国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

云南會(huì)澤地區(qū)草莓多年一栽制生產(chǎn)模式下產(chǎn)量下降原因探究

2025-02-22 00:00:00李雙桃孫瑞萬(wàn)紅隗永青吳瑞雙董靜常琳琳魏靈芝陶磅熊融鐘傳飛高用順張宏力張運(yùn)濤王桂霞孫健
果樹學(xué)報(bào) 2025年2期
關(guān)鍵詞:草莓

摘" " 要:【目的】云南會(huì)澤地區(qū)為我國(guó)四季草莓主產(chǎn)區(qū),主要采取多年一栽模式,即一次定植連續(xù)多年收獲,后期產(chǎn)量逐年下降,多年生產(chǎn)后重新定植連作障礙問題十分嚴(yán)重。解析草莓多年一栽生產(chǎn)模式下的產(chǎn)量下降原因,能夠?yàn)樵撃J教豳|(zhì)升級(jí)和可持續(xù)發(fā)展提供理論基礎(chǔ)?!痉椒ā吭谑⒐趯?duì)不同生產(chǎn)年份土壤取樣,檢測(cè)土壤有機(jī)質(zhì)含量、pH、電導(dǎo)率以及主要礦質(zhì)養(yǎng)分含量并比較分析;提取土壤微生物DNA,通過(guò)高通量測(cè)序分析細(xì)菌和真菌群落結(jié)構(gòu)和功能變化,并與土壤理化性狀進(jìn)行相關(guān)性分析?!窘Y(jié)果】多年一栽模式下,土壤pH平均每年下降0.87,土壤電導(dǎo)率(EC)每年上升60.40%,第四年土壤有機(jī)質(zhì)含量下降超過(guò)59%。微生物群落多樣性逐年降低,第4年土壤微生物Chao1指數(shù)下降41.8%,真菌多樣性下降52.5%;N循環(huán)相關(guān)細(xì)菌的相對(duì)豐度降低,大多數(shù)C循環(huán)與N循環(huán)細(xì)菌豐度與土壤有機(jī)質(zhì)含量呈正相關(guān),而與土壤EC呈負(fù)相關(guān)。同時(shí),隨著收獲年限增加,F(xiàn)UNGuild分析顯示病原菌和腐生菌相對(duì)豐度呈增加趨勢(shì),其中鐮孢菌屬為最主要病原菌,同時(shí)有益菌如共生真菌和叢枝菌根真菌相對(duì)豐度顯著降低?!窘Y(jié)論】會(huì)澤地區(qū)特殊的栽培模式導(dǎo)致土壤酸化、土壤鹽漬化、有機(jī)質(zhì)虧缺、土壤微生物群落結(jié)構(gòu)失衡,從而導(dǎo)致土壤退化和草莓減產(chǎn)。

關(guān)鍵詞:草莓;多年一栽模式;產(chǎn)量下降;土壤退化

中圖分類號(hào):S668.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)02-0376-15

Exploration of the reasons for yield decline in the perennial harvesting model of strawberries in Huize county of Yunnan province

LI Shuangtao1, SUN Rui 1#, WAN Hong2#, WEI Yongqing1, WU Ruishuang1, DONG Jing1, CHANG Linlin1, WEI Lingzhi1, TAO Pang2, XIONG Rong1, ZHONG Chuanfei1, GAO Yongshun1, ZHANG Hongli1, ZHANG Yuntao1, WANG Guixia1*, SUN Jian1*

(1Institute of Forestry and Pomology, Beijing Academy of Forestry and Pomology Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Beijing Engineering Research Center for Strawberry/Beijing Engineering Research Center for Deciduous Fruit Trees/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China; 2Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China)

Abstract: 【Objective】 Strawberries (Fragaria × ananassa Duch.) are typically planted annually with annual disinfection treatments to suppress pests and diseases. In contrast, strawberries are cultivated perennially in Huize, Yunnan, China, fruits can be harvested for 3-5 years after planting. This strategy results in low carbon emissions and significantly reduces the labor input and the cost of nursery supplies, chemical fumigants, and plastic film. Under this cultivation system the yield and profits of strawberry decreases from the third year after planting, and the production becomes unprofitable in the fifth year. Soil degradation is suspected to be the reason for the inability to sustain stable production. This study aimed to survey the factors affecting the soil degradation in perennial cultivation (PC) area. 【Methods】 We examined the soil nutrient traits and the microbial structure of four strawberry fields following perennial cultivation in this area, the SOM (Soil organic matter) content, pH, and key mineral nutrient contents of the strawberry (N, P, K, Ca, Mg, Cu, Zn, and Mo) were assessed. The soil microbial community was analyzed by high-throughput amplicon sequencing based on Illumina MiSeq PE300 platform. The soil microbial functions were predicted to determine the effects of PC on soil microbial communities. The microbial function focusing on C-cycling and N-cycling processes were assessed to determine the soil productivity tendency. 【Results】 Our results indicated that PC resulted in significant soil acidification, salinization, and organic matter deficiency. The average soil pH was 5.58±0.67 in the first year and decreased to 4.35±0.53, 3.57±0.28, and 2.98±0.04 in the second, third, and fourth years, respectively. The average SOM content was 0.66%±0.14% in the first year and 0.27%±0.03% in the fourth year (a 25.6% decrease per year). The average soil EC was 328.5±113.3 in the first year and 923.7±158 in the fourth year (a 41.1% increase per year). The Ca content showed a generally decreasing trend at most sites, and the lowest Ca content was found in the fourth harvesting year of JC1 (Jiache Town 1, 0.878 g·kg-1, 74.4% lower than that in the first harvesting year). PC also significantly affected the soil microbial community. The Chao1 richness, Shannon, and ACE indices of the bacterial communities in the soils differed significantly among the harvesting years. The Chao1 richness decreased significantly by 13.6% from the first to the second harvesting year, 38.2% to the third harvesting year, and 41.8% to the fourth harvesting year. The greatest decline in the Chao1 richness index was observed in the fourth harvesting year of JC1 (52.2%) and the third harvesting year of JC2 (Jiache Town 2, 52.5%). The Chao1 richness and ACE indices for fungal diversity differed among the harvesting years at all sites except for XJ (Xinjie Street). The ACE index decreased by 28.7% from the first to the second year of DB (Daibu Town), 25.0% from the first to the second year of JC2, and 31.7% from the second to the third year of JC1. The fungal diversity of XJ was lower than those at the other three sites. The average ACE index of the XJ samples was 578.7, which was 37.2% lower than that of DB, 25.5% lower than that of JC1, and 33.2% lower than that of JC2. The relationship between the microbial community and environmental variables was analyzed by RDA. The RDA1 (34.33%) and RDA2 (21.96 %) explained 56.29% of the total variation in bacterial community structure. For fungi, the RDA1 (26.21%) and RDA2 (12.98 %) explained 39.19% of the total variation. The SOM, pH, and EC were the dominant contributors to the variation of bacterial community, accounting for 59.8%, 58.9%, and 51.8%, respectively. The soil EC and SOM were the most important contributors to the variation of fungal community, accounting for 83.3% and 82.7%, respectively. FAPROTAX was utilized to determine the functional effects of PC on the bacterial community. The relative abundance of N-cycling processes related bacteria showed a decreasing trend. The correlation analysis showed that most C-cycling and N-cycling processes were significantly positively correlated with the SOM content and negatively correlated with the EC, whereas most C-cycling processes was significantly positively correlated with pH. The FUNGuild analysis showed a significantly decreasing trend for that relative abundance of symbiotroph fungi and arbuscular mycorrhizal fungi (AMF), and the relative abundance of Fusarium, the main pathotroph of strawberry, showed a significantly increasing trend. 【Conclusion】 The PC of strawberries resulted in significant soil acidification, salinization, SOM deficiency, and shaped microbial community structures. Of both bacteria and fungi, the community diversity decreased by year, while symbiotroph fungi and AMF showed a significantly decreasing trend in the PC. The soil microbial function prediction suggested that PC reduced the N cycles related bacterial functions, while most C-cycling and N-cycling processes were positively correlated with the SOM, and negatively correlated with the EC. The PC of strawberries showed a significant negative impact not only on soil physicochemical properties but also on microbial community and function. Thus, for this perennial cultivation strategy of strawberries, maintaining soil physicochemical properties and soil microbial structure and function would be the key problem to solve for sustainable development.

