摘" " 要:【目的】探明長期條狀施肥下密植成齡庫爾勒香梨根系和土壤理化性質(zhì)的特征,為密植梨園科學(xué)高效水肥管理提供依據(jù)。【方法】采用剖面挖掘法和WinRHIZO根系分析系統(tǒng),分析11年生梨園行間距樹干50~200 cm距離、10~110 cm深剖面根系的形態(tài)和土壤理化性質(zhì)指標(biāo)?!窘Y(jié)果】梨根長和根表面積均以吸收根為主,占比分別為92.57%、62.62%;根體積以輸導(dǎo)根為主,占比52.98%。在施肥溝附近,根長、根表面積的占比最高,分別為32.32%、27.06%;在深度10~90 cm、水平距離140 cm以內(nèi)的區(qū)域,平均根長密度為0.62 mm·cm-3,占整個(gè)采樣區(qū)域根長的75.56%,表明該區(qū)域是梨根系密集分布區(qū)。長期條狀施肥導(dǎo)致不同養(yǎng)分的富集區(qū)存在差異,有機(jī)質(zhì)和速效磷在施肥溝處聚集,表現(xiàn)層性分布的特征,且在深層土壤含量極少,其中10~30 cm深度土壤有機(jī)質(zhì)、速效磷含量分別是90~110 cm深層土壤的2.62倍、16.28倍;堿解氮和速效鉀由施肥溝向近主干方向分布且其含量顯著高于行間方向,50~80 cm處土壤堿解氮、速效鉀含量分別是140~170 cm處土壤的1.35倍、1.21倍;堿解氮和速效鉀在深層土壤積累,90~110 cm深度堿解氮含量是10~30 cm土層的2.28倍。10~50 cm深度土壤,施肥溝與行間土壤的部分物理性質(zhì)存在顯著差異。與施肥溝處相比,行間距主干150 cm長期受機(jī)械碾壓處的土壤容重顯著增加而孔隙度、飽和持水量、田間持水量均顯著下降。吸收根的根長密度與速效磷含量呈極顯著正相關(guān)。【結(jié)論】長期條狀施肥下,有機(jī)質(zhì)和速效養(yǎng)分的空間差異性分布以及施肥溝和機(jī)械壓實(shí)處土壤物理性質(zhì)的差異是成齡密植庫爾勒香梨根系延伸生長的不利因子。
關(guān)鍵詞:庫爾勒香梨;密植;樹齡;根系;土壤養(yǎng)分;空間分布;條狀施肥;土壤物理性質(zhì)
中圖分類號(hào):S661.2 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)02-0336-12
Spatial relationship between root system and soil properties of mature and densely planted Kuerlexiangli pear under long-term strip fertilization
DENG Yonghui1, YAN Pan1, AN Shijie2, CHEN Qiling2*, ZHENG Qiangqing1, MA Ling2, WANG Zhendong1, WANG Guodong3, LIU Jing4, WANG Xin4
(1Institute of Forestry and Horticulture, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, Xinjiang, China; 2Tiemenguan Experimental Station, Xinjiang Academy of Agricultural and Reclamation Science, Tiemenguan 841000, Xinjiang, China; 3Institute of Agricultural Hydrology and Soil Fertiliser, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, Xinjiang, China; 4Horticulture and Forestry College, Tarim University, Alar 843300, Xinjiang, China)
Abstract: 【Objective】 Kuerlexiangli pear (Pyrus sinkiangensis Yü et Lu.) is the main cultivar in Southern Xinjiang. In recent years, the main trunk dense planting pear orchard has developed rapidly and entered the peak fruiting period. With the increase of tree age, problems such as poor resistance, death vulnerability, and unstable yield have become prominent in dense planting pear orchard. Fertilization methods affect the distribution of the roots of the fruit tree and nutrient utilization, and are closely related to tree resistance and yield. Fertilization in mature and densely planted pear orchards is often carried out at the edge of the tree crown, about 1 meter away from the main trunk, by opening a strip-shaped ditch for fertilization. As the tree ages, further research is needed to determine whether this fertilization method is reasonable under dense planting conditions. The study aimed to survey the spatial characteristics of the root system and soil physicochemical properties of the densely planted mature Korla pears under long-term strip fertilization in order to provide a basis for scientific and efficient water and fertilizer management in the densely planted pear orchards. 【Methods】 Using the profile excavation method and WinRHIZO root analysis system, the root morphology of 11 year old Kuerlexiangli pear with Pyrus betulifolia Bunge as rootstock was analyzed at a distance of 50-200 cm between the rows and tree trunks, and at a depth of 10-110 cm. The soil organic matter, available nutrients, soil bulk density, porosity, saturated water content, field water holding capacity and other soil physical and chemical properties were measured. 【Results】 The results showed that the length and surface area of the pear roots were mainly dominated by the absorbing roots, accounting for 92.57% and 62.62%, respectively; The root volume was mainly composed of the conducting roots, accounting for 52.98%. In the horizontal direction, the root length and root surface area density were the highest near the fertilization ditch, accounting for 32.32% and 27.06% respectively; The proportion of the root length and root surface area in the soil layer at a depth of 30-50 cm in the vertical direction was the highest, accounting for 26.30% and 25.99%, respectively. The average root length density in the area with a depth of 10-90 cm and a horizontal distance of 140 cm was 0.62 mm·cm-3, accounting for 75.56% of the total root length in the sampling area. It was the densely distributed area of pear root system. There were differences in the enrichment areas of the different nutrients in long-term strip fertilization orchard. The organic matter and available phosphorus accumulated at a distance of 1 meter from the main stem in the fertilization ditch, and exhibit layered distribution characteristics. The content of the organic matter and available phosphorus contents at a depth of 10-30 cm were 2.62 times and 16.28 times higher than those at a depth of 90-110 cm, respectively. The content of the alkaline nitrogen and available potassium in the soil at 50-80 cm were 1.35 times and 1.21 times higher than those at 140-170 cm, respectively; The alkaline hydrolyzable nitrogen content at depths of 90-110 cm was 2.28 times higher than that at depths of 10-30 cm. There was a significant difference in the physical properties of the soil between the fertilization ditches and rows at a depth of 10-50 cm. Compared with the fertilization ditches, the soil bulk density significantly increased while the porosity, saturated water holding capacity, and field water holding capacity decreased in the distance of 150 cm away from the main stem due to the mechanical compaction for a long time. The nutrient content of the roots and soil was closely related to spatial location. The correlation coefficients between the V and Ⅵ grade roots and soil depth were 0.45 and 0.62, respectively. The correlation coefficients between the Ⅰ and Ⅳ grade roots and horizontal distance were -0.55 and -0.45, respectively; The correlation coefficients between the organic matter and available phosphorus and soil depth were -0.73 and -0.74, respectively. The correlation coefficient between the alkaline nitrogen and soil depth is 0.55. The correlation coefficient between the available potassium content and horizontal distance was -0.66. There was a highly significant and positive correlation between the grade Ⅰ-Ⅱ root systems and available phosphorus (r= 0.70 and 0.64, respectively). 【Conclusion】 In summary, under long-term strip fertilization, the organic matter and phosphorus nutrients in the densely planted Kuerlexiangli pear orchard accumulated in and near the fertilization ditch, and the soil porosity and water holding capacity in the soil between the rows decreased. The spatial differences in the distribution of the organic matter and available nutrients, as well as the differences in the soil physical properties between the fertilization ditch and mechanical compaction site would be unfavorable factors for the root extension and growth of mature densely planted Kuerlexiangli pear orchards.
