卿前東
(廣西師范大學(xué) 體育學(xué)院,廣西 桂林 541004)
運(yùn)動(dòng)訓(xùn)練與谷氨酰胺代謝研究進(jìn)展
卿前東
(廣西師范大學(xué) 體育學(xué)院,廣西 桂林 541004)
谷氨酰胺是人體內(nèi)含量最豐富的氨基酸,能提供免疫細(xì)胞增殖和蛋白質(zhì)合成所需的前體和中間體。運(yùn)動(dòng)訓(xùn)練導(dǎo)致血漿谷氨酰胺濃度發(fā)生變化,這種變化與運(yùn)動(dòng)的時(shí)間、強(qiáng)度和方式相關(guān)。對(duì)谷氨酰胺的生理功能及運(yùn)動(dòng)訓(xùn)練對(duì)谷氨酰胺代謝的影響和補(bǔ)充進(jìn)行了綜述,為谷氨酰胺在運(yùn)動(dòng)訓(xùn)練中的應(yīng)用提供參考。
谷氨酰胺;運(yùn)動(dòng);免疫;補(bǔ)充
谷氨酰胺 (Glu)是體內(nèi)含量最為豐富的條件必需氨基酸,它主要由骨骼肌合成和釋放。肝臟、脂肪組織和肺也能生產(chǎn)谷氨酰胺。健康人肌肉中谷氨酰胺的濃度大約是15—20mmol/l,比肌肉中其他必需氨基酸的濃度高 20—200倍[1]。血漿谷氨酰胺濃度通常為0.5—0.8mmol/l。對(duì)健康者的示蹤動(dòng)力學(xué)研究顯示,血液中來(lái)自組織器官的谷氨酰胺每天約80克,而每天的食物僅提供5—8克。谷氨酰胺是谷氨酸和氨在谷氨酰胺合成酶的作用下產(chǎn)生的內(nèi)源性物質(zhì),這種酶的活性受多種激素的影響,糖皮質(zhì)激素促進(jìn)谷氨酰胺合成,而生長(zhǎng)激素則起抑制作用[2]。此外,谷氨酸 (谷氨酰胺的前體)也可由支鏈氨基 (如亮氨酸、異亮氨酸和纈氨酸)的轉(zhuǎn)氨作用產(chǎn)生。由于丙酮酸脫氫酶和三羧酸 (TCA)循環(huán)的充分激活需要為α-酮戊二酸提供氨引導(dǎo)谷氨酸合成前體物[3],所以,谷氨酰胺的合成與利用底物產(chǎn)生的能量和谷氨酰胺的效能受骨骼肌營(yíng)養(yǎng)物質(zhì)的影響。實(shí)際上,許多研究表明,胰島素介導(dǎo)葡萄糖的攝取和支鏈氨基酸的補(bǔ)充能增加肌肉合成谷氨酰胺[4-6]。
谷氨酰胺酶是利用谷氨酰胺的關(guān)鍵酶,并使底物 (如α-酮戊二酸和丙酮酸)和氨基酸 (如谷氨酸、天冬氨酸和丙氨酸)的活性增加。谷氨酰胺被認(rèn)為在參與和調(diào)節(jié)細(xì)胞的功能方面具有良好作用,特別是谷氨酰胺能被快速分裂的腸細(xì)胞和免疫細(xì)胞以及淋巴細(xì)胞和單核細(xì)胞所利用[7]?;谶@些原因,谷氨酰胺被認(rèn)為是有條件必需的及被指定作為“免疫系統(tǒng)的燃料”。研究表明其在不同的模式中對(duì)激活和調(diào)節(jié)免疫系統(tǒng)均發(fā)揮重要作用。谷氨酰胺酶表達(dá)人的中性粒細(xì)胞的細(xì)胞膜,以及為免疫活性細(xì)胞增殖提供底物[8]。體外研究也證明了谷氨酰胺對(duì)免疫細(xì)胞的調(diào)節(jié)作用[9]。事實(shí)上,由谷氨酰胺轉(zhuǎn)化的谷氨酸、天冬氨酸、丙氨酸和丙酮酸占被中性粒細(xì)胞所利用的氨基酸總量的85%[10]。這樣,谷氨酰胺代謝提供了免疫細(xì)胞增殖和蛋白質(zhì)合成所需的前體和中間體。由此可見(jiàn),谷氨酰胺對(duì)促進(jìn)蛋白質(zhì)的合成以及維持機(jī)體的免疫功能等有重要作用。
