摘" " 要:【目的】通過分析1-MCP對常溫貨架期梨果皮蠟質(zhì)合成代謝基因的影響,為探究1-MCP調(diào)控梨果皮油膩化的分子機制提供理論依據(jù)?!痉椒ā恳杂衤断憷妫≒yrus sinkiangensis ‘Yuluxiang’)為試材,采用1.0 μL·L-1的1-MCP熏蒸24 h,以未經(jīng)處理的果實為對照,于20 ℃貨架21 d,持續(xù)觀察果實外觀變化,每隔7 d取一次梨果皮凍樣并用于轉(zhuǎn)錄組測序分析,利用RT-qPCR技術(shù)驗證顯著差異基因的表達情況。【結(jié)果】貨架前14 d,1-MCP處理的果實外觀品質(zhì)明顯優(yōu)于對照,同時果面亮度L值較對照更低;轉(zhuǎn)錄組測序結(jié)果表明,相比于貨架0 d和14 d,兩組梨果在貨架第7天上調(diào)和下調(diào)表達的顯著差異基因數(shù)均最多,且此時期果實外觀差異最明顯;富集分析結(jié)果顯示,在貨架第7天,共95個顯著差異基因富集到脂質(zhì)代謝通路,這些基因參與脂肪酸的延伸、合成和降解等脂質(zhì)次級代謝途徑;RT-qPCR驗證結(jié)果表明,與對照相比,1-MCP處理顯著抑制貨架7 d、14 d的PyLACS9、PyKCS20和PyCER1基因的上調(diào)表達,抑制貨架第7天的PyPLDALPHA4和PyFAD2基因的上調(diào)表達,通過上述驗證了1-MCP對玉露香梨果皮蠟質(zhì)合成代謝基因表達模式的調(diào)控作用;PyLACS9與果面亮度L值呈顯著正相關(guān)(r=0.99,p<0.05),因此推測PyLACS9可能是導(dǎo)致常溫貯藏下玉露香梨果皮油膩化的關(guān)鍵基因?!窘Y(jié)論】1-MCP處理能夠維持常溫貨架期玉露香梨果實較好的外觀品質(zhì)和較低的L值,1-MCP可能通過調(diào)控果皮蠟質(zhì)合成代謝基因的表達水平進而抑制果皮油膩化。
關(guān)鍵詞:玉露香梨;油膩化;1-甲基環(huán)丙烯;轉(zhuǎn)錄組;蠟質(zhì)合成代謝基因
中圖分類號:S661.2 文獻標(biāo)志碼:A 文章編號:1009-9980(2025)02-0253-13
Effects of 1-MCP on the genes related to wax anabolism in pear peel based on transcriptomics
YU Wanting, ZHANG Xinnan, SUN Xiaonan, WANG Wenhui, JIA Xiaohui*
(Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Key Laboratory of Fruits Storage and Processing, Xingcheng 125100, Liao-ning, China)
Abstract: 【Objective】 According to the investigation and laboratory research of our study group for several years, it has been found that the main pear cultivar Yuluxiang was easy to become greasy in the early stage of shelf life at room temperature, and also in the middle and late stage of cold storage. Previous researchers have reported that the expression levels of genes related to wax anabolism in the peel and ethylene synthesis are related closely to the degree of oiliness in the peel. Moreover, the inhibitive effect of 1-MCP on ethylene release has been widely reported, and thus the regulation mode of 1-MCP on the wax synthesis and metabolism genes in pear peel during shelf life at room temperature was studied, which provided a theoretical basis for a preliminary exploration of the molecular mechanism of 1-MCP regulation of pear peel greasiness. 【Methods】 Yuluxiang pear was used as the experimental material, and fruits with uniform size and without pests, diseases and bumps were selected as experimental samples, which were fumigated with 1.0 μL·L-1 1-MCP for 24 h, and the untreated fruit was used as the control. Then, the appearance changes of the fruit were observed on the shelf at 20 ℃ for 14 days. At the same time, the fruit surface brightness L value was detected. RNA was extracted from frozen peel samples every 7 days for transcriptome sequencing and data analysis, and RT-qPCR technology was used to verify the significant difference genes. 