菌群與白斑、齲病等牙體疾病關(guān)系密切。傳統(tǒng)的固定正畸矯治器可引起齦上菌斑的微生物群落結(jié)構(gòu)改變,并以專性厭氧菌的相對豐度增加為特征[3];Shukla C[4]發(fā)現(xiàn)相對于基線水平,矯治3個月后菌斑樣本中變形鏈球菌與念珠菌的定植顯著增加,提示齲病與黏膜病風險。正常齦下菌群以革蘭氏陽性球菌為主,矯治器粘接后,齦下革蘭氏陰性厭氧菌增加,成為牙周疾病的風險因素[5]。近年有報道指出,雖然齦下菌群多樣性和核心物種保持穩(wěn)定,但中間普氏菌、具核梭桿菌等牙周致病菌豐度上升[6]。除此之外,牙齦卟啉單胞菌、福賽坦菌、伴放線放線桿菌都是正畸患者齦溝中常檢出的牙周致病菌。
除附著于牙體硬組織表面的菌斑外,固定矯治器對唾液微生物亦會產(chǎn)生明顯影響。有研究顯示與健康人群相比,正畸患者的唾液菌群呈現(xiàn)較高的微生物多樣性,假單胞菌屬、合成孢菌屬、伯克霍爾德菌屬和細小細孔菌屬的豐度顯著增加[7]。除此之外,在治療開始后的6個月內(nèi),白色念珠菌、變形鏈球菌和乳酸桿菌的增加亦可見報道等[8-9]。
雖然大量的研究都證實固定矯治器的應用會引起致病菌數(shù)量增加,但這種趨勢似乎不是持續(xù)不變的。Guo R[10]利用高通量測序技術(shù)對10例牙周健康正畸患者的唾液菌群及牙周指數(shù)進行了多時間節(jié)點的觀察,結(jié)果顯示在治療開始的1個月內(nèi),唾液微生物的α及β多樣性顯著上升,3個月時恢復至治療前水平,臨床指數(shù)變化趨勢與微生物多樣性基本一致,核心物種和牙周致病菌的相對豐度則保持穩(wěn)定。Zheng Y等[11]研究了粘接后6個月內(nèi)患者口腔內(nèi)白色念珠菌數(shù)量變化,結(jié)果顯示2個月是微生物水平的高峰,3~6個月持續(xù)回落,但仍高于治療前水平。這種“轉(zhuǎn)折”的出現(xiàn)有可能是因為治療開始數(shù)月后錯牙合畸形減輕,牙列擁擠等問題得到改善,唾液自潔作用增強,患者維護口腔衛(wèi)生的難度降低,牙周微環(huán)境改善,口腔微生物群落結(jié)構(gòu)得以恢復。
當矯治器拆除后,菌群會“自我修復”,但所需時間、是否能完全恢復至治療前水平尚無定論。Pan S[12]的研究結(jié)果表明,在拆除托槽3個月后,齦下菌斑微生物組成與矯治前相比有一定相似性,但仍多有不同。Ireland AJ等[13]也指出,在矯治結(jié)束1年后的菌斑樣本中,牙齦卟啉單胞菌、福賽坦氏菌、纏結(jié)優(yōu)桿菌等牙周致病菌水平仍高于矯治前。Ghijselings E等[14]發(fā)現(xiàn)矯治器拆除2年后雖然齦上菌斑中需氧菌/厭氧菌的比值與矯治前沒有差異,但齦下菌斑中厭氧菌水平仍明顯較高。由此可見,雖然現(xiàn)階段仍缺乏更多的證據(jù)來充分描述摘除矯治器后口腔微生物的變化過程,但可以合理推測這種影響或許要比我們想象得更長遠。
1.2 自鎖托槽:對于傳統(tǒng)托槽的研究結(jié)論也基本適用于自鎖托槽,但不同的托槽設計是否會影響致病菌的水平則存在爭議。Pejda S等[15]認為兩者無顯著差異,雖然與自鎖托槽相比,使用傳統(tǒng)托槽的患者齦下菌斑中伴放線放線桿菌的檢出率較高,但其他常見致病微生物水平及臨床指標基本一致。對此,Bergamo AZN等[16-17]報道了不同觀點,他觀察到In-Ovation?R自鎖托槽在與牙周病密切相關(guān)的“紅色復合體”“橙色復合體”以及多種齲齒相關(guān)微生物的檢出率上要高于SmartClipTM托槽及傳統(tǒng)托槽??傮w而言,對于這一問題的研究報道結(jié)論不一,目前尚缺乏強有力的證據(jù)證實托槽設計對于口腔微生物的影響。