Key words: Kuerlexiangli pear; Close planting; Tree age; Root system; Soil nutrients; Spatial distribution; Strip fertilization; Soil physical properties
梨是南疆的百億特色林果產(chǎn)業(yè),2022年新疆梨產(chǎn)量為151.37萬t,全國第二,占全國梨產(chǎn)量的7.86%,主要栽培品種為庫爾勒香梨[1]。庫爾勒香梨皮薄肉細(xì)、香味馥郁、酥脆多汁、貯藏性強(qiáng),受到國內(nèi)外消費(fèi)者的喜愛。庫爾勒香梨的區(qū)域公用品牌價(jià)值從2018年的98.88億元躍升至2023年的171.28億元,在梨中連續(xù)6年排名第一[2]。2022年新疆生產(chǎn)建設(shè)兵團(tuán)梨產(chǎn)量為62.41萬t,占新疆梨產(chǎn)量的41.23%,主要分布在南疆第一師、第二師和第三師。其中第二師是新疆香梨的優(yōu)勢產(chǎn)區(qū),近年來該產(chǎn)區(qū)主干形密植梨園快速發(fā)展,并進(jìn)入盛果期,面積約0.33萬hm2[3]。密植香梨園株行距一般為1.0 m × 4.0 m,株距和冠幅較傳統(tǒng)稀植果園窄,有利于機(jī)械化管理。但是,隨著樹齡增長,密植梨園易出現(xiàn)樹體抗性弱、易死亡、產(chǎn)量不穩(wěn)定等問題。施肥方式影響果樹根系分布和養(yǎng)分利用,也與樹體抗性和產(chǎn)量密切相關(guān)[4]。成齡密植梨園施肥多在樹冠邊緣,即距主干約1 m處開條狀溝施肥,隨樹齡增長,這種密植條件下的施肥方式是否合理還需要進(jìn)一步的研究。
掌握根系分布特征是高效水肥管理的基礎(chǔ),對(duì)調(diào)控樹勢和產(chǎn)量具有指導(dǎo)意義。關(guān)于梨根系多圍繞稀植果園開展研究,隨樹齡增長根系密集區(qū)的范圍在水平方向不斷擴(kuò)大,如8年生梨的根系主要分布在水平方向0~1.2 m處[5],而25年生梨的吸收根主要分布在水平方向0~2.5 m[6]。在垂直方向上梨根系密集分布的變化相對(duì)較小,不同樹齡梨樹根系主要集中在0.2~0.9 m深的土層[7-8],隨樹齡增長,根系密度的最高區(qū)域有下移的趨勢。除樹齡外,栽植密度也影響果樹根系分布,栽植密度不同往往導(dǎo)致施肥管理措施的差異化,如稀植梨園以環(huán)狀溝或鉆施肥穴施肥而密植梨園以條狀溝施為主。施肥方式造成養(yǎng)分空間的差異性分布,是決定根系分布特征的重要因素。目前,對(duì)密植梨園根系分布特征的研究較為缺乏。已有報(bào)道幼齡期密植梨根系主要分布在20~60 cm深的土層[9],6年生密植梨根系密集區(qū)水平方向延伸至距主干1.2 m處[10],成齡密植梨園根系的分布特征未見報(bào)道。
對(duì)梨園土壤理化性質(zhì)的研究多為大尺度區(qū)域性分布調(diào)查。研究表明,庫爾勒墾區(qū)香梨園土壤屬性空間異質(zhì)性強(qiáng)[11],養(yǎng)分具有表聚效應(yīng),即隨著土壤深度增加,有機(jī)質(zhì)、速效養(yǎng)分含量均逐漸降低[12]。盡管土壤養(yǎng)分具有較強(qiáng)的空間變異性,但長期施肥和種植制度能顯著影響土壤養(yǎng)分的空間分布[13-14],并呈現(xiàn)出一定規(guī)律性?,F(xiàn)有的研究多關(guān)注大區(qū)域養(yǎng)分分布的差異,忽略了在長期穩(wěn)定水肥管理方式下單個(gè)果園土壤養(yǎng)分空間分布的規(guī)律性。與稀植梨園不同,新疆密植梨園施肥、打藥均已實(shí)現(xiàn)機(jī)械化,因受行距和載具的限制,行間距主干150 cm附近的土壤長期被機(jī)械碾壓,在有限的行間距范圍內(nèi)機(jī)械頻繁通行造成土壤結(jié)構(gòu)發(fā)生顯著的變化。機(jī)械壓實(shí)易使土壤容重增加、孔隙度下降,不利于養(yǎng)分流動(dòng)和根系生長[15]。目前關(guān)于密植梨園土壤容重、孔隙度等物理性質(zhì)的研究較缺乏。
針對(duì)長期條狀施肥下成齡密植庫爾勒香梨根系分布和土壤理化性質(zhì)特征開展研究,可為密植梨園合理施肥技術(shù)創(chuàng)新提供理論支撐,對(duì)新疆密植梨園栽培模式的健康持續(xù)發(fā)展具有重要現(xiàn)實(shí)意義。
1 材料和方法
1.1 試驗(yàn)地概況
試驗(yàn)地位于新疆生產(chǎn)建設(shè)兵團(tuán)第二師29團(tuán)2連,選擇11年生主干形密植庫爾勒香梨園,平均產(chǎn)量22 500 kg·hm-2,土壤為砂壤土,砧木為杜梨,東西行向,株行距1.0 m×4.0 m,樹干的平均基徑為9.50 cm,平均冠幅為2.70 m(南北)×1.60 m(東西)。全年漫灌5次,漫灌時(shí)間為3月中旬(萌芽期)、5月(新梢生長期、幼果期)、6月或7月(果實(shí)膨大期)、8月(果實(shí)成熟期)和10月(果實(shí)采收后),灌溉定額為11 250 m3·hm-2。定植第6年進(jìn)入結(jié)果期后,距離主干約100 cm處開溝施肥,每年生長季追施復(fù)合肥800 kg·hm-2。10月中旬施基肥1次,隔年施羊糞90 m3·hm-2或生物有機(jī)肥1000 kg·hm-2,添加以磷肥為主的復(fù)合肥400 kg·hm-2,開溝寬、深均約為20 cm,施羊糞時(shí)開溝寬、深均約30 cm。于2023年10月,選取3株平均基徑相近、樹勢健壯的香梨樹作為樣株,調(diào)查根系和土壤理化性質(zhì)的空間特征。