運(yùn)動(dòng)訓(xùn)練導(dǎo)致酶作用物活性、胰島素敏感性和蛋白質(zhì)轉(zhuǎn)運(yùn)發(fā)生改變[11]。此外,運(yùn)動(dòng)也影響氨基酸的可利用性及能量代謝。通常丙氨酸的增加使谷氨酸和谷氨酰胺顯示出不同的調(diào)節(jié)機(jī)制[12]。特別是運(yùn)動(dòng)能不同程度地影響肌肉中谷氨酰胺的生成及其在血漿中的可用性。已有研究證明,體力活動(dòng)可影響從未訓(xùn)練過(guò)的健康志愿者的谷氨酰胺。在連續(xù)急性離心運(yùn)動(dòng)和一次間歇性高強(qiáng)度訓(xùn)練后,與基準(zhǔn)值相比血漿氨基酸濃度下降[13]。此外,與較短時(shí)間的運(yùn)動(dòng)練習(xí)相比,長(zhǎng)期力竭運(yùn)動(dòng)會(huì)導(dǎo)致谷氨酰胺濃度嚴(yán)重的負(fù)面效應(yīng)[14]。
大強(qiáng)度運(yùn)動(dòng)降低了谷氨酰胺的可用性,可能是由于谷氨酰胺合成酶活性降低而減少體內(nèi)谷氨酰胺的含量[15]。大強(qiáng)度運(yùn)動(dòng)引起谷氨酰胺耗竭,也影響活性免疫細(xì)胞對(duì)谷氨酰胺的利用。實(shí)際上,不同的運(yùn)動(dòng)類(lèi)型對(duì)谷氨酰胺濃度的影響不同[16]。長(zhǎng)時(shí)間的耐力和抗阻力性運(yùn)動(dòng)項(xiàng)目使能量極端消耗而導(dǎo)致谷氨酰胺供應(yīng)嚴(yán)重減少。同樣,長(zhǎng)期進(jìn)行高強(qiáng)度運(yùn)動(dòng)訓(xùn)練也將導(dǎo)致谷氨酰胺持續(xù)較長(zhǎng)時(shí)間的不足。以大鼠為對(duì)象進(jìn)行一段時(shí)間的力竭性運(yùn)動(dòng)訓(xùn)練與安靜鼠對(duì)比的實(shí)驗(yàn)研究顯示,運(yùn)動(dòng)鼠的血漿谷氨酰胺濃度明顯下降[17],只有在24小時(shí)后血漿谷氨酰胺濃度才出現(xiàn)恢復(fù)。對(duì)人類(lèi)的研究也有相似的結(jié)果,如優(yōu)秀游泳運(yùn)動(dòng)員在一段時(shí)期的次最大運(yùn)動(dòng)訓(xùn)練后谷氨酰胺濃度降低[18]。此外,過(guò)度訓(xùn)練也影響肌肉谷氨酰胺的濃度。參與實(shí)驗(yàn)的志愿者過(guò)度訓(xùn)練的首個(gè)24小時(shí)后,比目魚(yú)肌谷氨酰胺濃度明顯下降[15]。另一研究證實(shí),人體I和II肌纖維在力竭性運(yùn)動(dòng)訓(xùn)練后,谷氨酰胺濃度均下降[19]。關(guān)于谷氨酰胺在血液中的損耗和大負(fù)荷訓(xùn)練周期后的研究表明,持續(xù)運(yùn)動(dòng)訓(xùn)練1或2周后谷氨酰胺濃度才降低[20]。