1.3 舌側(cè)固定矯治器:受限于臨床應用范圍,既往對于舌側(cè)矯治器的研究相對較少,近年來僅有Gujar AN等[18]利用棋盤DNA雜交技術(shù)評估了使用不同正畸矯治器時唾液中橙色及紅色復合體的水平變化,與傳統(tǒng)粘接在唇/頰側(cè)的固定矯治器相比,使用舌側(cè)矯治器雖然會導致梭桿菌屬和普氏菌屬的豐度輕度增加,但無統(tǒng)計學意義。我們或許可以猜測,由于牙齒舌面的解剖形態(tài)較唇頰面復雜,日常清潔難以徹底進行,因此,托槽粘接給口腔微生物帶來的不利影響更加明顯,但就現(xiàn)階段而言缺乏相關(guān)的證據(jù)支持。
1.4 結(jié)扎圈與正畸弓絲:橡膠結(jié)扎圈是臨床常用的正畸配件,但彈性材料的使用可能是導致菌斑累積的風險因素[19]。在正畸治療期間,彈性結(jié)扎圈上變異鏈球菌、乳酸桿菌定植顯著增加[20],這兩種微生物被認為與釉質(zhì)脫礦、齲齒密切相關(guān);白色念珠菌亦可檢出[21]。更有學者深入比較了不同種類結(jié)扎圈對于微生物定植的影響,并指出彩色結(jié)扎圈會提高葡萄球菌、乳酸桿菌的定植水平[22],加入納米銀顆粒的橡皮鏈圈則可以減少細菌生物膜的形成[23]。Shirozaki MU等[24]則認為連接方式不會對口腔微生物造成影響,對于不同的結(jié)扎方式,掃描電鏡下均可觀察到豐富的生物膜污染,各組間變形鏈球菌的水平無顯著差異。
除結(jié)扎圈外,表面微結(jié)構(gòu)粗糙的弓絲可能更有利于細菌的黏附。Abraham KS等[25]比較了鎳鈦弓絲和銅-鎳鈦弓絲,結(jié)果顯示口內(nèi)放置4周后,銅-鎳鈦弓絲上有更多的變異鏈球菌黏附,這可能是因為含銅弓絲表面更為粗糙,有更高的表面自由能。對于美學涂層鎳鈦弓絲的研究也提示,口內(nèi)放置4~8周后,弓絲表面粗糙度的增加是引起變異鏈球菌黏附增多的重要原因[26],但并不是所有的研究都得出相同結(jié)論。Lima KCC等[27]認為雖然與無涂層的不銹鋼絲相比,鎳鈦弓絲擁有更高的細菌黏附水平,但該結(jié)果與弓絲表面粗糙度沒有關(guān)聯(lián)。Hepyukselen BG等[28]在比較了超彈鎳鈦、銅-鎳鈦、鈦-鉬合金三種弓絲后也發(fā)現(xiàn),不同的材料不會對拭子樣本微生物數(shù)量及臨床牙周參數(shù)造成顯著影響??傮w而言,雖然現(xiàn)階段還難以形成廣泛的共識,但材料的選擇的確是應該納入考量的因素。
2" 透明矯治器對患者口腔微生物的影響