1.2 測定項(xiàng)目與方法
1.2.1 根系采集與分析 于10月上旬果實(shí)采收后,采用剖面挖掘法調(diào)查根系的分布特征。參考常規(guī)施肥位置,調(diào)查區(qū)域以樹干為中心,在南北兩側(cè)距離樹干50~200 cm水平距離處,去除表層10 cm土壤后,按照分層取樣法采集寬30 cm、深110 cm的區(qū)域土壤根系,采樣單元大小為30 cm× 30 cm× 20 cm,具體方法如圖1所示。將單個(gè)采樣單元的帶根土樣倒入0.1 mm篩進(jìn)行浸泡、沖洗,利用Epson V850 Pro掃描儀對(duì)根系進(jìn)行掃描,采用加拿大Regent Instruments公司生產(chǎn)的WinRHIZO根系分析軟件分析不同徑級(jí)根系在各采樣單元的根長、根表面積、根體積指標(biāo)。不同深度和水平距離土層根系占比為該土層所有采樣單元總根系與整個(gè)采樣區(qū)域根系的比值。參考李宏等[7]、李楠等[8]的方法,按照直徑大小將梨根系分為7個(gè)等級(jí),Ⅰ級(jí)為0 mm<直徑<1 mm,Ⅱ級(jí)為1 mm≤直徑<2 mm,Ⅲ級(jí)為2 mm≤直徑<3 mm,Ⅳ級(jí)為3 mm≤直徑<4 mm,Ⅴ級(jí)為4 mm≤直徑<5 mm,Ⅵ級(jí)為5 mm≤直徑<10 mm,Ⅶ級(jí)為直徑≥10 mm。根據(jù)根系功能描述將梨根系分為吸收根(直徑<2 mm,對(duì)應(yīng)Ⅰ級(jí)和Ⅱ級(jí)根系)、輸導(dǎo)根(2 mm≤直徑<10 mm,對(duì)應(yīng)Ⅲ~Ⅵ級(jí)根系)、粗根(直徑≥10 mm,對(duì)應(yīng)Ⅶ級(jí)根系)[10]。
按照以下公式計(jì)算單個(gè)采樣單元(土體體積為18 000 cm3)的根長、根表面積和根體積密度:
根長密度/(mm·cm-3)=根長/土體體積;
根表面積密度/(mm2·cm-3)=根表面積/土體體積;
根體積密度/(mm3·cm-3)=根體積/土體體積。
1.2.2 土壤樣品采集與測定 采用常規(guī)分析方法測定土壤養(yǎng)分和物理性質(zhì)[16]。使用體積為100 cm3的環(huán)刀在行間分別距離主干50、100、150、200 cm處取土樣,垂直方向每20 cm深度為一層,取樣至110 cm深度,測定土壤容重(BD)、孔隙度(TP)、飽和含水量(SMC)和田間持水量(FC)。取根系的同時(shí)采集各采樣單元的土樣,土樣風(fēng)干后用于測定土壤有機(jī)質(zhì)、速效養(yǎng)分含量。利用重鉻酸鉀容量法-外加熱法測定有機(jī)質(zhì)(SOM)含量,利用堿解擴(kuò)散法測定堿解氮(AN)含量,利用NaHCO3浸提-鉬銻抗比色法測定速效磷(AP)含量;利用乙酸銨浸提-火焰光度計(jì)測定速效鉀(AK)含量。
1.3 數(shù)據(jù)分析
利用SPSS19軟件進(jìn)行數(shù)據(jù)處理與分析,利用Excel和Origin作圖。相關(guān)性分析中不同徑級(jí)根系的性狀指標(biāo)為根長密度。
2 結(jié)果與分析
2.1 梨不同徑級(jí)根系組成
由圖2可知,成齡庫爾勒香梨根長和根表面積均以Ⅰ~Ⅱ級(jí)的吸收根為主,占比分別為92.57%、62.62%。整個(gè)采樣剖面Ⅰ級(jí)根系平均根長為13 978.20 cm,占比為77.98%,顯著高于其他徑級(jí)根系;Ⅱ級(jí)根系平均根長為2 615.15 cm,占比為14.59%;Ⅲ~Ⅶ級(jí)根長占比僅為0.36%~3.36%。Ⅰ級(jí)根系根表面積為1 765.10 cm2,占比為38.33%,顯著高于其他徑級(jí);Ⅱ級(jí)根系根表面積為1 118.43 cm2,占比為24.29%;輸導(dǎo)根(Ⅲ~Ⅵ級(jí))總表面積占比31.80%,粗根(Ⅶ級(jí))表面積占比僅為5.58%。根體積以輸導(dǎo)根為主,輸導(dǎo)根根體積為166.55 cm3,占比52.98%,吸收根和粗根的占比分別為20.05%、26.96%。
2.2 梨根系空間分布特征
由表1可知,垂直方向上,根長、根表面積在30~50 cm深度土層占比最高,分別為26.30%、25.99%。水平方向上,根系主要分布在距離主干140 cm以內(nèi)的區(qū)域,該區(qū)域根長、根表面積、根體積累積占比分別為81.42%、75.95%、71.62%。其中,水平方向距主干80~110 cm施肥溝處的根長和根表面積占比最高,分別為32.32%、27.06%。
由圖3可知,成齡庫爾勒香梨根系主要分布在深度10~90 cm、水平距離50~140 cm的區(qū)域,平均根長密度為0.62 mm cm-3,占整個(gè)采樣區(qū)域根長的75.56%。深度10~30 cm的土壤根系分布范圍小,水平距離距主干140 cm以外的區(qū)域無根系分布。深度30~110 cm的土壤根系分布范圍大,水平距離均延伸至距主干200 cm處,距主干140 cm以外區(qū)域的平均根長密度為0.18 mm cm-3,根系較為稀疏。根表面積和根體積密集區(qū)在空間中的分布與根長密集區(qū)分布相似,整體上根系呈現(xiàn)傾斜向下分布的特征,隨深度增加密集區(qū)域向外移動(dòng)。
由圖3采樣區(qū)域各單元不同徑級(jí)根系組成可知,吸收根的分布范圍最大,隨根系粗度增加,分布范圍逐漸縮小。Ⅰ~Ⅲ級(jí)根系在整個(gè)根系分布區(qū)均有分布,Ⅶ級(jí)粗根分布的區(qū)域最小,深度10~30 cm的土層無粗根,深度30~110 cm的土層有粗根,且粗根表現(xiàn)出傾斜向下分布的趨勢。在根長密集區(qū)吸收根的占比為77.55%~99.67%,所以根長密集區(qū)也是吸收根密集分布區(qū)。輸導(dǎo)根中Ⅲ~Ⅳ級(jí)分布范圍廣,與吸收根分布范圍基本一致,Ⅲ~Ⅳ級(jí)根系發(fā)揮運(yùn)輸養(yǎng)分的關(guān)鍵作用。