Key words: Strawberry; Perennial harvesting; Yield decline; Soil degradation

草莓是世界各地廣泛種植的漿果,我國(guó)已經(jīng)是世界第一草莓生產(chǎn)大國(guó),大部分地區(qū)為冬春季生產(chǎn)。自2012年以來(lái),我國(guó)四季草莓生產(chǎn)迅速發(fā)展,目前面積已達(dá)6700 hm2,有效填補(bǔ)了夏季草莓鮮果供給缺口。云南省會(huì)澤縣是我國(guó)四季草莓主產(chǎn)區(qū),產(chǎn)量全國(guó)占比超過(guò)70% [1],該區(qū)1月平均氣溫在4.6 ℃左右,既能夠保障草莓自然越冬又能夠打破植株休眠,從而實(shí)現(xiàn)多年結(jié)果。該地區(qū)四季草莓生產(chǎn)主要采用多年一栽模式,一次定植后可以收獲3~7 a(年),顯著減少了勞動(dòng)力投入和生產(chǎn)苗用量,是一種低成本和相對(duì)低碳的生產(chǎn)模式。草莓是連作障礙現(xiàn)象最明顯的果樹,在普遍的一年一栽制生產(chǎn)模式下,主要表現(xiàn)為成活率下降、長(zhǎng)勢(shì)不整齊、結(jié)果期推遲、產(chǎn)量低、品質(zhì)下降和病害多發(fā)等現(xiàn)象。在不消毒的情況下,草莓重茬死苗問題嚴(yán)重,部分重茬栽培地死苗在70%以上,3~4次補(bǔ)苗仍難以補(bǔ)齊,嚴(yán)重影響經(jīng)濟(jì)效益[2]。發(fā)達(dá)國(guó)家草莓生產(chǎn)長(zhǎng)期以化學(xué)熏蒸處理重茬土[3],主要使用溴化甲烷和氯化苦等熏蒸劑,但該方法也將大多數(shù)微生物殺死,對(duì)致病微生物不具有選擇性,同時(shí)降低有益微生物水平。目前我國(guó)一年一栽制草莓生產(chǎn)中,普遍采用夏季高溫期悶棚配合使用石灰氮[4]。在云南會(huì)澤地區(qū)的多年一栽制生產(chǎn)模式下,從第3年開始普遍出現(xiàn)草莓產(chǎn)量下降、病害多發(fā)問題,拉秧后重新定植出現(xiàn)嚴(yán)重的死苗等連作障礙問題。由于該地區(qū)多采用秋冬季收獲期結(jié)束后整地、次年早春定植的生產(chǎn)模式,不具備高溫悶棚作業(yè)的條件,因此解析該地區(qū)草莓生產(chǎn)土壤的退化機(jī)制對(duì)優(yōu)化栽培措施、減緩重茬危害十分必要。

筆者在會(huì)澤縣選取4個(gè)取樣點(diǎn),對(duì)多年一栽制草莓生產(chǎn)園土壤的有機(jī)質(zhì)(soil organic matter,SOM)含量、土壤電導(dǎo)率(electrical conductivity,EC)、pH和礦質(zhì)養(yǎng)分(N、P、K、Ca、Fe、Mn、Mg、Cu、Zn和Mo)含量進(jìn)行了檢測(cè)?;贗llumina MiSeq PE300平臺(tái),通過(guò)高通量擴(kuò)增子測(cè)序分析土壤微生物群落、預(yù)測(cè)土壤微生物功能,以確定多年一栽制草莓生產(chǎn)對(duì)土壤微生物群落結(jié)構(gòu)和碳循環(huán)、氮循環(huán)過(guò)程微生物功能的影響,綜合解析土壤生產(chǎn)力退化的原因,以期為該地區(qū)草莓優(yōu)質(zhì)高產(chǎn)提供理論依據(jù)。