與傳統(tǒng)的矯治器相比,透明矯治器可摘戴、不會改變牙面解剖形態(tài)是其一大特點,大大降低了患者清潔口腔的難度,減少微生物定植。但另一方面,過長的佩戴時間(每日22 h以上)[29]對牙齒唇頰面的大面積覆蓋又可阻礙唾液的自潔作用,形成利于菌斑累積的局部厭氧微環(huán)境。有證據(jù)顯示,當連續(xù)佩戴12 h以上時,隱形矯治器內(nèi)側(cè)面可檢出豐富的齲病相關(guān)致病菌[30]。因此,透明矯治器在菌斑控制上的表現(xiàn)也引起了眾多關(guān)注。在近期的一項研究中,Mummolo S等[31]觀察了戴用不同矯治器的患者治療開始6個月后的唾液微生物,結(jié)果顯示透明矯治器組僅有13.3%的樣本中變形鏈球菌計數(shù)達到了致齲預警值(CFU>10-5),這一比例在固定矯治器組中高達40%,對乳酸桿菌的觀察也得到了相似結(jié)果。在另一項研究中,固定矯治器組在治療開始3/6個月后可觀察到口腔內(nèi)微生物總量上升以及具核梭桿菌、彎曲結(jié)腸桿菌計數(shù)增加,透明矯治器組相較矯治前則沒有明顯改變[32]。Guo RZ等[33]利用16S RNA測序技術(shù)對隱形矯治患者齦下菌斑進行檢測,結(jié)果顯示雖然群落多樣性稍有下降,但多種牙周病原體水平無明顯改變。Zhao R等[34]對于唾液菌群的研究也得到了相似結(jié)論,在治療的前6個月中,菌群基本保持穩(wěn)定??傮w而言透明矯治器在防止微生物過度增殖、菌斑累積上有更優(yōu)異的表現(xiàn)。學者們還對其他“可移動”的矯治器具進行了研究,如吸塑保持器、可摘戴的間隙保持器等[35-36],結(jié)果大同小異??烧鞯钠骶咂毡楸裙潭ㄆ骶邔谇晃⑸锏挠绊懜?,這可能是由于它們不會為致病菌提供額外的利于定植的位點,同時患者能夠執(zhí)行更完善的口腔衛(wèi)生維護措施。
3" 口腔微生物與正畸中的牙周問題
正畸過程中由于菌斑滯留,牙周問題頗為常見,可表現(xiàn)為牙齦紅腫、增生、探診出血、牙周袋加深等?;仡櫱叭说难芯课覀儾浑y發(fā)現(xiàn),革蘭氏陽性菌和某些革蘭氏陰性菌,如變形鏈球菌、牙齦卟啉單胞菌、中間普氏菌、福賽坦氏菌、乳酸桿菌等的增加是口腔微生物的共性變化,而這些細菌被認為是與多種牙體、牙周病損密切相關(guān)的“可疑致病菌”。一項Meta分析重點觀察了固定矯治過程中齦下菌斑“紅色復合體”的數(shù)量變化,結(jié)果顯示治療開始后6個月,牙齦卟啉單胞菌、中間普氏菌、福賽坦氏菌及放線菌的水平均顯著上升[37]。正畸過程中口腔菌群的失調(diào)是牙周問題的重要風險因素,使用對于牙周微生物影響較小的矯治器患者通常也有更好的牙周健康狀況[38-39]。但值得注意的是,對于牙周問題而言,微生物并非唯一的致病因素,吸煙、個體易感性、系統(tǒng)性疾病都會影響牙周疾病的發(fā)生發(fā)展,事實上也有不少學者得出了不同結(jié)論。Wang Q等[40]對正畸患者的唾液樣本進行了基因組測序,結(jié)果顯示使用不同的矯治器并不會引起微生物群落的結(jié)構(gòu)變化。另一項研究顯示,雖然在10~12個月的治療過程中,患者口內(nèi)可見菌斑堆積,但影像學手段未觀察到不可逆的牙周損害,牙周臨床指標也未出現(xiàn)明顯改變[41]。由此可見,微生物雖然是牙周問題的始動因子,但兩者之間并不存在絕對的因果關(guān)系,其間機制還需要進一步的深入研究。
4" 正畸過程中的菌斑控制