2.3 土壤養(yǎng)分空間分布特征
由圖4-A可知,水平方向上,有機(jī)質(zhì)和速效磷在距主干80~110 cm處含量最高,其中有機(jī)質(zhì)含量分別是140~170 cm、170~200 cm處土壤的1.48倍、2.43倍,速效磷含量分別是2.61倍、4.05倍;垂直方向上,有機(jī)質(zhì)和速效磷在10~50 cm深度土層含量較高,10~30 cm上層土壤有機(jī)質(zhì)、速效磷含量分別是90~110 cm深度土壤的2.62倍、16.28倍,呈現(xiàn)出養(yǎng)分的表聚效應(yīng)。堿解氮和速效鉀由施肥溝近主干方向分布且其含量顯著高于行間方向,水平距離50~110 cm施肥溝近主干處堿解氮、速效鉀含量(w,后同)分別為101.88~103.42 mg·kg-1、294.40~297.20 mg·kg-1,顯著高于水平距離140~200 cm的行間區(qū)域,50~80 cm處土壤堿解氮、速效鉀含量分別是140~170 cm處土壤的1.35倍、1.21倍,是170~200 cm處土壤的1.49倍、1.31倍。整體上堿解氮含量隨土壤深度增加逐漸升高,90~110 cm深度土層堿解氮含量是10~30 cm土層的2.28倍。速效鉀在10~70 cm深度土層含量相近,70~90 cm、90~110 cm深層土壤速效鉀含量較50~70 cm土層分別增加了13.53%、11.54%。
由圖4-B可知,密植梨園土壤有機(jī)質(zhì)和速效養(yǎng)分富集區(qū)的分布不同。有機(jī)質(zhì)和速效磷在條狀施肥溝位置處聚集,同時(shí)明顯表現(xiàn)出層性分布的特征,在深度10~50 cm土層含量較高。堿解氮和速效鉀含量在水平距離50~110 cm區(qū)域較高,并在70~110 cm深層土壤積累,表明堿解氮和速效鉀在漫灌條件下向下移動(dòng)性較強(qiáng)。在30~90 cm深度,與施肥溝附近相比,水平方向140~200 cm行間區(qū)域堿解氮和速效鉀含量下降明顯;在90~110 cm深層土壤不同水平距離土壤堿解氮含量均較高,說明深層土壤堿解氮的橫向移動(dòng)性增強(qiáng)。
2.4 土壤物理性質(zhì)空間特征
由圖5可知,長期條狀施肥下10~50 cm深度土層,施肥溝和行間土壤部分物理性質(zhì)存在顯著差異,距主干水平距離100 cm施肥溝處土壤容重最小,孔隙度、飽和含水量、田間持水量均顯著高于其他水平距離。在10~30 cm深度,距主干150 cm水平距離的行間土壤長期受機(jī)械碾壓,容重顯著高于距主干50、100 cm處,而孔隙度、飽和含水量和田間持水量均顯著小于距主干50、100 cm處。50~110 cm深度,不同水平距離的土壤容重?zé)o顯著差異;距離主干50 cm水平距離的土壤孔隙度、飽和含水量、田間持水量均低于其他水平距離,并在70~110 cm深度土壤處均顯著低于其他水平距離。
2.5 根系與土壤性狀的相關(guān)性分析
由圖6可知,根長密度和土壤養(yǎng)分含量與空間位置關(guān)系密切。Ⅴ級(jí)、Ⅵ級(jí)根系與土壤深度相關(guān)系數(shù)分別為0.45、0.62,分別呈顯著正相關(guān)、極顯著正相關(guān);Ⅰ級(jí)、Ⅳ級(jí)根系與水平距離相關(guān)系數(shù)分別為-0.55、-0.45,呈顯著負(fù)相關(guān)。有機(jī)質(zhì)和速效磷含量與土壤深度的相關(guān)系數(shù)分別為-0.73、-0.74,均為極顯著負(fù)相關(guān);堿解氮含量與土壤深度的相關(guān)系數(shù)為0.55,呈顯著正相關(guān);速效鉀含量與水平距離相關(guān)系數(shù)為-0.66,呈極顯著負(fù)相關(guān)。
Ⅰ~Ⅱ級(jí)根系與速效磷含量呈極顯著正相關(guān),相關(guān)系數(shù)分別為0.70、0.64。根長密度與土壤容重、孔隙度等物理指標(biāo)相關(guān)性不顯著。
3 討 論
3.1 密植成齡庫爾勒香梨根系構(gòu)成和分布特征
成齡庫爾勒香梨根長和根表面積始終以直徑小于2 mm的吸收根為主,其中直徑小于1 mm的根長占比最高,為77.98%,這與前人研究結(jié)果相似[5]。幼齡期香梨根系主要分布在20~60 cm深度的土層[9]。本研究表明,成齡香梨根系分布的深度和廣度增加,與6年生庫爾勒香梨相比[10],10~70 cm根系密集區(qū)根長密度下降,70~110 cm深層土壤根長密度增長明顯,說明成齡香梨樹主要通過擴(kuò)大根系分布范圍獲取水分和養(yǎng)分,隨樹齡增長,香梨樹對(duì)深層土壤水分和養(yǎng)分利用能力增強(qiáng)。
從根系密集區(qū)整體分布可見,根系整體呈傾斜向下生長趨勢,這種趨勢可能受機(jī)械壓實(shí)的影響[15,17]。機(jī)械碾壓處10~50 cm深度土壤容重顯著高于施肥溝處,與水平距離50~140 cm區(qū)域相比,距主干140 cm外區(qū)域根系密度顯著下降,根系表現(xiàn)延伸生長受阻,因此呈現(xiàn)出根系傾斜向下生長的趨勢,也表明在行間140~200 cm范圍香梨根系仍有較大的生長空間。與稀植老果園相比[7-8],密植香梨園根系密集區(qū)分布范圍較窄,根系獲取水分養(yǎng)分空間小。同時(shí)密植香梨園株距窄、冠幅小,成齡后存在株間遮光的情況[18],單株光合產(chǎn)物的積累量小,樹體儲(chǔ)存的養(yǎng)分低于稀植梨園。以上原因均可能導(dǎo)致密植香梨樹體抗性弱、產(chǎn)量不穩(wěn)定。