【Results】 During the whole shelf life, the appearance quality of fruit treated with 1-MCP was better than that of the control. On the 14th day of shelf life, it could still maintain a better green fruit surface, and a lower L value of fruit surface brightness, and there was no greasy phenomenon on the fruit surface at this time. Through transcriptome sequencing and data analysis, a total of 103283229900 clean reads were obtained, and the data quality was high. The results of reference genome alignment showed that the sequencing data of the Yuluxiang fruit peel were well aligned with the pear reference genome. Compared with the control, there were 2463 differentially expressed genes up-regulated and 599 differentially expressed genes down-regulated in the 1-MCP group on the 7th day of shelf life. On the 14th day of shelf life, there were 786 differentially expressed genes up-regulated and 284 differentially expressed genes down-regulated in the 1-MCP group. The number of differentially expressed genes in two groups was the highest on the 7th day of shelf life, indicating that the difference between the two groups was large. Therefore, the significant differential genes of two groups of fruits on the 7th day of shelf life were enriched into the lipid metabolism pathway through KEGG, a total of 95 significant differential genes, and 13 secondary lipid metabolism pathways were enriched into this pathway. The secondary metabolic pathways directly related to wax biosynthesis were biosynthesis of cutin, suberine, wax, fatty acid elongation, fatty acid biosynthesis and fatty acid degradation. In this study, a total of 7 significantly different genes (PyKCS1, PyKCS20, PyKCR1, PyPLDALPHA4, PyLACS9, PyFAD2 and PyCER1) were enriched in lipid metabolism pathways, which were involved in lipid secondary metabolic pathways such as fatty acid extension, synthesis and degradation, and PyKCS20, PyKCR1, PyPLDALPHA4, PyLACS9, PyFAD2 and PyCER1 were down-regulated and PyKCS1 was up-regulated in the 1-MCP-treated group. The results of RT-qPCR showed that 1-MCP treatment significantly inhibited the up-regulated expression of PyLACS9, PyKCS20 and PyCER1 genes during the whole shelf life, and inhibited the up-regulated expression of PyPLDALPHA4 and PyFAD2 genes in the first 7 days of shelf life, which verified the regulation of 1-MCP on the expression pattern of wax anabolism genes in the peel of Yuluxiang pear. The results of correlation analysis showed that PyLACS9 was significantly and positively correlated with the L value of fruit surface brightness (p < 0.05), and the L value was strongly positively correlated with PyKCS20, strongly negatively correlated with PyPLDALPHA4 and PyACS-1, negatively correlated with PyKCS1, and weakly correlated with PyKCR1, PyCER1 and PyACO2, but not significantly (p ≥ 0.05). In addition, the correlation between different differential genes showed that LACS9 was strongly negatively correlated with PyACS-1, PyKCR1 and PyCER1 were strongly positively correlated with PyACO2, PyPLDALPHA4 was strongly positively correlated with PyACS-1, PyFAD2 was strongly positively correlated with PyACO2 and PyACS-1, and they were not significant (p ≥ 0.05), so it was speculated that PyLACS9 may be the key gene leading to the greasiness of Yuluxiang fruit peel. 