如何減輕正畸矯治器對微生物的不利影響一直是研究的熱點。金屬離子或氧化物常常作為抗菌劑被添加于粘接劑中,有證據(jù)顯示1%的氧化銀納米顆??娠@著抑制變形鏈球菌的增殖,但其抑菌作用在30 d內(nèi)快速衰減[42]。另有學者將抗蛋白制劑、抗菌性季銨鹽單體和再礦化納米顆粒添加入樹脂改良型玻璃離子中,形成的多功能粘接劑可釋氟、抗菌、促進釉質(zhì)再礦化,有效減輕菌斑堆積導致的白斑問題[43]。Xie Y等[44]提出一種季銨鹽修飾的金納米團簇涂層,可以賦予矯治器長達3個月的抑菌性能,且擁有良好的生物相容性。在臨床上,除傳統(tǒng)的衛(wèi)生宣教、定期潔治、牙周隨訪外,基于光激活原理的光動力抗菌療法能有效減少菌斑總量及降低菌斑生物膜的產(chǎn)酸能力[45],以羅伊氏乳桿菌為代表的口服益生菌制劑能改善牙周臨床指標、減輕局部炎癥,都可作為正畸患者口腔衛(wèi)生管理的輔助手段[46-47]。除此之外,患者的主觀能動性也至關(guān)重要。有證據(jù)顯示,“提醒療法”如定時給患者發(fā)送保持口腔衛(wèi)生的短信、推送等可增加患者依從性[48],配合便于操作的菌斑顯色劑可顯著提高患者自我清潔效率[49]。在嚴格的衛(wèi)生指導和患者良好的配合下,使用電動牙刷或普通牙刷均可達到良好的清潔效果[50]。
5" 小結(jié)和展望
雖然矯治器對口腔微生物的影響已基本得到證實,但現(xiàn)階段的研究仍存在一些局限性。一方面口腔是一個開放的環(huán)境,微生物群落結(jié)構(gòu)會受到多種環(huán)境因素的影響,飲食、氣候、海拔、飲水含氟量、吸煙習慣、代謝及免疫系統(tǒng)疾病等環(huán)境因子對微生物的影響甚至要大于遺傳因素[51]。有研究表明,雖然高豐度的“核心微生物群”在個體間具有相對一致性,但低豐度的稀有微生物在個體間的差異十分顯著,且即使是在健康的個體中,微生物群落的結(jié)構(gòu)也并非一成不變,菌群會隨時間產(chǎn)生一定范圍的“漂移”,口腔微生態(tài)的穩(wěn)定是相對而動態(tài)的[52]。再考慮到口腔內(nèi)的各個部位也具有不同的微生物群落特征,舌側(cè)通常比唇/頰側(cè)有更豐富的微生物定植[53]。因此,如何在研究設計中規(guī)避無關(guān)因素的影響是十分值得考慮的問題。另一方面限于檢測手段,以往研究通常僅聚焦于數(shù)種微生物,且正畸過程長達2年左右,因此,很難完整、全面地觀察口腔微生物的變化。幸運的是,隨著近年來測序技術(shù)的發(fā)展以及多組學聯(lián)合分析手段的進步,越來越多的證據(jù)幫助我們客觀深入地了解矯治期間口腔微生物的動態(tài)改變,同時也為防治正畸過程中的口腔問題提供新的思路。
總而言之,由于口腔微生物群落結(jié)構(gòu)的改變,正畸患者通常需要面對更高的齲齒及牙周風險,因此,良好的衛(wèi)生指導以及堅持執(zhí)行科學、有效的口腔清潔程序?qū)λ麄儊碚f十分必要。
[參考文獻]
[1]Verma D, Garg P K, Dubey A K. Insights into the human oral microbiome[J]. Arch Microbiol, 2018,200(4):525-540.
[2]Perkowski K, Baltaza W, Conn D B, et al. Examination of oral biofilm microbiota in patients using fixed orthodontic appliances in order to prevent risk factors for health complications[J]. Ann Agric Environ Med, 2019,26(2):231-235.