3.2 密植成齡庫爾勒香梨園土壤理化性質(zhì)空間特征
果園土壤養(yǎng)分呈現(xiàn)出表聚效應(yīng),有機(jī)質(zhì)和磷在表層土壤的含量顯著高于深層土壤[19-20]。本研究表明,有機(jī)質(zhì)和速效磷表現(xiàn)明顯的層性分布,在深層土壤含量極少,這與前人研究結(jié)果相符[12]。汪宗蘭等[11]研究認(rèn)為庫爾勒墾區(qū)梨園土壤有機(jī)質(zhì)和速效養(yǎng)分變異與農(nóng)業(yè)生產(chǎn)活動(dòng)關(guān)系密切,采樣位置不同導(dǎo)致肥力評(píng)價(jià)存在差異。研究大尺度的果園土壤肥力時(shí),采樣應(yīng)該考慮常規(guī)的水肥管理措施,單個(gè)果園土壤養(yǎng)分空間變異性與水肥管理措施密切相關(guān),如滴灌施肥的養(yǎng)分主要聚集在滴頭附近,隨土層深度加深,養(yǎng)分含量降低[21]。生產(chǎn)中密植主干形香梨園一般在距主干100 cm行間處開20 cm深溝施肥,有機(jī)質(zhì)和速效磷移動(dòng)性弱,在施肥溝位置聚集,這是養(yǎng)分空間變異大的主要原因。筆者發(fā)現(xiàn)在70~110 cm深度土壤堿解氮、速效鉀含量遠(yuǎn)高于在10~30 cm深度土壤,說明因長期漫灌堿解氮、速效鉀向下運(yùn)移并在深層土壤積累。研究還發(fā)現(xiàn),堿解氮含量在90~110 cm深度土壤不同水平距離區(qū)域均較高。含水量增加顯著促進(jìn)氮素遷移[22],漫灌下90~110 cm深層土壤保持較高的含水量,促進(jìn)堿解氮在水平方向移動(dòng)。
李勇等[23]研究表明,直徑1 mm有效根密度和根量的增大,顯著增大土壤元素遷移強(qiáng)度,樹冠下方靠近主干一側(cè)梨根系密集,更有利于養(yǎng)分在水平方向運(yùn)移。已有研究表明,土壤容重大、孔隙度小不利于土壤水分入滲,造成持水能力下降[24-25],抑制根系的生長[26-27]。距主干約150 cm行間因打藥施肥反復(fù)受機(jī)械碾壓,每年達(dá)30次以上,與施肥溝處相比,樹冠外行間10~50 cm深度土壤容重增加,不利于養(yǎng)分向行間運(yùn)移,是水平方向養(yǎng)分分布差異的原因之一。
3.3 密植成齡庫爾勒香梨根系分布與土壤性質(zhì)的關(guān)系
根系分布與水平距離和土壤深度有關(guān),同時(shí)具有較強(qiáng)的向水向肥性[28-31]。本研究表明,在施肥溝附近根長和根表面積密度占比最高,這與根系化學(xué)向性生長特征相符。研究還發(fā)現(xiàn),香梨吸收根根長密度與速效磷含量呈極顯著正相關(guān)。磷素易被帶有正電荷的土壤顆粒結(jié)合,移動(dòng)性弱[30],精準(zhǔn)定位施磷位置可顯著提高磷的有效性,增加根長和根表面積密度[33-34],磷素空間分布差異性可能是香梨園根系生長分布的限制因子。長期條狀施肥下堿解氮、速效磷、速效鉀含量和根長密度在水平距離110 cm以內(nèi)區(qū)域顯著高于行間140~200 cm距離區(qū)域,同時(shí),與施肥溝處相比,行間土壤受機(jī)械壓實(shí)影響容重增加、持水能力下降,均不利于根系向行間方向延伸生長。
3.4 密植成齡庫爾勒香梨園水肥管理建議
長期條狀施肥下,密植梨園有機(jī)質(zhì)和磷素養(yǎng)分在施肥溝及附近聚集,所以施肥位置應(yīng)適當(dāng)外擴(kuò),如逐年擴(kuò)大磷肥和有機(jī)肥的施肥距離,同時(shí)增加施肥深度達(dá)40 cm為宜,以增加養(yǎng)分在深層和水平空間的分布,促進(jìn)根系擴(kuò)張和養(yǎng)分吸收。在漫灌條件下,氮素易淋溶至深層土壤,所以氮肥不宜施入過深。在機(jī)械碾壓位置距主干150 cm附近增施有機(jī)肥,通過果園生草、深翻等方式,緩解行間因機(jī)械壓實(shí)導(dǎo)致的土壤孔隙度和持水能力下降等問題,促進(jìn)養(yǎng)分側(cè)向移動(dòng)和根系延伸生長。
4 結(jié) 論
長期條狀施肥下,密植成齡庫爾勒香梨吸收根在深度10~90 cm、水平距離140 cm以內(nèi)的區(qū)域密集分布。有機(jī)質(zhì)和速效磷在施肥溝位置聚集,堿解氮、速效磷、速效鉀在施肥溝向近主干方向分布且其含量顯著高于行間方向。10~50 cm土壤深度,與施肥溝處相比,機(jī)械碾壓處土壤容重顯著增加,孔隙度和田間持水能力均降低。長期條狀施肥下養(yǎng)分的空間變異,以及施肥溝和機(jī)械壓實(shí)處土壤物理性質(zhì)的差異是成齡密植庫爾勒香梨根系延伸生長的不利因子。
參考文獻(xiàn)References:
[1] 國家統(tǒng)計(jì)局. 中國統(tǒng)計(jì)年鑒2023[M]. 北京:中國統(tǒng)計(jì)出版社,2023.
National Bureau of Statistics. China Statistical Yearbook 2023[M]. Beijing:China Statistics Press,2023.
[2] 王秋萍. 新疆:庫爾勒香梨區(qū)域公用品牌價(jià)值大幅提升[J]. 中國果業(yè)信息,2023,40(12):64-65.
WANG Qiuping. Xinjiang:The value of the regional public brand of Korla pear has increased significantly[J]. China Fruit News,2023,40(12):64-65.