1 材料和方法

1.1 試驗(yàn)地概況

試驗(yàn)地點(diǎn)位于云南省會(huì)澤縣,屬典型的溫帶高原季風(fēng)氣候,年平均晴日225 d,年日照2100 h,年平均氣溫12.7 ℃,年均降雨量54億m3。其中待補(bǔ)鎮(zhèn)海拔2600 m、駕車鄉(xiāng)海拔2400~2460 m,新街街道海拔2260 m。

1.2 材料

采樣園區(qū)土壤均為紅壤土,前茬作物均為玉米;種植草莓品種均為蒙特瑞,草莓生產(chǎn)在南北向鋼架大拱棚設(shè)施進(jìn)行避雨栽培,首次定植每666.7 m2加入發(fā)酵農(nóng)家肥4~5 t,按照壟高55 cm、上部壟面寬度35 cm、基部壟面寬度45 cm的梯形高壟起壟。3月中旬雙行定植,90 000~97 500 株·hm2,采用滴灌進(jìn)行肥水一體化管理,肥料以化肥為主,每公頃每年使用20-20-20 NPK硫酸鉀型水溶平衡肥0.75~1.2 t,高鉀型水溶平衡肥0.9~1.2 t。每年果品生產(chǎn)至11月結(jié)束,然后去除棚膜,植株自然越冬后去除老葉,進(jìn)行病蟲害管理和植株修整,進(jìn)入下一年度生產(chǎn)管理。

1.3 試驗(yàn)設(shè)計(jì)

選擇待補(bǔ)鎮(zhèn)(DB)、駕車鄉(xiāng)1(JC1)、駕車鄉(xiāng)2(JC2)、新街街道(XJ)的4個(gè)草莓園區(qū)不同連作年限的土壤進(jìn)行試驗(yàn)。待補(bǔ)鎮(zhèn)園區(qū)取種植1~4 a(年)土壤(DB Year 1,DB Year 2,DB Year 3,DB Year 4),駕車鄉(xiāng)園區(qū)分別取種植1~4 a土壤(JC1 Year 1,JC1 Year 2,JC1 Year 3,JC1 Year 4)及1~3 a土壤(JC2 Year 1,JC2 Year 2,JC2 Year 3),新街街道園區(qū)取種植1~3 a土壤(XJ Year 1,XJ Year 2,XJ Year 3)。

1.4 測(cè)定指標(biāo)樣品采集及測(cè)定方法

取樣均在7月盛果期進(jìn)行,在每個(gè)園區(qū)采集不同收獲年份的土壤樣品,在南北方向相鄰的兩株草莓中間點(diǎn)以土鉆取樣,隨機(jī)選擇6個(gè)采樣點(diǎn)進(jìn)行混合取樣作為1份樣品,每個(gè)園區(qū)單個(gè)收獲年份采樣3份,取樣深度0~20 cm。土壤樣品過(guò)2 mm篩后冷藏保存運(yùn)輸至實(shí)驗(yàn)室用于進(jìn)一步分析。樣品分為兩部分,分別用于土壤DNA提取和化學(xué)性質(zhì)分析。園區(qū)草莓單位面積年產(chǎn)量為4月底至11月底累計(jì)值。

土壤樣品陰干后進(jìn)行土壤電導(dǎo)率、pH和N、P、K、Ca、Fe、Mn、Mg、Cu、Zn、Mo等礦質(zhì)養(yǎng)分含量測(cè)定,使用改進(jìn)的凱氏定氮法(Kjeldahl方法)和中國(guó)國(guó)家標(biāo)準(zhǔn)系統(tǒng)(HJ 717—2014)測(cè)量總N含量[5]。使用電感耦合等離子體(inductively coupled plasma,ICP)光譜法和中國(guó)國(guó)家標(biāo)準(zhǔn)系統(tǒng)(HJ 803)分析P、K、Ca、Fe、Mn、Mg、Cu、Zn和Mo等其他元素的含量[6]。

1.5 土壤微生物結(jié)構(gòu)分析

使用E.Z.N.A.?土壤DNA試劑盒(Omega Bio-tek,美國(guó))從42個(gè)樣品中提取總DNA。使用NanoDrop? Lite Plus分光光度計(jì)(Thermo Scientific Inc.,美國(guó))和1.0%瓊脂糖凝膠電泳確定DNA的質(zhì)量和濃度。使用引物對(duì)338F(ACTCCTACGGGAGGCAGCAG)和806R(GGACTACHVGGGTWTCTAAT)擴(kuò)增細(xì)菌16S rRNA V3-V4區(qū),使用ITS1-1F(CTTGGTCATTTAGAGGAAGTAA)和ITS2R(GCTGCGTTCTTCATCGATGC)擴(kuò)增真菌ITS1區(qū)。PCR(Polymerase Chain Reaction,聚合酶鏈?zhǔn)椒磻?yīng))反應(yīng)體系和擴(kuò)增循環(huán)條件參照前人研究工作[7]。

PCR產(chǎn)物以2%瓊脂糖凝膠提取和純化,使用GenEluteTM凝膠提取試劑盒(Sigma-Aldrich Co.,美國(guó));使用NanoDrop? Lite Plus分光光度計(jì)(Thermo Scientific Inc.,美國(guó))定量。將純化的擴(kuò)增子以等摩爾量混合,并按照Majorbio Bio-Pharm Technology Co. Ltd.(上海,中國(guó))使用的標(biāo)準(zhǔn)方法在Illumina MiSeq PE300平臺(tái)上測(cè)序。

獲得的原始數(shù)據(jù)通過(guò)質(zhì)控、過(guò)濾、去重,利用UPARSE 7.1根據(jù)97%的序列相似性水平將優(yōu)化序列聚類成OTUs(operational taxonomic units)[8]。使用RDP 2.2進(jìn)行OTU的分類學(xué)信息分析[9],并與16S rRNA基因數(shù)據(jù)庫(kù)(silva138/16s_bacteria)或ITS數(shù)據(jù)庫(kù)(unite8.0/its_fungi)進(jìn)行比對(duì),以0.7作為置信度閾值。使用HMMER、EPA-NG和Gapp對(duì)OTU代表性序列對(duì)齊和比較。使用BugBase預(yù)測(cè)細(xì)菌群落的表型功能,并使用FAPROTAX(Functional Annotation of Prokaryotic Taxa)預(yù)測(cè)細(xì)菌群落的功能變化[10]。使用FUNGuild預(yù)測(cè)真菌群落功能[11]。