【Conclusion】 In summary, 1-MCP treatment could maintain the good appearance quality and low L value of Yuluxiang fruit during shelf life at room temperature, which may affect the greasiness of peel by affecting the expression level of wax anabolism genes in Yuluxiang fruit peel. Exploring the regulatory effect of 1-MCP on the waxy synthesis and metabolism genes in the peel of Yuluxiang pear during shelf life provides a theoretical basis for the prevention and control of post-harvest greasiness of pear fruit.
Key words: Yuluxiang pear; Greasiness; 1-methylcyclopropene; Transcriptome; Waxy anabolic genes
水果表皮覆蓋的蠟質(zhì)層能夠抑制果實表面滲透性、減少蒸騰作用以及防止微生物入侵[1-2]。表皮蠟質(zhì)的合成底物為具有16或18個碳原子的脂肪酸,其主要在細胞質(zhì)(C16)或質(zhì)體(C16、C18)中合成。脂肪酸在長鏈脂酰輔酶A(long-chain-acyl-coenzyme A,LACS)的作用下分別轉(zhuǎn)化為16和18個碳原子的脂酰基輔酶A。在內(nèi)質(zhì)網(wǎng)中,經(jīng)脂肪酸伸長酶復(fù)合物(β-酮脂酰輔酶A合酶,β-ketoacyl-acyl-coenzyme A synthase,KCS;β-酮脂酰輔酶A還原酶,β-ketoacyl-acyl-coenzyme A reductase,KCR;β-羥酯酰輔酶A脫水酶,β-hydroxy-acyl- coenzyme A dehydrase,HCD;烯酯酰輔酶A脫水酶,enoyl-CoA reductase,ECR)催化,延伸成非常長鏈脂肪酸(Very long chain fatty acids,VLCFAs)。VLCFAs又通過?;€原途徑形成伯醇,并通過脫羰基化生成其他組分,如醛、烷烴、仲醇和酮等,最后這些蠟組分穿過細胞壁,到達果實角質(zhì)層,并進行自我組裝形成肉眼可見的白色霜狀或油漬狀物質(zhì)[3-6]。
水果在貯藏過程中,果皮蠟質(zhì)組分由于受到基因的調(diào)控而發(fā)生性質(zhì)的改變。Wu等[7]研究了3個亞洲梨品種(庫爾勒香梨、雪花梨和玉露香梨)在貯藏過程中表皮蠟質(zhì)合成代謝關(guān)鍵基因的表達模式,結(jié)果表明,果實中PyCER6、PyKCS9、PyKCS20和PyFDH1基因上調(diào)表達,PyCER60、PyDGAT1和PyMAH1等基因下調(diào)表達,這些基因均參與了果皮蠟質(zhì)的合成。貯藏期果皮蠟質(zhì)性質(zhì)的變化還可能導(dǎo)致果實外觀品質(zhì)下降,即果皮油膩化現(xiàn)象。目前果皮油膩化被認為是一種果實采后常見的生理病害,在蘋果和梨上均有發(fā)生[8-12],這種病害會影響果實外觀品質(zhì)進而降低商品價值[13]。根據(jù)筆者課題組多年生產(chǎn)實踐調(diào)研和實驗室研究發(fā)現(xiàn),梨主栽品種玉露香(Pyrus sinkiangensis ‘Yuluxiang’)在常溫貨架前期和冷藏中后期較易油膩化[12,14-16]。已有研究報道,果皮蠟質(zhì)合成代謝和乙烯合成相關(guān)基因的表達水平、乙烯釋放量與果皮油膩化程度密切相關(guān)[17,18]。Jiang等[19]研究表明,蘋果的MdFAD27和MdFAD28基因參與了果實酯類底物和油膩化外觀的形成,且果實的油膩化程度與其乙烯釋放速率顯著相關(guān)。因此,研究梨果皮蠟質(zhì)合成代謝途徑及乙烯合成基因的表達情況對探究梨果皮油膩化發(fā)生的分子機制具有重要意義。
1-MCP是一種乙烯抑制劑,它通過與乙烯競爭受體結(jié)合位點而抑制乙烯的釋放。1-MCP已廣泛應(yīng)用于果蔬采后貯藏保鮮。Yang等[20]研究表明,庫爾勒香梨的果實經(jīng)1-MCP處理后,與長鏈蠟質(zhì)合成相關(guān)基因的上調(diào)表達被抑制。筆者實驗室前期研究發(fā)現(xiàn),1-MCP處理可以抑制常溫貨架期玉露香梨果皮多種蠟質(zhì)組分包含醇類、醛類、脂肪酸類和烯烴類化合物含量的上升[21]。因此,挖掘1-MCP調(diào)控玉露香梨果皮蠟質(zhì)合成的關(guān)鍵基因,對闡明1-MCP調(diào)控果皮油膩化潛在的分子機制具有重要意義。本研究中,采用轉(zhuǎn)錄組測序技術(shù),以玉露香梨為試材,采用1.0 μL·L-1 1-MCP熏蒸處理24 h,在20 ℃條件下貯藏0、7、14 d,篩選不同時間處理后果皮的差異表達基因,旨在探究1-MCP對貨架期玉露香梨果皮蠟質(zhì)合成代謝基因的調(diào)控作用,為梨果采后油膩化防控提供理論依據(jù)。
1 材料和方法
1.1 試驗材料與處理
供試玉露香梨采摘于遼寧省葫蘆島市趙家溝村,果園管理中上等水平,樹齡10 a(年),土壤為壤砂土,采收當(dāng)年盛花期為4月15日,采收時間為商業(yè)采收期9月15日,采摘后于2 h內(nèi)運送至中國農(nóng)業(yè)科學(xué)院果樹研究所。挑選大小均一、無病蟲害和磕碰傷的果實用于后續(xù)試驗。采用1.0 μL·L-1的1-MCP在室溫(20±1)℃條件下熏蒸24 h,以未熏蒸果實為對照,于20 ℃環(huán)境下放置21 d,每隔7 d取1次玉露香梨果皮,于-80 ℃超低溫冰箱凍存,用于后續(xù)分析。