[3] 馬建江,王剛,姜豐,黃國輝,梁義忠. 兵團(tuán)第二師庫爾勒香梨主干形栽培模式生產(chǎn)現(xiàn)狀及發(fā)展建議[J]. 農(nóng)業(yè)科技通訊,2020(12):296-297.
MA Jianjiang,WANG Gang,JIANG Feng,HUANG Guohui,LIANG Yizhong. Production status and development suggestions for the trunk-shaped cultivation model of Korla fragrant pear in the second division of the corps[J]. Bulletin of Agricultural Science and Technology,2020(12):296-297.
[4] 李偉,謝文歌,張曦瑜,馮雷,徐巧,柴仲平. 施氮對(duì)香梨園土壤養(yǎng)分、根系生物量及產(chǎn)量品質(zhì)的影響[J]. 經(jīng)濟(jì)林研究,2023,41(3):235-243.
LI Wei,XIE Wenge,ZHANG Xiyu,F(xiàn)ENG Lei,XU Qiao,CHAI Zhongping. Effect of nitrogen fertilization on soil nutrients,root biomass,yield and quality in Korla Fragrant Pear orchard[J]. Non-wood Forest Research,2023,41(3):235-243.
[5] 姜海波,趙靜文,張乃文,王紅,董彩霞,徐陽春. 不同土表管理措施對(duì)梨樹根系分布特征的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2014,20(1):164-171.
JIANG Haibo,ZHAO Jingwen,ZHANG Naiwen,WANG Hong,DONG Caixia,XU Yangchun. Effects of different soil surface management on distribution characteristics of pear roots[J]. Journal of Plant Nutrition and Fertilizer,2014,20(1):164-171.
[6] 李楠,廖康,成小龍,耿文娟,李永閑,寧萬軍,邱晨. ‘庫爾勒香梨’根系分布特征研究[J]. 果樹學(xué)報(bào),2012,29(6):1036-1039.
LI Nan,LIAO Kang,CHENG Xiaolong,GENG Wenjuan,LI Yongxian,NING Wanjun,QIU Chen. Studies on characteristics of root distribution of ‘Korla’s Xiangli’[J]. Journal of Fruit Science,2012,29(6):1036-1039.
[7] 李宏,程平,鄭朝暉,郭光華,楊嬋. 庫爾勒香梨根系空間分布特征[J]. 西北農(nóng)業(yè)學(xué)報(bào),2012,21(12):97-104.
LI Hong,CHENG Ping,ZHENG Zhaohui,GUO Guanghua,YANG Chan. Spatial distribution characteristics of roots of Korla fragrant pear trees[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2012,21(12):97-104.
[8] 李楠,廖康,成小龍,趙世榮,廖小龍,劉曼曼. 庫爾勒香梨根系與地上部生長發(fā)育動(dòng)態(tài)及相關(guān)性[J]. 新疆農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,36(2):131-135.
LI Nan,LIAO Kang,CHENG Xiaolong,ZHAO Shirong,LIAO Xiaolong,LIU Manman. Correlation and growth dynamic state of growth and development in root and aboveground organ of Korla fragrant pear[J]. Journal of Xinjiang Agricultural University,2013,36(2):131-135.
[9] 吉光鵬,姜繼元,牛蛉磊,張棟海,趙思峰,吳玉蓉. ‘庫爾勒香梨’根系分布及不同流量點(diǎn)源入滲濕潤體特征[J]. 北方園藝,2021(4):10-16.
JI Guangpeng,JIANG Jiyuan,NIU Linglei,ZHANG Donghai,ZHAO Sifeng,WU Yurong. Characterstics of root distribution and wetting body of infiltration with different flow rate for ‘Korla pear’[J]. Northern Horticulture,2021(4):10-16.
[10] 鄧永輝,兗攀,鄭強(qiáng)卿,陳奇凌,王振東,王文軍,王晶晶,張錦強(qiáng). 漫灌下幼樹期庫爾勒香梨根系分布特征研究[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2023,29(8):1563-1572.