[3]Kado I, Hisatsune J, Tsuruda K, et al. The impact of fixed orthodontic appliances on oral microbiome dynamics in Japanese patients[J]. Sci Rep, 2020,10(1):21989.
[4]Shukla C, Maurya R, Singh V, et al. Evaluation of role of fixed orthodontics in changing oral ecological flora of opportunistic microbes in children and adolescent[J]. J Indian Soc Pedod Prev Dent, 2017,35(1):34-40.
[5]Lucchese A, Bondemark L, Marcolina M, et al. Changes in oral microbiota due to orthodontic appliances: A systematic review[J]. J Oral Microbiol, 2018,10(1):1476645.
[6]Guo R Z, Liu H, Li X B, et al. Subgingival microbial changes during the first 3 months of fixed appliance treatment in female adult patients[J]. Curr Microbiol, 2019,76(2):213-221.
[7]Sun F, Ahmed A, Wang L, et al. Comparison of oral microbiota in orthodontic patients and healthy individuals[J]. Microb Pathog, 2018,123:473-477.
[8]Arab S, Malekshah S N, Mehrizi E A, et al. Effect of fixed orthodontic treatment on salivary flow, pH and microbial count[J]. J Dent (Tehran), 2016,13(1):18-22.
[9]Maret D, Marchal-Sixou C, Vergnes J N, et al. Effect of fixed orthodontic appliances on salivary microbial parameters at 6 months: a controlled observational study[J]. J Appl Oral Sci, 2014,22(1):38-43.
[10]Guo R, Zheng Y, Zhang L, et al. Salivary microbiome and periodontal status of patients with periodontitis during the initial stage of orthodontic treatment[J]. Am J Orthod Dentofacial Orthop, 2021,159(5):644-652.
[11]Zheng Y, Li Z, He X. Influence of fixed orthodontic appliances on the change in oral candida strains among adolescents[J]. J Dent Sci, 2016,11(1):17-22.
[12]Pan S, Liu Y, Zhang L, et al. Profiling of subgingival plaque biofilm microbiota in adolescents after completion of orthodontic therapy[J]. PLoS One, 2017,12(2):e0171550.
[13]Ireland A J, Soro V, Sprague S V, et al. The effects of different orthodontic appliances upon microbial communities[J]. Orthod Craniofac Res, 2014,17(2):115-23.
[14]Ghijselings E, Coucke W, Verdonck A, et al. Long-term changes in microbiology and clinical periodontal variables after completion of fixed orthodontic appliances[J]. Orthod Craniofac Res, 2014,17(1):49-59.
[15]Pejda S, Varga M L, Milosevic S A, et al. Clinical and microbiological parameters in patients with self-ligating and conventional brackets during early phase of orthodontic treatment[J]. Angle Orthod, 2013,83(1):133-9.
[16]Bergamo A Z N, Filho P N, Andrucioli M C D, et al. Microbial complexes levels in conventional and self-ligating brackets[J]. Clin Oral Investig, 2017,21(4):1037-1046.
[17]Bergamo A Z N, Matsumoto M A K, Nascimento C, et al. Microbial species associated with dental caries fund in saliva and in situ after use of self-ligating and conventional brackets[J]. J Appl Oral Sci, 2019,27:e20180426.
[18]Gujar A N, Alhazmi A, Raj A T, et al. Microbial profile in different orthodontic appliances by checkerboard DNA-DNA hybridization: An in-vivo study[J]. Am J Orthod Dentofacial Orthop, 2020,157(1):49-58.
[19]Sawhney R, Sharma S, Sharma K. Microbial colonization on elastomeric ligatures during orthodontic therapeutics: An overview[J]. Turk J Orthod, 2018,31(1):21-25.
[20]Manavi K, Naik V, Bhatt K. Microbial colonization on elastomeric modules during orthodontic treatment: an in vivo study[J]. Ind J Orthod Dentofac Res, 2016,2:43-49.