1.6 數(shù)據(jù)分析

本研究中土壤的基本生物信息學(xué)分析是在Majorbio云平臺(tái)(https://cloud.majorbio.com)上進(jìn)行的。從OTU信息中獲得稀釋曲線,使用Mothur v1.30.1計(jì)算α多樣性指數(shù)[12]。使用Vegan v2.5-3包進(jìn)行主坐標(biāo)分析(principal coordinate analysis,PCoA)和冗余分析(redundancy analysis,RDA)[13],以研究微生物群落相似性和對(duì)土壤物理化學(xué)性質(zhì)的響應(yīng)。

2 結(jié)果與分析

2.1 草莓多年一栽模式對(duì)土壤化學(xué)性質(zhì)的影響

由圖1可以看出,所有測(cè)試園區(qū)的土壤pH和SOM含量從第一年到第四年呈現(xiàn)顯著下降趨勢(shì),而土壤EC呈顯著上升趨勢(shì)。第一年土壤平均pH為5.58,在第二年、第三年和第四年分別下降到4.35、3.57和2.98。SOM含量在第一年為0.66%,在第四年為0.27%,平均每年下降0.13個(gè)百分點(diǎn)。土壤EC在第一年為328.5 μS·cm-1,在第四年為923.7 μS·cm-1,平均每年增加60.40%,以上結(jié)果表明多年生產(chǎn)導(dǎo)致土壤有機(jī)質(zhì)含量降低、土壤酸化和鹽漬化。同時(shí),大多數(shù)園區(qū)的Ca含量總體呈下降趨勢(shì),最低的Ca含量出現(xiàn)在JC1第四年(0.878 g·kg-1,比第一年低74.4%)。

如圖2所示,與第一年相比,隨著草莓種植年限的延長(zhǎng),JC1土壤中總N和P含量先升后降再升,F(xiàn)e和Cu含量先降后升,K和Zn含量先升后降;JC2土壤中N、P、Fe、Mn含量下降,Mg含量上升;DB土壤中N、P、K含量先降后升,F(xiàn)e、Mg、Mn、Zn、Cu含量先升后降;XJ土壤中K含量上升,F(xiàn)e、Mg、Mn、Zn、Cu、Mo含量下降。各取樣點(diǎn)土壤礦質(zhì)含量變化趨勢(shì)各異可能是管理措施差異所致。

土壤化學(xué)性質(zhì)參數(shù)的相關(guān)性分析表明,pH與SOM含量呈顯著正相關(guān)(R=0.502),EC與pH呈顯著負(fù)相關(guān)(R=-0.573);EC與SOM含量呈顯著負(fù)相關(guān)(R=-0.769)??侼含量(R=-0.428)和P含量(R=-0.583)與pH呈顯著負(fù)相關(guān);Mg含量與pH呈顯著正相關(guān)(R=0.410)。K含量與EC呈顯著正相關(guān)(R=0.537);Fe含量(R=-0.512)、Cu含量(R=-0.441)、Zn含量(R=-0.484)和Mo含量(R=-0.521)與EC呈顯著負(fù)相關(guān)。

2.2 不同年份草莓栽培生產(chǎn)對(duì)土壤微生物多樣性的影響

原始數(shù)據(jù)經(jīng)過(guò)濾后,獲得了3 317 973個(gè)細(xì)菌序列和2 558 395個(gè)真菌序列。在97%的相似性水平下,獲得了26 644個(gè)細(xì)菌OTUs和5264個(gè)真菌OTUs。細(xì)菌OTUs屬于47個(gè)門、160個(gè)綱、410個(gè)目、679個(gè)科和1470個(gè)屬。真菌OTUs屬于16個(gè)門、58個(gè)綱、134個(gè)目、319個(gè)科和727個(gè)屬。細(xì)菌群落的Chao1指數(shù)、Shannon指數(shù)和ACE(Abundance-based Coverage Estimator)指數(shù)在收獲年份之間顯著不同(圖3-A~C),Chao1指數(shù)第二年顯著下降了13.6%,第三年下降了38.2%,第四年下降了41.8%。在JC1的第四年和JC2的第三年,Chao1指數(shù)的最高降幅分別為52.2%和52.5%。在除XJ外的取樣點(diǎn),真菌多樣性的Chao1指數(shù)和ACE指數(shù)在不同生產(chǎn)年份之間存在顯著差異。從第一年到第二年,DB取樣點(diǎn)的ACE指數(shù)顯著下降了28.7%,JC2顯著下降了25.0%,從第二年到第三年,JC1顯著下降了31.7%。XJ的真菌多樣性低于其他3個(gè)地點(diǎn)(圖3-D~F)。XJ樣本的平均ACE為578.7,比DB1低37.2%,比JC1低25.5%,比JC2低33.2%。

細(xì)菌群落在門水平上的優(yōu)勢(shì)物種組成相似,變形菌門(Proteobacteria)、放線菌門(Actinobacteriota)和綠彎菌門(Chloroflexi)在所有土壤樣本中占61.1%~76.7%,其他門細(xì)菌在第三年到第四年呈現(xiàn)下降趨勢(shì)。與第一年相比,酸桿菌門(Acidobacteriota)在JC1的第四年下降到48.5%,芽單胞菌門(Gemmatimonadota)在JC2的第三年下降到20.2%,黏菌門(Myxococcota)和疣微菌門(Verrucomicrobiota)在JC1的第四年分別下降到4.3%和5.45%。值得注意的是,在DB和JC1,從第一年到第四年,厚壁菌門(Firmicutes)的比例分別增加了125.9%和181.1%(圖4-A)。在所有土壤樣本中,子囊菌門(Ascomycota)是門水平上的優(yōu)勢(shì)真菌,平均為71.1%。與第一年相比,被孢霉門(Mortierellomycota)在JC1從30.0%下降到第四年的5.8%。壺菌門(Chytridiomycota)在3~4年的收獲期間呈現(xiàn)下降趨勢(shì),在不同地點(diǎn)與第一年相比分別下降了24.4%和63.3%(圖4-B)。