成人禁食一夜后,一般體內(nèi)正常的血漿谷酰胺濃度為550—750mmol/l,有研究認(rèn)為血漿谷氨酰胺濃度的降低存在500mmol/l的域值,可以考慮用其作為標(biāo)記“過(guò)度訓(xùn)練綜合癥”[21]。也就是說(shuō),在正常狀態(tài)下檢測(cè)運(yùn)動(dòng)員血漿谷氨酰胺濃度低于500mmol/l時(shí),可能出現(xiàn)訓(xùn)練過(guò)度。其他的研究證實(shí)了經(jīng)過(guò)長(zhǎng)期體育鍛煉后谷氨酰胺濃度在靜息時(shí)有所下降,但另外的研究則顯示谷氨酸的濃度增加,這表明谷氨酰胺和谷氨酸之間的濃度比率可有益于制定高強(qiáng)度耐力訓(xùn)練的計(jì)劃[12]。此外,氧化應(yīng)激標(biāo)志物對(duì)氧化型谷胱甘肽比率的降低和高蛋白質(zhì)羰基化或異前列腺的產(chǎn)生均與過(guò)度訓(xùn)練有關(guān)[22]。再者,作為標(biāo)志肌肉損傷的肌酸激酶,被證明在過(guò)度訓(xùn)練中其與血漿游離DNA同時(shí)并存[23]。
通常一次大強(qiáng)度運(yùn)動(dòng)、一段時(shí)間的中等強(qiáng)度運(yùn)動(dòng)對(duì)循環(huán)谷氨酰胺無(wú)顯著影響。事實(shí)上,適度的有氧運(yùn)動(dòng),幾乎不影響血液中谷氨酰胺存在的比率,并使丙氨酸含量增加,這在空腹?fàn)顟B(tài)下的動(dòng)能示蹤劑研究得到確證[24]。大量的研究顯示,適度的中等強(qiáng)度訓(xùn)練能提高谷氨酰胺的可利用性。適度運(yùn)動(dòng)強(qiáng)度下的動(dòng)物實(shí)驗(yàn)中,短期或耐力運(yùn)動(dòng)訓(xùn)練提高了靜息狀態(tài)血漿谷氨酰胺濃度[25]。逐步增加運(yùn)動(dòng)員訓(xùn)練強(qiáng)度的超中周期 (6周)的研究顯示,靜息時(shí)血漿谷氨酰胺濃度顯著改善[26]。這表明適度訓(xùn)練產(chǎn)生的生理適應(yīng)對(duì)于保護(hù)有機(jī)體谷氨酰胺的消耗很有用。一個(gè)最佳的訓(xùn)練計(jì)劃應(yīng)使練習(xí)者每次運(yùn)動(dòng)后不疲勞,且谷氨酰胺濃度反復(fù)升高[27]。事實(shí)上,反復(fù)的肌肉收縮,增強(qiáng)了中間熔體在 TCA中的循環(huán)[5],從而導(dǎo)致谷氨酰胺的合成和釋放增加[28]。在此情況下,推測(cè)免疫系統(tǒng)的激活只有在不降低谷氨酰胺濃度時(shí)才有效。其它證據(jù)也支持適度訓(xùn)練能改善免疫反應(yīng);適度運(yùn)動(dòng)與CRP和TNF-a減少相關(guān),特別是降低心血管疾病的風(fēng)險(xiǎn)[29]。此外,有研究顯示,長(zhǎng)期堅(jiān)持適度訓(xùn)練促使未成年人血清肌酸激酶與乳酸的增加相匹配[30]。因此,適度訓(xùn)練對(duì)保持健康具有的積極作用,至少部分原因是因?yàn)樯险{(diào)了谷氨酰胺的可用性。力竭訓(xùn)練證明,血漿谷氨酰胺的持續(xù)下降可能導(dǎo)致免疫抑制。目前,最大限度地增加谷氨酰胺可利用性的訓(xùn)練水平閾值和具體的練習(xí)程序還未確定。解決這些問(wèn)題將會(huì)對(duì)運(yùn)動(dòng)訓(xùn)練與健身指導(dǎo)產(chǎn)生重大影響。