1.2 果面亮度L值
果面亮度L值的檢測參照于宛婷等[22]的方法。
1.3 RNA提取與cDNA合成
采用RN53-EASYspin Plus多糖多酚復(fù)雜植物RNA快速提取試劑盒(艾德萊,北京貝洛生物科技有限公司)提取試驗梨果皮的總RNA。利用1%瓊脂糖凝膠電泳和超微量分光光度計檢測RNA的完整性、純度和濃度。將檢測合格后(RNA無顯著降解,A260/A280在2.0~2.2之間)的樣品送至廣州基迪奧生物科技有限公司進行文庫構(gòu)建和轉(zhuǎn)錄組測序工作;另使用cDNA合成試劑盒(Thermo Scientific?EP0733,北京中泰弘豐科技有限公司)將RNA反轉(zhuǎn)錄成cDNA,用于后續(xù)研究。
1.4 轉(zhuǎn)錄組數(shù)據(jù)質(zhì)控和參考基因組比對分析
所選樣品的時間為貨架0、7、14 d,每個處理設(shè)置3個生物學(xué)重復(fù)。通過對玉露香梨果皮測序得到的原始數(shù)據(jù)進行數(shù)據(jù)過濾,以減少無效數(shù)據(jù)造成的分析干擾。首先對下機的raw reads利用fastp[23]進行質(zhì)控,具體包括去除含接頭(adapter)的reads、含N(N表示無法確定的堿基信息)比例大于10%的reads、含100% A堿基的reads、低質(zhì)量reads(質(zhì)量值Q≤20的堿基數(shù)占整條read的50%以上),最終得到clean reads。并通過GC含量、Q20、Q30數(shù)據(jù)指標(biāo)對clean reads進行評判,得到的clean reads用于后續(xù)轉(zhuǎn)錄組分析。玉露香梨的參考基因組和基因模型注釋文件從NCBI網(wǎng)站(https://www.ncbi.nlm.nih.gov/genomes/all/GCF_000315295.1)下載。采用HISTA2[24]軟件開展基于參考基因組的比對分析,通過全局和局部搜索比對到RNA-Seq測序數(shù)據(jù)中的spliced reads。
1.5 基因的定量分析和差異表達基因的篩選
基因表達量的準(zhǔn)確性依賴于轉(zhuǎn)錄本重構(gòu)結(jié)果的完善程度。根據(jù)HISTA2的比對結(jié)果,利用Stringtie[25]重構(gòu)轉(zhuǎn)錄本,并利用RSEM[26]計算每個樣本中所有基因的表達量。使用FPKM(Fragments Per Kilobase of exon model per Million mapped fragments)矯正測序深度和基因長度對表達量的影響。在基因表達量的基礎(chǔ)上通過DESeq2進行差異表達分析,差異表達基因的篩選標(biāo)準(zhǔn)為基因表達量變化倍數(shù)|log2 fold change|>1和FDR值(1 discovery rate)<0.05。
1.6 差異表達基因的富集分析
應(yīng)用Omicsmart-組學(xué)挖掘數(shù)據(jù)平臺(https://www.omicsmart.com/)對差異表達基因進行KEGG(Kyoto Encyclopedia of Genes and Genomes)通路富集分析。KEGG通路富集以corrected-p value [≤]0.05作為顯著性富集的閾值,將差異表達基因篩選、分類為不同的代謝通路和次級代謝途徑。
1.7 RT-qPCR驗證分析
根據(jù)1.6脂質(zhì)代謝途徑共篩選出7個蠟質(zhì)合成相關(guān)顯著差異基因,另篩選2個乙烯合成顯著差異基因,設(shè)計引物(表1),根據(jù)文獻報道的亞洲梨內(nèi)參基因[7]設(shè)計內(nèi)參引物進行RT-qPCR驗證。引物均采購自生工生物工程(沈陽)股份有限公司。利用熒光定量PCR儀(BioRAD CFX96 Touch,USA),采用Taq Pro Universal SYBR qPCR Master Mix試劑盒的方法測定上述目標(biāo)基因的相對豐度。qPCR反應(yīng)條件如下:95 ℃保持30 s以激活Taq酶,隨后95 ℃變性5 s,54 ℃退火及延伸30 s并循環(huán)40次。溶解曲線采集程序為:95 ℃,15 s;60 ℃,60 s;95 ℃,15 s。最后,根據(jù)擴增反應(yīng)得到相應(yīng)的Ct值,采用-2△△Ct的方法計算目標(biāo)基因的相對表達量。
1.8 數(shù)據(jù)分析
利用Microsoft Excel 2016軟件繪圖、計算平均值和標(biāo)準(zhǔn)誤差。利用SPSS 25.0軟件進行方差分析,采用鄧肯法檢驗組間的差異性。
2 結(jié)果與分析
2.1 1-MCP對玉露香梨貨架期果皮顏色和油膩化的影響
如圖1所示,隨著貨架時間的延長,玉露香梨果面綠色逐漸褪去,逐漸轉(zhuǎn)黃且越來越亮,同時伴隨油膩化的發(fā)生,而1-MCP處理顯著抑制了貨架前7 d果皮油膩化的發(fā)生。貨架第14天,對照組梨果面基本全部轉(zhuǎn)黃且油膩化現(xiàn)象也更加嚴重,而1-MCP處理組仍保持較好的綠色。貨架第21天,對照和1-MCP組梨果面均全部轉(zhuǎn)黃,用手摩擦有油膩感,已失去商品價值。
2.2 1-MCP對玉露香梨貨架期果面L值的影響
L值可反映果皮油膩化的程度,L值越高,果皮越油膩[21,27]。如圖2所示,隨著貨架時間的延長,對照組L值不斷上升,而1-MCP處理組L值變化不明顯,且在貨架第14天較前期下降。貨架第7天,對照組果實L值高于1-MCP處理組,但兩組差異不顯著(p≥0.05)。貨架第14天和第21天,對照組果實L值均顯著高于1-MCP處理(p<0.05)。
2.3 轉(zhuǎn)錄組測序數(shù)據(jù)質(zhì)量評價
分別對貨架0、7、14 d的玉露香梨果皮進行轉(zhuǎn)錄組測序分析,5組處理、每組3次重復(fù),構(gòu)建了15個cDNA文庫,共獲得103 283 229 900條clean reads,其中Q20所占百分比均在97.90%以上,Q30所占百分比均在93.80%以上,平均每個樣品的GC含量為46.03%(表2)。由此可知,本次測序得到的玉露香梨果皮轉(zhuǎn)錄組的數(shù)據(jù)量和質(zhì)量都較高,可滿足下一步基因組比對分析的要求。