2.3 土壤化學(xué)性質(zhì)與微生物群落結(jié)構(gòu)的關(guān)聯(lián)分析

通過(guò)RDA(圖5-A、B)分析了微生物群落與環(huán)境變量之間的關(guān)系。RDA1和RDA2解釋了細(xì)菌群落結(jié)構(gòu)總變異的56.29%。對(duì)于真菌群落結(jié)構(gòu),RDA1和RDA2解釋了總變異的39.19%。SOM、土壤pH和土壤EC是細(xì)菌群落變異的主要貢獻(xiàn)者,分別占59.8%、58.9%和51.8%。土壤EC和SOM是真菌群落變異的最重要貢獻(xiàn)者,分別占83.3%和82.7%。

基于Spearman相關(guān)性分析,圖5-C、D顯示了土壤性質(zhì)與相對(duì)微生物豐度(屬水平前50)之間的關(guān)系。結(jié)果表明,細(xì)菌屬中芽單胞菌屬(Gemmatimonas,R=0.78)、嗜酸棲熱菌屬(Acidothermus,R=-0.74)和慢生根瘤菌屬(Bradyrhizobium,R=0.71)與SOM含量呈顯著相關(guān)。鞘氨醇單胞菌屬(Sphingomonas,R=0.89)、Granulicella(R=-0.83)、Chujaibacter(R=-0.81)和Conexibacter(R=-0.76)與pH呈顯著相關(guān)。Chujaibacter(R=0.66)和Gemmatimonas(R=-0.64)與EC顯著相關(guān)。Conexibacter(R=-0.81)、硝化螺旋菌屬(Nitrospira,R=0.74)、Gaiella(R=0.72)和鞘氨醇單胞菌屬(Sphingomonas,R=0.71)與Ca含量呈顯著相關(guān)。對(duì)于真菌屬,青霉屬(Penicillium,R=0.74)、被孢霉屬(Mortierella,R=-0.70)和木霉屬(Trichoderma,R=0.69)與EC呈顯著相關(guān)。青霉屬(Penicillium,R=-0.86)、螺旋聚孢霉屬(Clonostachys,R=0.71)和木霉屬(Trichoderma,R=-0.70)與SOM含量呈顯著相關(guān)。

2.4 草莓4年栽培生產(chǎn)對(duì)土壤微生物群落功能的影響

2.4.1 多年生產(chǎn)對(duì)細(xì)菌群落功能的影響 利用BugBase預(yù)測(cè)細(xì)菌群落的表型功能,結(jié)果表明從第一年到第四年,厭氧菌、兼性厭氧菌、革蘭氏陰性菌和形成生物膜的細(xì)菌相對(duì)豐度呈現(xiàn)下降趨勢(shì);潛在致病菌、逆境耐受菌等相對(duì)豐度呈現(xiàn)上升的趨勢(shì)(圖6-A)。

利用FAPROTAX分析多年生產(chǎn)對(duì)細(xì)菌群落功能的潛在影響,結(jié)果表明,與C循環(huán)相關(guān)的細(xì)菌,如化學(xué)異養(yǎng)菌、好氧化學(xué)異養(yǎng)菌和纖維素分解菌的相對(duì)豐度呈現(xiàn)顯著提高的趨勢(shì),而與芳香化合物降解、光養(yǎng)、光異養(yǎng)、烴降解和幾丁質(zhì)分解相關(guān)的細(xì)菌相對(duì)豐度呈現(xiàn)下降趨勢(shì)(圖6-B);與N循環(huán)相關(guān)的細(xì)菌,如硝酸鹽還原菌、亞硝酸鹽氨化菌和硝酸鹽氨化菌的相對(duì)豐度呈現(xiàn)提高趨勢(shì),而與脲酶、固氮、反硝化、亞硝酸鹽反硝化和一氧化二氮反硝化相關(guān)的細(xì)菌相對(duì)豐度呈現(xiàn)下降趨勢(shì)(圖6-C)。相關(guān)性分析表明,大多數(shù)C循環(huán)和N循環(huán)細(xì)菌相對(duì)豐度與SOM含量呈顯著正相關(guān),與EC呈負(fù)相關(guān),并且大多數(shù)C循環(huán)過(guò)程細(xì)菌相對(duì)豐度與pH呈顯著正相關(guān)(圖6-D~E)。

2.4.2" " 四年生產(chǎn)對(duì)真菌群落潛在功能的影響" " FUNGuild分析顯示,病原菌和腐生菌相對(duì)豐度整體上呈提高趨勢(shì)(圖7-A、B),而共生菌相對(duì)豐度整體上呈下降趨勢(shì)(圖7-C)。在JC1,腐生菌相對(duì)豐度從第一年的23.23%顯著提高到第四年的51.10%,共生菌相對(duì)豐度從第一年的42.31%顯著下降到第四年的9.88%,叢枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)從第一年的0.24%顯著下降到第四年的0%(圖7-D)。值得注意的是,在XJ,病原菌從第一年的21.25%提高到第三年的43.20%(圖7-A)。

2.5 不同年份產(chǎn)量與土壤化學(xué)指標(biāo)和微生物指標(biāo)的相關(guān)性

產(chǎn)量分析表明,JC1、JC2、DB試驗(yàn)園區(qū)產(chǎn)量呈先上升后下降趨勢(shì),XJ試驗(yàn)園區(qū)產(chǎn)量隨著種植年限增加逐漸降低,且各試驗(yàn)地點(diǎn)均出現(xiàn)從第三年開始產(chǎn)量下降的趨勢(shì)(表1)。相關(guān)性分析表明,產(chǎn)量與Ca、Mn、Zn和有機(jī)質(zhì)含量及pH呈正相關(guān),與P含量和EC呈負(fù)相關(guān),與N和K含量相關(guān)性不顯著;以產(chǎn)量為變量進(jìn)行的偏最小二乘回歸分析顯示,VIP值大于1的自變量分別為EC(1.738)、pH(1.577)、有機(jī)質(zhì)含量(1.359)、鈣含量(1.206)、鋅含量(1.203),多年一栽模式草莓產(chǎn)量下降的主要原因是鹽分升高、土壤酸化、有機(jī)質(zhì)虧缺和鈣、鋅等中量元素虧缺。