先前的研究大多對(duì)運(yùn)動(dòng)與谷氨酰胺濃度之間的關(guān)系進(jìn)行了探索,而對(duì)缺乏運(yùn)動(dòng)與谷氨酰胺代謝的影響幾乎沒(méi)有報(bào)道。眾所周知,在健康狀況下久坐不動(dòng)的生活方式和代謝綜合征使人存在較高心血管疾病的風(fēng)險(xiǎn)[31]。不活動(dòng)也與低度炎癥反應(yīng)和免疫系統(tǒng)的變化相關(guān)聯(lián)[32-33]。相反,適當(dāng)?shù)捏w育運(yùn)動(dòng),可以改善人的健康狀況,不但降低犯代謝病的風(fēng)險(xiǎn),而且能提高免疫系統(tǒng)的功能[34]。很少有關(guān)于機(jī)體缺乏運(yùn)動(dòng)時(shí),血漿或肌肉谷氨酰胺濃度變化的研究報(bào)告。大鼠后肢肌斷裂或去神經(jīng),將降低其谷氨酰胺和氨的水平[35]。此外,大鼠暴露在太空中飛行失重7天的實(shí)驗(yàn)研究顯示,大鼠肌肉中游離谷氨酰胺水平顯著下降[36]。Werecently[37]研究了關(guān)于不活動(dòng)者對(duì)機(jī)體谷氨酰胺動(dòng)力學(xué)的影響。該模型剔除了生理上的疾病,能可靠地評(píng)估不活動(dòng)對(duì)身體的影響。有9名健康男性志愿者參加了試驗(yàn),每人都經(jīng)歷臥床休息 (14天)并控制活動(dòng)和飲食。四個(gè)研究周期的每個(gè)尾端的生理狀況和飯后模擬 (飲食混合氨基酸),就谷氨酰胺濃度與個(gè)體動(dòng)力學(xué)進(jìn)行了分析。研究顯示,臥床休息引起血漿谷氨酰胺濃度降低。此外,蛋白質(zhì)水解的谷氨酰胺的消耗和生成并沒(méi)有受到臥床休息的影響,然而,在不活動(dòng)時(shí)段,合成谷氨酰胺速率顯著下降。谷氨酰胺動(dòng)力學(xué)的改變導(dǎo)致谷氨酰胺濃度下降。實(shí)際上,由于肌肉不活動(dòng)及肌肉萎縮更進(jìn)一步減少了谷氨酰胺的合成。目前,該研究是唯一直接評(píng)估在無(wú)活動(dòng)狀態(tài)下谷氨酰胺在體內(nèi)變化的研究。有研究認(rèn)為,導(dǎo)致谷氨酰胺的合成和濃度降低,可能是 TCA循環(huán)下調(diào)繼發(fā)能源消耗降低與身體活動(dòng)相關(guān)。先前對(duì)動(dòng)物的有關(guān)研究顯示,當(dāng)切除大鼠肌肉神經(jīng)后,其谷氨酰胺合成酶減少[38];同樣可推測(cè)在人體也一樣,缺乏運(yùn)動(dòng)或在肌肉失重時(shí)對(duì)谷氨酰胺合成酶作用有同等的效果。因此,缺乏運(yùn)動(dòng)能對(duì)谷氨酰胺的代謝產(chǎn)生負(fù)面影響,進(jìn)而影響人的健康。