將檢驗合格的clean reads與梨參考基因組進行比對分析,結(jié)果(表3)顯示,能定位到參考基因組上的測序序列的占比(mapping rate)范圍在76.45%~78.61%,均大于70%,表明選擇的梨基因組合適,且梨樣品不存在污染。在參考序列上有唯一比對(uniquely mapping)位置的clean reads的占比范圍在68.56%~70.79%。在參考序列上有多個比對位置(multiple mapping)的clean reads的占比范圍在7.73%~8.09%,均小于10%。上述結(jié)果表明,玉露香梨果皮的轉(zhuǎn)錄組測序數(shù)據(jù)與梨參考基因組比對結(jié)果良好,可用于下一步差異表達基因的分析。
2.4 貨架期玉露香梨差異表達基因分析
由圖3可知,與貨架0 d相比,貨架7 d后,對照組共有494個差異基因上調(diào)表達,271個差異基因下調(diào)表達,1-MCP組共有2905個差異基因上調(diào)表達,616個基因下調(diào)表達(圖3-A、C)。與貨架7 d相比,貨架14 d后,對照組共有280個差異基因上調(diào)表達,112個差異基因下調(diào)表達,1-MCP組共有435個差異基因上調(diào)表達,1114個差異基因下調(diào)表達(圖3-B、D)。此外,對比同一貨架期不同處理的差異基因表達情況發(fā)現(xiàn),與對照組相比,貨架7 d后,1-MCP組共有2463個差異基因上調(diào)表達,599個差異基因下調(diào)表達(圖3-E),貨架14 d后,1-MCP組共有786個差異基因上調(diào)表達,284個差異基因下調(diào)表達(圖3-F)。因為貨架7 d后,1-MCP處理組玉露香梨果實顯著上調(diào)表達的差異基因數(shù)遠高于對照組,所以在后續(xù)分析中重點關(guān)注此時間點。
2.5 KEGG富集分析玉露香梨脂質(zhì)代謝通路和次級代謝途徑
對貨架前7 d的對照和處理組玉露香梨果皮顯著差異基因進行韋恩圖分析,如圖4-A所示,而后將除0 d vs CK-7d的95個基因之外的所有顯著差異基因進行KEGG富集分析,結(jié)果如圖4-B所示,貨架第7天,共95個差異基因富集到脂代謝通路。這些差異基因主要富集在角質(zhì)(cutin)、軟木脂(suberin)和蠟(wax)的生物合成,倍半萜和三萜類生物合成,α-亞麻酸和亞油酸代謝,甘油酯代謝,脂肪酸延伸(fatty acid elongation),脂肪酸生物合成和降解(fatty acid biosynthesis and degradation),不飽和脂肪酸的生物合成等13個次級脂質(zhì)代謝途徑。根據(jù)已有文獻報道[28]與蠟質(zhì)合成代謝直接相關(guān)的次級代謝途徑分別為角質(zhì)、軟木脂和蠟的生物合成、脂肪酸延伸、脂肪酸生物合成和脂肪酸降解。在本研究中,玉露香梨果皮轉(zhuǎn)錄組測序分析結(jié)果顯示,在與蠟質(zhì)合成直接相關(guān)的途徑中共檢測到29個差異表達轉(zhuǎn)錄本,包括角質(zhì)、軟木脂和蠟的生物合成、脂肪酸降解、脂肪酸生物合成和脂肪酸延伸途徑的11、12、3、3個差異表達基因。
對貨架7 d后對照組和1-MCP處理的玉露香梨果皮蠟質(zhì)合成脂質(zhì)代謝通路圖進行分析(圖5),共檢測到7個參與脂肪酸延伸途徑、脂肪酸脫羧途徑和?;€原途徑的差異表達轉(zhuǎn)錄本,分別為PyKCS1、PyKCS20、PyKCR1、PyPLDALPHA4、PyLACS9、PyFAD2、PyCER1。相比于對照,1-MCP處理導(dǎo)致PyKCS1上調(diào)表達,PyKCS20、PyKCR1、PyCER1、PyLACS9、PyPLDALPHA4和PyFAD2下調(diào)表達。
2.6 RT-qPCR驗證
根據(jù)KEGG富集分析結(jié)果,選擇7個與脂質(zhì)合成代謝相關(guān)的基因和2個乙烯合成相關(guān)基因進行RT-qPCR驗證。結(jié)果表明,與對照相比,貨架7 d和14 d后,1-MCP處理均顯著抑制PyLACS9、PyKCS20、PyCER1、PyACO2和PyACS-1基因的表達,顯著促進PyKCS1基因的表達;貨架7 d后,1-MCP處理顯著抑制PyPLDALPHA4和PyFAD2基因的表達(圖6)。
2.7 差異基因相對表達量與L值的相關(guān)性分析
如表4所示,L值與PyLACS9呈顯著正相關(guān)(r=0.99,p<0.05),與PyKCS20呈正相關(guān),與PyKCS1、PyPLDALPHA4、PyACS-1呈負相關(guān),與PyKCR1、PyCER1、PyACO2呈弱相關(guān)。此外,不同差異基因間相關(guān)性表現(xiàn)為,PyLACS9與PyACS-1呈負相關(guān),PyKCR1、PyCER1與PyACO2呈正相關(guān),PyPLDALPHA4與PyACS-1呈正相關(guān),PyFAD2與PyACO2、PyACS-1均呈負相關(guān)。
3 討 論
3.1 果皮蠟質(zhì)合成代謝與油膩化的關(guān)系
蠟質(zhì)組分的合成代謝反應(yīng)在采前植物的果實、葉片和莖以及采后貯藏的果實中均會發(fā)生[29]。植物在生長過程中積累的表皮蠟質(zhì)具有維持植物體內(nèi)水分平衡、防止水分流失、保護植物免受病原體入侵和昆蟲食草動物的侵襲[30]的功能,而在果實貯藏期間,果皮蠟質(zhì)合成代謝途徑的變化可能會導(dǎo)致果實外觀變差,如果面的油漬感和黏膩感[18]。
Li等[31]以玉露香梨、雪花梨和鴨梨3個亞洲梨品種為試驗材料,果實冷藏45 d后,15個表皮蠟質(zhì)合成代謝和蠟質(zhì)轉(zhuǎn)運相關(guān)基因(PyLACS1、PyKCS2、PyKCS6、PyFDH、PyKCS20、PyGL8、PyCER10、PyCER60、PyLTPG1、PyLTP4、PyABCG12、PyCER1L、PyCAC3、PyCAC3L、PyDGAT1L)的表達量達到峰值,且它們在玉露香梨中的表達量相對更高。在本研究中,筆者發(fā)現(xiàn),貨架7 d后,對照組梨果皮蠟質(zhì)合成代謝基因包括PyLACS9、PyKCR1、PyKCS20和PyCER1的表達量上調(diào)。LACS9是脂肪酸長鏈脂酰基輔酶A合酶合成的關(guān)鍵基因,在油料作物提高種子含油量中發(fā)揮關(guān)鍵作用[32]。此外,本研究中PyLACS9與果實L值呈顯著正相關(guān),因此認為它與玉露香梨果實的油膩化程度顯著相關(guān)。結(jié)合PyLACS9在玉露香梨脂質(zhì)代謝途徑中發(fā)揮作用,推測PyLACS9可能通過調(diào)控長鏈脂酰輔酶A的合成而促進脂肪酸的降解,進而加速果皮油膩化相關(guān)組分的合成。