以產(chǎn)量為變量,真菌屬豐度為自變量進(jìn)行的偏最小二乘回歸分析(表2)顯示,對(duì)產(chǎn)量影響權(quán)重最高的真菌為鐮孢菌屬Fusarium,該分析結(jié)果與田間觀察到的尖孢鐮刀菌枯萎病一致,說(shuō)明導(dǎo)致產(chǎn)量下降的主要病原菌為鐮孢菌屬真菌。值得注意的是,其他常見真菌病害如炭疽病病原菌Colletotrichum、紅葉病病原菌Pestalotiopsis、黃萎病病原菌Verticillium在各年份差異并不顯著。

3 討 論

3.1 草莓多年一栽模式對(duì)土壤理化性質(zhì)的影響

本研究發(fā)現(xiàn),草莓多年一栽模式導(dǎo)致土壤pH和SOM含量呈現(xiàn)逐年下降趨勢(shì),而土壤EC呈現(xiàn)上升趨勢(shì);有機(jī)質(zhì)含量平均每年下降0.13個(gè)百分點(diǎn),導(dǎo)致土壤碳虧缺。前人研究表明,長(zhǎng)期耕作系統(tǒng)中土壤有機(jī)碳普遍下降,需要施用有機(jī)肥料來(lái)維持土壤生產(chǎn)力[14],果園的地面覆蓋管理對(duì)土壤碳代謝有顯著影響,長(zhǎng)期施用生物有機(jī)肥料和果園生草能夠顯著提高SOM含量,改變土壤微生物群落結(jié)構(gòu),并提高土壤生產(chǎn)力[15-16]。在定植前施足有機(jī)肥或通過(guò)滴灌補(bǔ)充有機(jī)態(tài)肥料是補(bǔ)充土壤有機(jī)質(zhì)的重要手段。本研究中該生產(chǎn)模式中以化肥投入為主、有機(jī)肥投入不足,但是田間觀察葉片形態(tài)未有明顯的缺素表現(xiàn);在植株方面,每年進(jìn)行植株整理、保留1~3個(gè)分蘗,分蘗會(huì)重新發(fā)出根系,因此整體存活植株的生長(zhǎng)勢(shì)差異不明顯,從不同年份礦質(zhì)養(yǎng)分含量對(duì)比可以發(fā)現(xiàn),除有機(jī)質(zhì)以外,其他主要養(yǎng)分含量均在合理區(qū)間。

在本研究中觀察到了明顯的土壤酸化和鹽漬化現(xiàn)象。土壤pH在第四年下降到2.98。土壤酸化降低了磷的生物有效性,并增加了作物被鐮刀菌感染的風(fēng)險(xiǎn)[17]。前人研究表明,N肥的過(guò)度使用對(duì)區(qū)域土壤酸化有顯著作用,在25年的常規(guī)施肥后觀察到的土壤pH下降2.2[18]。值得注意的是,本研究中每年pH下降0.87。此外,土壤EC每年上升60.40%,SOM含量每年減少0.13個(gè)百分點(diǎn),表明在多年一栽模式草莓生產(chǎn)中,土壤酸化、鹽漬化、有機(jī)質(zhì)含量下降是土壤退化的主要特征。

3.2 土壤微生物多樣性變化

微生物對(duì)農(nóng)業(yè)可持續(xù)發(fā)展至關(guān)重要,因?yàn)槠湓陴B(yǎng)分轉(zhuǎn)化、運(yùn)輸和SOM降解中起著關(guān)鍵作用[19]。試驗(yàn)結(jié)果表明,多年一栽模式顯著影響了土壤微生物群落結(jié)構(gòu)。Chao’指數(shù)、Shannon指數(shù)和ACE指數(shù)反映了細(xì)菌和真菌微生物多樣性的逐年下降。環(huán)境因素對(duì)土壤細(xì)菌和真菌群落的影響不同,對(duì)于細(xì)菌群落結(jié)構(gòu),SOM、pH和EC是變異的主要貢獻(xiàn)者,分別占59.8%、58.9%和51.8%。另一方面,對(duì)于真菌群落,土壤EC和SOM是主要的變異貢獻(xiàn)者,分別占83.3%和82.7%。這一發(fā)現(xiàn)與先前的研究結(jié)果一致,土壤酸化、礦物和氮肥施用是影響土壤微生物群落和功能的主要因素[20],土壤鹽漬化指標(biāo),如pH和EC對(duì)細(xì)菌群落結(jié)構(gòu)有顯著影響[21]。

在屬水平上,青霉菌屬(Penicillium)和木霉屬(Trichoderma)與EC呈顯著正相關(guān),與SOM含量呈顯著負(fù)相關(guān),這兩個(gè)屬的豐度在多年生產(chǎn)中增加。木霉屬是一種絲狀真菌屬,以其他真菌為食,作為植物生長(zhǎng)促進(jìn)菌影響植物對(duì)非生物和生物脅迫的響應(yīng)[22]。青霉菌屬是一種環(huán)境中常見的真菌屬,許多青霉菌屬真菌增強(qiáng)了根對(duì)養(yǎng)分(如可溶性P)的吸收[23],并在鹽脅迫下產(chǎn)生植物激素,如赤霉素[24]。在連續(xù)種植黃瓜的根際土壤中,青霉屬與農(nóng)藝性狀顯著相關(guān)[25]。一些青霉屬真菌顯示出對(duì)某些病原體的天然拮抗活性,青霉屬種能有效控制由交鏈孢霉屬(Alternaria sp.)和鐮刀菌屬(Fusarium sp.)真菌引起的香蕉腐爛病[26]。值得注意的是,田間觀察顯示鐮刀菌引起的枯萎病是草莓多年連作導(dǎo)致田間死苗的常見原因。本試驗(yàn)結(jié)果表明,青霉屬、木霉屬等微生物群體對(duì)保護(hù)植物免受土壤病原體侵害以及緩解土壤酸化和鹽漬化引起的脅迫至關(guān)重要。未來(lái)研究中應(yīng)關(guān)注第四年或更長(zhǎng)年份田間正常生產(chǎn)的植株根際微生物組成和植物生理特征,并嘗試從中分離和純化培養(yǎng)促生菌,如木霉屬和青霉屬微生物,從而開發(fā)新型菌劑用于生產(chǎn)。