DENG Yonghui,YAN Pan,ZHENG Qiangqing,CHEN Qiling,WANG Zhendong,WANG Wenjun,WANG Jingjing,ZHANG Jinqiang. Distribution of young Korla fragrant pear tree roots under flooding irrigation[J]. Journal of Plant Nutrition and Fertilizers,2023,29(8):1563-1572.
[11] 汪宗蘭,王春霞,馬建江,張景瑞,舒靖. 庫爾勒香梨園土壤肥力空間變異特征與綜合評(píng)價(jià)分析[J]. 節(jié)水灌溉,2024(3):83-90.
WANG Zonglan,WANG Chunxia,MA Jianjiang,ZHANG Jingrui,SHU Jing. Spatial variability characteristics and comprehensive evaluation analysis of soil fertility in Korla fragrant pear orchard[J]. Water Saving Irrigation,2024(3):83-90.
[12] 丁闊,王雪梅,柴仲平,顧奧運(yùn). 新疆庫爾勒香梨園土壤養(yǎng)分特征[J]. 西部林業(yè)科學(xué),2016,45(1):62-67.
DING Kuo,WANG Xuemei,CHAI Zhongping,GU Aoyun. Characteristics of soil nutrients in Korla fragrant pear orchard[J]. Journal of West China Forestry Science,2016,45(1):62-67.
[13] 張加良,孔濤,高熙梣,李多美,李佳,梁靜一. 遼西北沙地蘋果-農(nóng)作物間作對(duì)土壤養(yǎng)分分布和收益的影響[J]. 生態(tài)學(xué)雜志,2024,43(5):1314-1323.
ZHANG Jialiang,KONG Tao,GAO Xicen,LI Duomei,LI Jia,LIANG Jingyi. Effects of apple-crop intercropping on soil nutrient distribution and income in sandy land of northwestern Liaoning province[J]. Chinese Journal of Ecology,2024,43(5):1314-1323.
[14] 李大明,柳開樓,葉會(huì)財(cái),胡志華,余喜初,徐小林,楊旭初,周利軍,胡秋萍,胡惠文,黃慶海. 長期不同施肥處理紅壤旱地剖面養(yǎng)分分布差異[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2018,24(3):633-640.
LI Daming,LIU Kailou,YE Huicai,HU Zhihua,YU Xichu,XU Xiaolin,YANG Xuchu,ZHOU Lijun,HU Qiuping,HU Huiwen,HUANG Qinghai. Differences of soil nutrient distribution in profiles under long-term fertilization in upland red soil[J]. Journal of Plant Nutrition and Fertilizers,2018,24(3):633-640.
[15] 魏彬萌,李忠徽,王益權(quán). 渭北旱塬蘋果園土壤緊實(shí)化現(xiàn)狀及成因[J]. 應(yīng)用生態(tài)學(xué)報(bào),2021,32(3):976-982.
WEI Binmeng,LI Zhonghui,WANG Yiquan. Status and causes of soil compaction at apple orchards in the Weibei Dry Highland,Northwest China[J]. Chinese Journal of Applied Ecology,2021,32(3):976-982.
[16] 鮑士旦. 土壤農(nóng)化分析[M]. 3版. 北京:中國農(nóng)業(yè)出版社,2000:10-30.
BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000:10-30.
[17] BECERRA A T,BOTTA G F,BRAVO X L,TOURN M,MELCON F B,VAZQUEZ J,RIVERO D,LINARES P,NARDON G. Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería Espa?a[J]. Soil and Tillage Research,2010,107(1):49-56.
[18] 兗攀,王振東,鄧永輝,陳奇凌,鄭強(qiáng)卿. 庫爾勒香梨的光能截獲率及冠層結(jié)構(gòu)優(yōu)化[J]. 中國農(nóng)業(yè)科學(xué),2024,57(5):965-979.
YAN Pan,WANG Zhendong,DENG Yonghui,CHEN Qiling,ZHENG Qiangqing. Light interception rate and canopy structure optimization of Korla fragrant pear[J]. Scientia Agricultura Sinica,2024,57(5):965-979.
[19] 方兵,陳林,王陽,祝亞飛,王瑞,宋桂芳,劉俊,楊斌,張世文. 設(shè)施農(nóng)業(yè)土壤磷素累積遷移轉(zhuǎn)化及影響因素[J]. 環(huán)境科學(xué), 2023, 44(1): 452-462.
FANG Bing,CHEN Lin,WANG Yang,ZHU Yafei,WANG Rui,SONG Guifang,LIU Jun,YANG Bin,ZHANG Shiwen. Accumulation, migration, and transformation of soil phosphorus in facility agriculture and its Influencing factors[J]. Environmental Science,2023,44(1):452-462.
[20] 陳偉,王紅陽,王志堅(jiān),王佳,李亞新,孫從建. 黃土丘陵區(qū)香梨園土壤水分、養(yǎng)分分布特征及其與產(chǎn)量的關(guān)系[J]. 應(yīng)用生態(tài)學(xué)報(bào),2021,32(9):3159-3166.
CHEN Wei,WANG Hongyang,WANG Zhijian,WANG Jia,LI Yaxin,SUN Congjian. Distribution characteristics of soil water and nutrients in pear orchard and their relationship with yields in loess hilly region[J]. Chinese Journal of Applied Ecology,2021,32(9):3159-3166.
[21] 劉子君,葉赟,王麗,張遙,齊永波,穆靜,章力干. 滴噴灌施肥方式對(duì)土壤養(yǎng)分空間分異及茶苗根系生長的影響[J]. 水土保持學(xué)報(bào),2022,36(6):330-339.
LIU Zijun,YE Yun,WANG Li,ZHANG Yao,QI Yongbo,MU Jing,ZHANG Ligan. Effects of drip irrigation and spray irrigation fertilization on spatial differentiation of soil nutrients and root growth of tea seedlings[J]. Journal of Soil and Water Conservation,2022,36(6):330-339.
[22] 張磊,宋航,陳小琴,盧殿君,王火焰. 穴施條件下肥料養(yǎng)分在土壤中遷移規(guī)律的初步研究[J]. 土壤,2020,52(6):1145-1151.