Jiang等[19]研究表明,脂肪酸去飽和酶(FADs)在促進蘋果皮油膩化的發(fā)生中發(fā)揮重要作用,其中MdFAD27和MdFAD28作為關(guān)鍵基因通過調(diào)控FADs的活性進而促進果皮油膩化。閆丹[33]在研究中報道,MdFAD2基因的表達水平與蘋果果皮油膩的蠟組分中的酯類物質(zhì)含量呈顯著正相關(guān)。在本研究中,筆者挖掘到玉露香梨中脂質(zhì)合成代謝調(diào)控基因PyFAD2。在脂質(zhì)代謝通路途徑中,PyFAD2可能通過促進FADs的合成進而促進長鏈脂肪酸合成,為果皮油膩化組分的合成提供底物,因此推測該基因可作為調(diào)控玉露香梨果皮油膩化的候選基因進行深入研究。
3.2 1-MCP對蠟質(zhì)合成代謝基因和乙烯合成基因的調(diào)控作用
根據(jù)Li等[34]研究報道,1-MCP抑制了冷藏期間蘋果果皮蠟合成代謝基因MdLACS1、MdCER6、MdCER4和MdWSD1的表達,導(dǎo)致果實角質(zhì)層蠟中的醇類、脂肪酸類和酯類的含量降低。在本研究中,1-MCP抑制了玉露香梨PyLACS9、PyKCR1、PyKCS20和PyCER1基因的表達。結(jié)合玉露香梨外觀可發(fā)現(xiàn)1-MCP處理延緩了果皮的油膩化進程。因此推測,PyLACS9、PyKCR1、PyKCS20和PyCER1可能是調(diào)控玉露香梨果皮油膩化的關(guān)鍵基因。相關(guān)性分析結(jié)果表明,PyLACS9和果面亮度L值呈顯著正相關(guān),而L值與果皮油膩化密切相關(guān)。因此PyLACS9是調(diào)控玉露香梨果皮油膩化的關(guān)鍵基因,而1-MCP處理通過抑制其表達進而抑制果皮油膩化的發(fā)生。
此外,在本研究中1-MCP處理還顯著抑制了整個貨架期間梨果實的乙烯合成基因PyACO2和PyACS-1的表達。Li等[18]的研究結(jié)果表明,采用1-MCP處理玉露香梨果實,不僅顯著抑制了果皮蠟質(zhì)合成代謝基因和蠟質(zhì)轉(zhuǎn)運相關(guān)基因,包括PyLACS1、PyLACS6、PyKCS1、PyKCS2、PyKCS4、PyKCS10L、PyKCS11L、PyKCS20、PyFDH、PyCER10、PyKCR1、PyABCG11L、PyABCG12、PyABCG21L、PyLTPG1、PyLTP4、PyCAC3、PyCAC3L和PyDGAT1L的上調(diào)表達,乙烯合成基因PyACO1和PyACS1顯著下調(diào)表達,且上述基因的表達水平存在一定的相關(guān)性。在本研究中,相關(guān)性分析結(jié)果表明,PyLACS9與PyACS-1呈負相關(guān),PyKCR1、PyCER1與PyACO2呈正相關(guān),PyPLDALPHA4與PyACS-1呈正相關(guān),PyFAD2與PyACO2、PyACS-1均呈負相關(guān)。由此推測,1-MCP還可能通過調(diào)控乙烯合成相關(guān)基因的表達水平進而影響果皮蠟質(zhì)合成代謝基因的表達。
4 結(jié) 論
與對照相比,1-MCP處理對玉露香梨果皮蠟質(zhì)合成代謝相關(guān)基因的影響主要富集到脂肪酸的延伸、合成和分解等次級脂質(zhì)代謝途徑。經(jīng)1-MCP處理,PyKCS20、PyCER1、PyLACS9、PyPLDALPHA4和PyFAD2下調(diào)表達,果面亮度L值較對照低。1-MCP可能通過影響上述基因的表達模式來調(diào)節(jié)果皮蠟質(zhì)合成代謝途徑,進而影響玉露香梨果皮油膩化水平。
參考文獻 References:
[1] ARAUS J L,F(xiàn)EBRERO A,VENDRELL P. Epidermal conductance in different parts of durum wheat grown under Mediterranean conditions:The role of epicuticular waxes and stomata[J]. Plant,Cell amp; Environment,1991,14(6):545-558.
[2] VERAVERBEKE E A,LAMMERTYN J,SAEVELS S,NICOLAI? B M. Changes in chemical wax composition of three different apple (Malus domestica Borkh.) cultivars during storage[J]. Postharvest Biology and Technology,2001,23(3):197-208.
[3] LI D,CHENG Y D,GUAN J F. Effects of 1-methylcyclopropene on surface wax and related gene expression in cold-stored ‘Hongxiangsu’ pears[J]. Journal of the Science of Food and Agriculture,2019,99(5):2438-2446.
[4] BEAUDOIN F,WU X Z,LI F L,HASLAM R P,MARKHAM J E,ZHENG H Q,NAPIER J A,KUNST L. Functional characterization of the Arabidopsis β-beta-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase[J]. Plant Physiology,2009,150(3):1174-1191.
[5] BERNARD A,JOUBèS J. Arabidopsis cuticular waxes:Advances in synthesis,export and regulation[J]. Progress in Lipid Research,2013,52(1):110-129.
[6] DIETRICH C R,,YANDEAU-NELSON M D,MEELEY R B,NIKOLAU B J,SCHNABLE P S. Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development[J]. The Plant Journal,2005,42(6):844-861.