3.3 土壤微生物功能變化

革蘭氏陰性菌依賴于從植物中獲得的簡(jiǎn)單C化合物[27]。在本研究中,革蘭氏陽(yáng)性菌與革蘭氏陰性菌的比例增加表明有機(jī)土壤中相對(duì)C可用性下降和生態(tài)系統(tǒng)生產(chǎn)力下降,這與每年SOM含量下降的現(xiàn)象一致。病原菌和腐生菌比例的增加以及共生菌比例的下降與病害加重和產(chǎn)量下降的現(xiàn)象一致。此外,隨著收獲年份的增加,叢枝菌根真菌(AMF)的豐度顯著下降,AMF能夠促進(jìn)植物生長(zhǎng)和產(chǎn)量提高,特別是在鹽脅迫等非生物脅迫下[28-29]。AMF比例的下降表明隨著年份增加,草莓生長(zhǎng)的土壤微生物環(huán)境惡化。

4 結(jié) 論

在本試驗(yàn)條件下,發(fā)現(xiàn)多年一栽模式草莓生產(chǎn)產(chǎn)量呈現(xiàn)下降趨勢(shì),產(chǎn)量與Ca、Mn、Zn、有機(jī)質(zhì)含量及pH呈正相關(guān),與P含量和EC呈負(fù)相關(guān),與N和K含量相關(guān)性不顯著;多年一栽模式草莓產(chǎn)量下降的主要原因是鹽分升高、土壤酸化、有機(jī)質(zhì)虧缺和鈣、鋅等中量元素虧缺,因此在施肥過(guò)程中應(yīng)增加對(duì)有機(jī)質(zhì)與鈣、鋅等中量元素的補(bǔ)充。同時(shí)產(chǎn)量下降與土壤微生態(tài)的惡化相關(guān),具體表現(xiàn)為土壤微生物群落多樣性降低、病原菌水平提高、與N循環(huán)相關(guān)的功能弱化、AMF比例下降等,其中鐮孢菌屬真菌是導(dǎo)致產(chǎn)量下降的核心病原菌因素。

參考文獻(xiàn) References:

[1] 萬(wàn)紅,阮繼偉,曾志偉,羅紅,賈喬雅,王連潤(rùn),杜會(huì)明,陶磅. 云南四季草莓產(chǎn)業(yè)生產(chǎn)現(xiàn)狀及發(fā)展對(duì)策[J]. 中國(guó)蔬菜,2020(2):99-102.

WAN Hong,RUAN Jiwei,ZENG Zhiwei,LUO Hong,JIA Qiaoya,WANG Lianrun,DU Huiming,TAO Pang. The production status and development countermeasures of Yunnan four everbearing strawberry industry[J]. China Vegetables,2020(2):99-102.

[2] 楊葉青,范琳娟,劉奇志,李維華,宋兆欣. 棉隆和氯化苦熏蒸對(duì)重茬草莓土壤線蟲群落及養(yǎng)分含量的影響[J]. 園藝學(xué)報(bào),2018,45(4):725-733.

YANG Yeqing,F(xiàn)AN Linjuan,LIU Qizhi,LI Weihua,SONG Zhaoxin. Effects of dazomet and chloropicrin on the soil nematode communities and nutrient content of replanted strawberry[J]. Acta Horticulturae Sinica,2018,45(4):725-733.

[3] BAGGIO J S,CORDOVA L G,TOLEDO B F,NOLING J W,PERES N A. A reassessment of the fungicidal efficacy of 1,3-dichloropropene,chloropicrin,and metam potassium against Macrophomina phaseolina in strawberry[J]. Pest Management Science,2022,78(8):3416-3423.

[4] 李軍見,王艷麗,于艷梅. 不同土壤處理方法防治設(shè)施草莓重茬病害效果對(duì)比試驗(yàn)[J]. 陜西農(nóng)業(yè)科學(xué),2011,57(2):23.

LI Junjian,WANG Yanli,YU Yanmei. The comparative on the efficacy of different soil management methods in controlling replant diseases in greenhouse strawberries[J]. Shaanxi Journal of Agricultural Sciences,2011,57(2):23.

[5] MARTí E,SIERRA J,DOMENE X,MUMBRú M,CRUA?AS R,GARAU M A. One-year monitoring of nitrogen forms after the application of various types of biochar on different soils[J]. Geoderma,2021,402:115178.

[6] STAFILOV T,?AJN R,BLA?EVSKA R,T?N?SELIA C. Assessment of natural and anthropogenic factors on the distribution of chemical elements in soil from the Skopje region,North Macedonia[J]. Journal of Environmental Science and Health,Part A,2022,57(5):357-375.

[7] WANG X Y,LIANG C,MAO J D,JIANG Y J,BIAN Q,LIANG Y T,CHEN Y,SUN B. Microbial keystone taxa drive succession of plant residue chemistry[J]. The ISME Journal,2023,17(5):748-757.

[8] EDGAR R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,2013,10(10):996-998.

[9] WANG Q,GARRITY G M,TIEDJE J M,COLE J R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology,2007,73(16):5261-5267.

[10] SANSUPA C,WAHDAN S F M,HOSSEN S,DISAYATHANOOWAT T,WUBET T,PURAHONG W. Can we use functional annotation of prokaryotic taxa (FAPROTAX) to assign the ecological functions of soil bacteria?[J]. Applied Sciences,2021,11(2):688.

[11] NGUYEN N H,SONG Z W,BATES S T,BRANCO S,TEDERSOO L,MENKE J,SCHILLING J S,KENNEDY P G. FUNGuild:An open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology,2016,20:241-248.

[12] SCHLOSS P D,WESTCOTT S L,RYABIN T,HALL J R,HARTMANN M,HOLLISTER E B,LESNIEWSKI R A,OAKLEY B B,PARKS D H,ROBINSON C J,SAHL J W,STRES B,THALLINGER G G,VAN HORN D J,WEBER C F. Introducing mothur:Open-source,platform-independent,community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology,2009,75(23):7537-7541.