[21]Grzegocka K, Krzyciak P, Hille-Padalis A, et al. Candida prevalence and oral hygiene due to orthodontic therapy with conventional brackets[J]. BMC Oral Health, 2020,20(1):277.
[22]Ravish S, Kavita S, Rajesh S. Evidence of variable bacterial colonization on coloured elastomeric ligatures during orthodontic treatment: An intermodular comparative study[J]. J Clin Exp Dent, 2018,10(3):e271-e278.
[23]Hernandez-Gomora A E, Lara-Carillo E, Robles-Navarro J B, et al. Biosynthesis of silver nanoparticles on orthodontic elastomeric modules: Evaluation of mechanical and antibacterial properties[J]. Molecules, 2017,22:1407.
[24]Shirozaki M U, Ferreira J T L, Küchler E C, et al. Quantification of streptococcus mutans in different types of ligature wires and elastomeric chains[J]. Braz Dent J, 2017,28(4):498-503.
[25]Abraham K S, Jagdish N, Kailasam V, et al. Streptococcus mutans adhesion on nickel titanium (NiTi) and copper-NiTi archwires: A comparative prospective clinical study[J]. Angle Orthod, 2017,87(3):448-454.
[26]Taha M, El-Fallal A, Degla H. In vitro and in vivo biofilm adhesion to esthetic coated arch wires and its correlation with surface roughness[J]. Angle Orthod, 2016,86(2):285-291.
[27]Lima K C C, Paschoal M A B, Gurgel J A, et al. Comparative analysis of microorganism adhesion on coated, partially coated, and uncoated orthodontic archwires: A prospective clinical study[J]. Am J Orthod Dentofacial Orthop, 2019,156(5):611-616.
[28]Hepyukselen B G, Cesur M G. Comparison of the microbial flora from different orthodontic archwires using a cultivation method and PCR: A prospective study[J]. Orthod Craniofac Res, 2019,22(4):354-360.
[29]Papadimitriou A, Mousoulea S, Gkantidis N, et al. Clinical effectiveness of invisalign orthodontic treatment: A systematic review[J]. Prog Orthod, 2018,19(1):37.
[30]Yan D, Liu Y, Che X, et al. Changes in the microbiome of the inner surface of clear aligners after different usage periods[J]. Curr Microbiol, 2021,78(2):566-575.
[31]Mummolo S, Tieri M, Nota A, et al. Salivary concentrations of streptococcus mutans and lactobacilli during an orthodontic treatment. An observational study comparing fixed and removable orthodontic appliances[J]. Clin Exp Dent Res, 2020,6(2):181-187.
[32]Lombardo L, Palone M, Scapoli L, et al. Short-term variation in the subgingival microbiota of two groups of patients treated with clear aligners and vestibular fixed appliances: a prospective study[J]. Orthod Craniofac Res, 2021,24(2):251-260.
[33]Guo R Z, Zheng Y F, Liu H, et al. Profiling of subgingival plaque biofilm microbiota in female adult patients with clear aligners: A three-month prospective study[J]. Peer J, 2018,6:e4207.
[34]Zhao R, Huang R H, Long H, et al. The dynamics of the oral microbiome and oral health among patients receiving clear aligner orthodontic treatment[J]. Oral Dis, 2020,26(2):473-483.
[35]Al-Lehaibi W K, Al-Makhzomi K A, Sh H, et al. Physiological and immunological changes associated with oral microbiota when using a thermoplastic retainer[J]. Molecules, 2021,26(7):1948.
[36]Arikan V, Kizilci E, Ozalp N, et al. Effects of fixed and removable space maintainers on plaque accumulation, periodontal health, candidal and enterococcus faecalis carriage[J]. Med Princ Pract, 2015,24(4):311-317.
[37]Guo R Z, Lin Y F, Zheng Y F, et al. The microbial changes in subgingival plaques of orthodontic patients: A systematic review and meta-analysis of clinical trials[J]. BMC Oral Health, 2017,17(1):90.