[7] WU X,YIN H,CHEN Y Y,LI L,WANG Y Z,HAO P P,CAO P,QI K J,ZHANG S L. Chemical composition,crystal morphology and key gene expression of cuticular waxes of Asian pears at harvest and after storage[J]. Postharvest Biology and Technology,2017,132:71-80.
[8] NOCK J F,WATKINS C B. Repeated treatment of apple fruit with 1-methylcyclopropene (1-MCP) prior to controlled atmosphere storage[J]. Postharvest Biology and Technology,2013,79:73-79.
[9] 王曉飛,任小林,楊艷青,亢鍵,樊麗,于建娜. ‘粉紅女士’蘋果果皮蠟質(zhì)油膩化的研究[J]. 果樹學(xué)報,2014,31(2):201-205.
WANG Xiaofei,REN Xiaolin,YANG Yanqing,KANG Jian,F(xiàn)AN Li,YU Jianna. Study on epicuticular wax greasiness of ‘Pink Lady’ apple fruits[J]. Journal of Fruit Science,2014,31(2):201-205.
[10] 趙曉敏,楊玉榮,李建鯤,袁峰,程俊嘉,李學(xué)文. 1-MCP處理對庫爾勒香梨采后果皮蠟質(zhì)變化的影響[J]. 食品科學(xué),2015,36(18):262-266.
ZHAO Xiaomin,YANG Yurong,LI Jiankun,YUAN Feng,CHENG Junjia,LI Xuewen. Effect of 1-methylcyclopropene treatment on postharvest changes in epicuticular wax of Korle fragrant pear fruits during ambient temperature storage[J]. Food Science,2015,36(18):262-266.
[11] 賈曉輝,王文輝,姜云斌,王志華,杜艷民,佟偉. 采收成熟度對‘玉露香’梨果實品質(zhì)和耐貯性的影響[J]. 果樹學(xué)報,2016,33(5):594-603.
JIA Xiaohui,WANG Wenhui,JIANG Yunbin,WANG Zhihua,DU Yanmin,TONG Wei. Effects of harvest maturity on fruit quality and storage life of ‘Yuluxiang’ pears[J]. Journal of Fruit Science,2016,33(5):594-603.
[12] 于宛婷,王文輝,張鑫楠,閻維巍,孫曉楠,賈曉輝. 外源褪黑素對玉露香梨常溫貯藏品質(zhì)和生理特性的影響[J]. 果樹學(xué)報,2023,40(8):1583-1591.
YU Wanting,WANG Wenhui,ZHANG Xinnan,YAN Weiwei,SUN Xiaonan,JIA Xiaohui. Effects of exogenous melatonin on fruit quality and physiological characteristics during room temperature storage in Yuluxiang pear[J]. Journal of Fruit Science,2023,40(8):1583-1591.
[13] 張微,趙迎麗,楊志國,王亮,陳會燕. ‘玉露香’梨果皮蠟質(zhì)含量提取方法及成分研究[J]. 食品科技,2022,47(1):34-40.
ZHANG Wei,ZHAO Yingli,YANG Zhiguo,WANG Liang,CHEN Huiyan. Extraction method and analysis of waxy components from ‘Yuluxiang’ pear pericarp[J]. Food Science and Technology,2022,47(1):34-40.
[14] 賈曉輝,王文輝,姜云斌,杜艷民,王志華,佟偉. 不同貯藏溫度對‘玉露香’梨果實保綠效果和品質(zhì)維持的影響[J]. 果樹學(xué)報,2016,33(增刊1):166-174.
JIA Xiaohui,WANG Wenhui,JIANG Yunbin,DU Yanmin,WANG Zhihua,TONG Wei. Effects of storage temperature on green keeping and quality of ‘Yuluxiang’ pear[J]. Journal of Fruit Science,2016,33(Suppl. 1):166-174.
[15] 劉佰霖,王文輝,馬風(fēng)麗,王陽,杜艷民,賈曉輝. 自發(fā)氣調(diào)包裝和乙烯吸收劑對‘玉露香’梨果實品質(zhì)及耐貯性的影響[J]. 果樹學(xué)報,2019,36(7):911-921.
LIU Bailin,WANG Wenhui,MA Fengli,WANG Yang,DU Yanmin,JIA Xiaohui. Effect of modified atmosphere packaging and ethylene absorbents on postharvest fruit quality and storage performance of ‘Yuluxiang’ pear[J]. Journal of Fruit Science,2019,36(7):911-921.
[16] 馬風(fēng)麗,杜艷民,王陽,佟偉,劉佰霖,王文輝,賈曉輝. 1-MCP對‘玉露香’梨采后果實品質(zhì)和葉綠素保持的影響[J]. 園藝學(xué)報,2019,46(12):2299-2308.
MA Fengli,DU Yanmin,WANG Yang,TONG Wei,LIU Bailin,WANG Wenhui,JIA Xiaohui. Effect of 1-methylcyclopropene (1-MCP) on quality and chlorophyll maintenance of postharvest ‘Yuluxiang’ pear[J]. Acta Horticulturae Sinica,2019,46(12):2299-2308.
[17] LEE J G,EUM H L,LEE E J. Relationship between skin greasiness and cuticular wax in harvested ‘Hongro’ apples[J]. Food Chemistry,2024,450:139334.
[18] LI D,LI X L,CHENG Y D,GUAN J F. Effect of 1-methylcyclopropene on peel greasiness,yellowing,and related gene expression in postharvest ‘Yuluxiang’ pear[J]. Frontiers in Plant Science,2023,13:1082041.