[13] DIXON P. VEGAN,a package of R functions for community ecology[J]. Journal of Vegetation Science,2003,14(6):927-930.

[14] LI X L,F(xiàn)ANG J C,SHAGAHALEH H,WANG J F,HAMAD A A A,ALHAJ HAMOUD Y. Impacts of partial substitution of chemical fertilizer with organic fertilizer on soil organic carbon composition,enzyme activity,and grain yield in wheat-maize rotation[J]. Life,2023,13(9):1929.

[15] WANG L,YANG F,YAOYAO E,YUAN J,RAZA W,HUANG Q W,SHEN Q R. Long-term application of bioorganic fertilizers improved soil biochemical properties and microbial communities of an apple orchard soil[J]. Frontiers in Microbiology,2016,7:1893.

[16] YANG J F,ZHANG T R,ZHANG R Q,HUANG Q Q,LI H K. Long-term cover cropping seasonally affects soil microbial carbon metabolism in an apple orchard[J]. Bioengineered,2019,10(1):207-217.

[17] LI X G,CHEN D L,CARRIóN V J,REVILLINI D,YIN S,DONG Y H,ZHANG T L,WANG X X,DELGADO-BAQUERIZO M. Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections[J]. Nature Communications,2023,14(1):5090.

[18] GUO J H,LIU X J,ZHANG Y,SHEN J L,HAN W X,ZHANG W F,CHRISTIE P,GOULDING K W T,VITOUSEK P M,ZHANG F S. Significant acidification in major Chinese croplands[J]. Science,2010,327(5968):1008-1010.

[19] MIR Y H,GANIE M A,SHAH T I,BANGROO S A,MIR S A,SHAH A M,WANI F J,QIN A Z,RAHMAN S U. Soil microbial and enzyme activities in different land use systems of the Northwestern Himalayas[J]. PeerJ,2023,11:e15993.

[20] FüZY A,PARáDI I,KELEMEN B,KOVáCS R,CSERESNYéS I,SZILI-KOVáCS T,áRENDáS T,F(xiàn)ODOR N,TAKáCS T. Soil biological activity after a sixty-year fertilization practice in a wheat-maize crop rotation[J]. PLoS One,2023,18(9):e0292125.

[21] WANG W N,LIU H J,CHEN L F,KOOREM K,HU Y C,HU L J. Natural restoration alters soil microbial community structure,but has contrasting effects on the diversity of bacterial and fungal assemblages in salinized grasslands[J]. Science of the Total Environment,2023,891:164726.

[22] WOO S L,HERMOSA R,LORITO M,MONTE E. Trichoderma:A multipurpose,plant-beneficial microorganism for eco-sustainable agriculture[J]. Nature Reviews. Microbiology,2023,21(5):312-326.

[23] DE OLIVEIRA MENDES G,DE FREITAS A L M,PEREIRA O L,DA SILVA I R,VASSILEV N B,COSTA M D. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources[J]. Annals of Microbiology,2014,64(1):239-249.

[24] LEIT?O A L,ENGUITA F J. Gibberellins in Penicillium strains:Challenges for endophyte-plant host interactions under salinity stress[J]. Microbiological Research,2016,183:8-18.

[25] ZHANG M M,LIANG G Y,REN S,LI L P,LI C,LI Y J,YU X L,YIN Y P,LIU T,LIU X J. Responses of soil microbial community structure,potential ecological functions,and soil physicochemical properties to different cultivation patterns in cucumber[J]. Geoderma,2023,429:116237.

[26] WIN T T,BO B,MALEC P,F(xiàn)U P. The effect of a consortium of Penicillium sp. and Bacillus spp. in suppressing banana fungal diseases caused by Fusarium sp. and Alternaria sp.[J]. Journal of Applied Microbiology,2021,131(4):1890-1908.

[27] FANIN N,KARDOL P,F(xiàn)ARRELL M,NILSSON M C,GUNDALE M J,WARDLE D A. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils[J]. Soil Biology and Biochemistry,2019,128:111-114.

[28] DASTOGEER K M G,ZAHAN M I,TAHJIB-UL-ARIF M,AKTER M A,OKAZAKI S. Plant salinity tolerance conferred by arbuscular mycorrhizal fungi and associated mechanisms:A meta-analysis[J]. Frontiers in Plant Science,2020,11:588550.

[29] WAHAB A,MUHAMMAD M,MUNIR A,ABDI G,ZAMAN W,AYAZ A,KHIZAR C,REDDY S P P. Role of arbuscular mycorrhizal fungi in regulating growth,enhancing productivity,and potentially influencing ecosystems under abiotic and biotic stresses[J]. Plants,2023,12(17):3102.

收稿日期:2024-09-04 接受日期:2024-11-11

基金項(xiàng)目:現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-24-A-14);北京農(nóng)林科學(xué)院科技創(chuàng)新能力建設(shè)專項(xiàng)基金(KJCX20230118)

作者簡(jiǎn)介:李雙桃,女,助理研究員,博士,主要從事草莓非生物脅迫響應(yīng)機(jī)制研究。E-mail:lishuangtao90@163.com。#為共同第一作者。

*通信作者Author for correspondence. E-mail:sjroad@126.com;E-mail:wgxia1972@163.com

猜你喜歡
草莓
草莓結(jié)出“致富果”
最重草莓
草莓香噴噴
草莓
下一個(gè)是誰(shuí)?
愛提問的小草莓
草莓紅了
草莓
草莓
空腹吃草莓
札达县| 周宁县| 荥经县| 黎平县| 井研县| 林州市| 乌拉特后旗| 新宁县| 承德县| 安岳县| 潜山县| 乐山市| 称多县| 淅川县| 惠州市| 富平县| 科技| 汤原县| 宜春市| 漯河市| 北海市| 苍梧县| 梁山县| 南城县| 老河口市| 大余县| 巨鹿县| 安顺市| 德庆县| 汤原县| 宁陕县| 金山区| 浦县| 清涧县| 额尔古纳市| 清原| 莱州市| 西昌市| 垫江县| 靖西县| 玉林市|