[38]Lu H L, Tang H F, Zhou T, et al. Assessment of the periodontal health status in patients undergoing orthodontic treatment with fixed appliances and invisalign system: A meta-analysis[J]. Medicine (Baltimore), 2018,97(13):e0248.
[39]Shokeen B, Viloria E, Duong E, et al. The impact of fixed orthodontic appliances and clear aligners on the oral microbiome and the association with clinical parameters: A longitudinal comparative study[J]. Am J Orthod Dentofacial Orthop, 2022,161(5):e475-e485.
[40]Wang Q, Ma J B, Wang B, et al. Alterations of the oral microbiome in patients treated with the invisalign system or with fixed appliances[J]. Am J Orthod Dentofacial Orthop, 2019,156(5):633-640.
[41]Lemos M M, Cattaneo P M, Melsen B, et al. Impact of treatment with full-fixed orthodontic appliances on the periodontium and the composition of the subgingival microbiota[J]. J Int Acad Periodontol, 2020,22(3):174-181.
[42]Yassaei S, Nasr A, Zandi H, et al. Comparison of antibacterial effects of orthodontic composites containing different nanoparticles on Streptococcus mutans at different times[J]. Dental Press J Orthod, 2020,25(2):52-60.
[43]馬雁崧,張寧,白玉興,等.多功能正畸粘接劑預防釉質(zhì)脫礦的體外研究[J].北京口腔醫(yī)學,2019,27(6):7.
[44]Xie Y, Zhang M, Zhang W, et al. Gold nanoclusters-coated orthodontic devices can Inhibit the Formation of Streptococcus Mutans Biofilm[J]. ACS Biomater Sci Eng, 2020,6(2):1239-1246.
[45]Olek M, Machorowska-Pieni??ek A, Stós W, et al. Photodynamic therapy in orthodontics: A literature review[J]. Pharmaceutics, 2021,13(5):720.
[46]Agossa K, Dubar M, Lemaire G, et al. Effect of lactobacillus reuteri on gingival inflammation and composition of the oral microbiota in patients undergoing treatment with fixed orthodontic appliances: Study protocol of a randomized control trial[J]. Pathogens, 2022,11(2):112.
[47]Seidel C L, Gerlach R G, Weider M, et al. Influence of probiotics on the periodontium, the oral microbiota and the immune response during orthodontic treatment in adolescent and adult patients (ProMB Trial): study protocol for a prospective, double-blind, controlled, randomized clinical trial[J]. BMC Oral Health, 2022,22(1):148.
[48]Lima I F P, Vieira W A, Bernardino í M, et al. Influence of reminder therapy for controlling bacterial plaque in patients undergoing orthodontic treatment: a systematic review and meta-analysis[J]. Angle Orthod, 2018,88(4):483-493.
[49]Oliveira L M, Pazinatto J, Zanatta F B. Are oral hygiene instructions with aid of plaque--disclosing methods effective in improving self--performed dental plaque control? A systematic review of randomized controlled trials[J]. Int J Dent Hyg, 2021,19(3):239-254.
[50]Mylonopoulou I M, Pepelassi E, Madianos P, et al. A randomized, 3-month, parallel-group clinical trial to compare the ef?cacy of electric 3-dimensional toothbrushes vs manual toothbrushes in maintaining oral health in patients with ?xed orthodontic appliances[J]. Am J Orthod Dentofacial Orthop, 2021,160(5):648-658.
[51]唐燦,劉詩雨,程磊.口腔微生物群落結(jié)構(gòu)的影響因素[J].口腔疾病防治,2020,28(6):390-393.
[52]Hall M W, Singh N, Ng K F, et al. Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity[J]. NPJ Biofilms Microbiomes, 2017,3:2.
[53]Chen I, Chung J, Vella R, et al. Alterations in subgingival microbiota during full-fixed appliance orthodontic treatment-a prospective study[J]. Orthod Craniofac Res, 2022,25(2):260-268.
[收稿日期]2023-06-16
本文引用格式:李博晟,李永明.正畸矯治器對口腔微生物影響的研究進展[J].中國美容醫(yī)學,2025,34(2):171-175.