ZHANG Lei,SONG Hang,CHEN Xiaoqin,LU Dianjun,WANG Huoyan. Primary study on nutrient migration under hole fertilization in soils[J]. Soils,2020,52(6):1145-1151.
[23] 李勇,張晴雯,李璐,萬國江,黃榮貴,樸河春. 黃土區(qū)植物根系對(duì)營養(yǎng)元素在土壤剖面中遷移強(qiáng)度的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2005,11(4):427-434.
LI Yong,ZHANG Qingwen,LI Lu,WAN Guojiang,HUANG Ronggui,PIAO Hechun. Effects of plant root on nutritious elements transport in soil profiles of the Chinese Loess Plateau[J]. Plant Nutrition and Fertilizing Science,2005,11(4):427-434.
[24] 趙月,鮑雪蓮,梁超,王鋼,解宏圖. 壓實(shí)對(duì)農(nóng)田土壤特性的影響及應(yīng)對(duì)措施[J]. 土壤通報(bào),2023,54(6):1457-1469.
ZHAO Yue,BAO Xuelian,LIANG Chao,WANG Gang,XIE Hongtu. Effects of compaction on farmland soil properties of farms and prevention measures[J]. Chinese Journal of Soil Science,2023,54(6):1457-1469.
[25] FRENE J P,PANDEY B K,CASTRILLO G. Under pressure:Elucidating soil compaction and its effect on soil functions[J]. Plant and Soil,2024,502(1):267-278.
[26] 劉學(xué)松,王翼飛,師嫄菲,張方博,伍夢起,唐曉燕,申建波,金可默. 基于根際生命共同體理論的根區(qū)土壤結(jié)構(gòu)構(gòu)建與調(diào)控[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2023,29(5):972-979.
LIU Xuesong,WANG Yifei,SHI Yuanfei,ZHANG Fangbo,WU Mengqi,TANG Xiaoyan,SHEN Jianbo,JIN Kemo. Construction and regulation of soil structure in root zone based on the theory of rhizobiont[J]. Journal of Plant Nutrition and Fertilizers,2023,29(5):972-979.
[27] WANG X,WHALLEY W R,MILLER A J,WHITE P J,ZHANG F S,SHEN J B. Sustainable cropping requires adaptation to a heterogeneous rhizosphere[J]. Trends in Plant Science,2020,25(12):1194-1202.
[28] 李洪波,薛慕瑤,林雅茹,申建波. 土壤養(yǎng)分空間異質(zhì)性與根系覓食作用:從個(gè)體到群落[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2013,19(4):995-1004.
LI Hongbo,XUE Muyao,LIN Yaru,SHEN Jianbo. Spatial heterogeneity of soil nutrients and root foraging:From individual to community[J]. Journal of Plant Nutrition and Fertilizer,2013,19(4):995-1004.
[29] 鄭強(qiáng)卿,陳奇凌,李銘,王晶晶. 滴灌條件下駿棗根系分布特征及根際土壤水分變化研究[J]. 北方園藝,2013(22):177-180.
ZHENG Qiangqing,CHEN Qiling,LI Ming,WANG Jingjing. Study on root distribution characteristics and changes of rhizosphere soil moisture under drip irrigation of Junzao[J]. Northern Horticulture,2013(22):177-180.
[30] 伍從成,姜海波,趙靜文,范學(xué)山,董彩霞,沈其榮,徐陽春. 連續(xù)5年施用生物有機(jī)肥對(duì)梨樹根系形態(tài)及分布的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,40(3):473-480.
WU Congcheng,JIANG Haibo,ZHAO Jingwen,F(xiàn)AN Xueshan,DONG Caixia,SHEN Qirong,XU Yangchun. Effect of continuous application of bio-organic fertilizer for five years on the morphology and distribution of pear roots[J]. Journal of Nanjing Agricultural University,2017,40(3):473-480.
[31] 鄧永輝,鄭強(qiáng)卿,兗攀,王文軍,陳奇凌,王晶晶,張錦強(qiáng),王振東. 干旱區(qū)駿棗根系分布和土壤養(yǎng)分關(guān)系分析[J]. 新疆農(nóng)業(yè)科學(xué),2024,61(1):156-164.
DENG Yonghui,ZHENG Qiangqing,YAN Pan,WANG Wenjun,CHEN Qiling,WANG Jingjing,ZHANG Jinqiang,WANG Zhendong. Research on the relationship between root distribution characteristics of Jun-jujube and soil nutrient in arid area[J]. Xinjiang Agricultural Sciences,2024,61(1):156-164.
[32] 嚴(yán)玉鵬,王小明,劉凡,馮雄漢. 有機(jī)磷與土壤礦物相互作用及其環(huán)境效應(yīng)研究進(jìn)展[J]. 土壤學(xué)報(bào),2019,56(6):1290-1299.
YAN Yupeng,WANG Xiaoming,LIU Fan,F(xiàn)ENG Xionghan. Progress in researches on interactions between organic phosphates and soil minerals and their environmental impacts[J]. Acta Pedologica Sinica,2019,56(6):1290-1299.
[33] LIU P,YAN H H,XU S N,LIN X,WANG W Y,WANG D. Moderately deep banding of phosphorus enhanced winter wheat yield by improving phosphorus availability,root spatial distribution,and growth[J]. Soil and Tillage Research,2022,220:105388.
[34] LIU C H,YAN H H,WANG W Y,HAN R F,LI Z Y,LIN X,WANG D. Layered application of phosphate fertilizer increased winter wheat yield by promoting root proliferation and phosphorus accumulation[J]. Soil and Tillage Research,2023,225:105546.
收稿日期:2024-10-23 接受日期:2024-12-02
基金項(xiàng)目:兵團(tuán)農(nóng)業(yè)科技創(chuàng)新工程專項(xiàng)(NCG202312);新疆農(nóng)墾科學(xué)院院級(jí)項(xiàng)目(2023YJ008)
作者簡介:鄧永輝,男,助理研究員,碩士,研究方向?yàn)楣麡湓耘嗌砩鷳B(tài)。E-mail:923236203@qq.com
*通信作者Author for correspondence. E-mail:Cql619@163.com