[19] JIANG Z T,DING Y D,LIU J,YIN W J,QI Y W,YANG Y Q,REN X L. The MdFAD27 and MdFAD28 play critical roles in the development of greasiness disorder in postharvest apples[J]. Postharvest Biology and Technology,2022,191:111990.
[20] YANG Y Q,ZHANG M Z,REN X L,CHENG Y J,PENG X Y,TIAN S W,WANG X S,XU L,ZHANG Y,LI C,SUN C C,ZHANG W,GONG H S. Chemical and thermodynamic analyses of the surface waxes of ‘Korla’ pears:Relationships between the surface waxes and skin greasiness[J]. Postharvest Biology and Technology,2023,196:112156.
[21] YU W T,ZHANG X N,YAN W W,SUN X N,WANG Y,JIA X H. Effects of 1-methylcyclopropene on skin greasiness and quality of ‘Yuluxiang’ pear during storage at 20 ℃[J]. Journal of Integrative Agriculture,2024,23(7):2476-2490.
[22] 于宛婷,杭博,張鑫楠,杜艷民,王文輝,賈曉輝. 1-MCP處理對庫爾勒香梨常溫保綠效果和果實內(nèi)在品質(zhì)的影響[J]. 中國果樹,2023(10):13-18.
YU Wanting,HANG Bo,ZHANG Xinnan,DU Yanmin,WANG Wenhui,JIA Xiaohui. Effects of 1-MCP treatment on the green-keeping effect and internal quality of ‘Korla fragrant pear’ at normal temperature[J]. China Fruits,2023(10):13-18.
[23] CHEN S F,ZHOU Y Q,CHEN Y R,GU J. FASTP:An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics,2018,34(17):i884-i890.
[24] KIM D,LANGMEAD B,SALZBERG S L. HISAT:A fast spliced aligner with low memory requirements[J]. Nature Methods,2015,12(4):357-360.
[25] PERTEA M,PERTEA G M,ANTONESCU C M,CHANG T C,MENDELL J T,SALZBERG S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology,2015,33(3):290-295.
[26] LI B,DEWEY C N. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics,2011,12:323.
[27] KWON Y S,PARK J T,YOO J,DO V G,KIM J H,CHO Y S,YANG S J,KANG I K,WIN N M. 1-methylcyclopropene improves the postharvest physiological characteristics and fruit quality of ‘Colorpple’ and ‘Manhong’ apple cultivars during storage at warm and cold temperatures[J]. Horticultural Science and Technology,2024,42(2):151-166.
[28] ADHIKARY T,GILL P P S,JAWANDHA S K,KAUR N,SINHA A. Exogenous application of oxalic acid improves the storage quality of Asian pears (Patharnakh) by regulating physiological and biochemical changes[J]. Acta Physiologiae Plantarum,2023,46(1):1.
[29] 于姝莉,呂云皓,韓彤,劉憶冬,江英. 果實表皮蠟質(zhì)代謝和調(diào)控與品質(zhì)之間的關(guān)系研究進展[J]. 食品安全質(zhì)量檢測學(xué)報,2023,14(14):282-289.
YU Shuli,LV Yunhao,HAN Tong,LIU Yidong,JIANG Ying. Research progress on the relationship between fruit epicuticular wax metabolism,regulation and quality[J]. Journal of Food Safety amp; Quality,2023,14(14):282-289.
[30] 王立山,丁兵,李玉花,張旸. 植物表皮蠟質(zhì)合成轉(zhuǎn)運調(diào)控相關(guān)基因與干旱響應(yīng)的研究進展[J]. 園藝學(xué)報,2018,45(9):1831-1843.
WANG Lishan,DING Bing,LI Yuhua,ZHANG Yang. Reaserch progress of plant cuticular wax biosynthesis,export and regulation related genes responsed to drought[J]. Acta Horticulturae Sinica,2018,45(9):1831-1843.
[31] LI D,CHENG Y D,SHANG Z L,GUAN J F. Changing surface wax compositions and related gene expression in three cultivars of Chinese pear fruits during cold storage[J]. PeerJ,2022,10:e14328.
[32] ZHU K M,LI N N,ZHENG X F,SARWAR R,LI Y L,CAO J,WANG Z,TAN X L. Overexpression the BnLACS9 could increase the chlorophyll and oil content in Brassica napus[J]. Biotechnology for Biofuels and Bioproducts,2023,16(1):3.
[33] 閆丹. 蘋果果皮油膩化發(fā)生過程中蠟質(zhì)代謝相關(guān)基因的鑒定及功能分析[D]. 楊凌:西北農(nóng)林科技大學(xué),2019.
YAN Dan. Identification and functional analysis of genes related to wax metabolism in apple skin greasiness[D]. Yangling:Northwest A amp; F University,2019.
[34] LI F J,MIN D D,REN C T,DONG L L,SHU P,CUI X X,ZHANG X H. Ethylene altered fruit cuticular wax,the expression of cuticular wax synthesis-related genes and fruit quality during cold storage of apple (Malus domestica Borkh. cv. Starkrimson) fruit[J]. Postharvest Biology and Technology,2019,149:58-65.
收稿日期:2024-07-08 接受日期:2024-11-03
基金項目:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-29-19);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程項目(CAAS-ASTIP-RIP);中央級公益性科研院所基本科研業(yè)務(wù)費專項(1610182022010)
作者簡介:于宛婷,女,在讀博士研究生,主要從事果品貯藏保鮮與采后生理研究。E-mail:abcdefg1468929@qq.com
*通信作者Author for correspondence. E-mail:Jiaxiaohui@caas.cn