研究證明,骨骼肌底物的可用性尤其受谷氨酰胺合成水平的影響。肌肉胰島素介導(dǎo)攝取葡萄糖的增多以及充足的氨基酸 (特別是支鏈亮氨酸、纈氨酸和異亮氨酸)促進(jìn)了肌肉合成谷氨酰胺[6,37]。在運(yùn)動(dòng)員訓(xùn)練的實(shí)驗(yàn)研究中,與服用安慰劑組相比,補(bǔ)充碳水化合物能維持血漿谷氨酰胺的濃度,這種效果與血漿細(xì)胞因子釋放增多有關(guān)[39]。另外有研究顯示,與服用安慰劑者相比,補(bǔ)充碳水化合物能夠使運(yùn)動(dòng)員保持較高的谷氨酰胺水平[40],而飲食低碳水化合物的運(yùn)動(dòng)員,谷氨酰胺濃度明顯下降[41]。先前的研究認(rèn)為,補(bǔ)充支鏈氨基酸可以防止長(zhǎng)跑運(yùn)動(dòng)員在訓(xùn)練和比賽后出現(xiàn)谷氨酰胺損耗過(guò)多[42]。有研究證明,短期臥床休息,減少了熱量攝入,但并不影響谷氨酰胺動(dòng)力學(xué)[37]。
動(dòng)物實(shí)驗(yàn)研究模型及所測(cè)量的生物標(biāo)記顯示,運(yùn)動(dòng)后谷氨酰胺的減少對(duì)免疫系統(tǒng)產(chǎn)生顯著影響??诜劝滨0房梢苑乐惯\(yùn)動(dòng)大鼠由于DNA碎裂或細(xì)胞基因異常而引起的免疫細(xì)胞過(guò)度凋亡[43]。磷酸化作用和調(diào)節(jié)蛋白選擇表達(dá)模式下降的變化證明了較高的谷氨酰胺濃度同樣對(duì)免疫細(xì)胞具有保護(hù)作用[44]。研究顯示,大鼠中性粒細(xì)胞谷氨酰胺的可用性增加可防止吞噬作用或一氧化氮生產(chǎn)的改變[45],也增加了作為免疫細(xì)胞活化標(biāo)志物膜油酸的含量[46]。盡管在許多動(dòng)物模型研究中獲得的結(jié)果一致,然而運(yùn)動(dòng)后免疫系統(tǒng)調(diào)節(jié)谷氨酰胺變化的作用在人體表現(xiàn)出一些差異。一方面,運(yùn)動(dòng)員大強(qiáng)度訓(xùn)練的研究數(shù)據(jù)顯示,谷氨酰胺水平降低同時(shí)伴有單核細(xì)胞刺激因子釋放、淋巴細(xì)胞增殖率和 T輔助與 T毒性細(xì)胞的比率均減少[47]。然而,對(duì)訓(xùn)練過(guò)度運(yùn)動(dòng)員的研究表明,較低的淋巴細(xì)胞、中性粒細(xì)胞并不誘導(dǎo)細(xì)胞凋亡[48]。另一方面,不同個(gè)體過(guò)度訓(xùn)練的數(shù)據(jù)顯示,運(yùn)動(dòng)后的單核細(xì)胞、粒細(xì)胞和淋巴細(xì)胞數(shù)量未見(jiàn)變化,即使谷氨酰胺濃度明顯下降也是如此[12]。此外,有研究認(rèn)為,雖然長(zhǎng)時(shí)間運(yùn)動(dòng)引起血漿谷氨酰胺和中性粒細(xì)胞顯著減少,但它們之間并沒(méi)有顯著相關(guān)性[14]。不同實(shí)驗(yàn)?zāi)P驮O(shè)置的差異性以及運(yùn)動(dòng)方式、持續(xù)時(shí)間和強(qiáng)度等原因?qū)е铝搜芯拷Y(jié)果的不確定性。然而,有充分的證據(jù)表明,運(yùn)動(dòng)后即刻至幾小時(shí)免疫細(xì)胞增殖顯著增加,隨后血漿谷氨酰胺濃度降低,被作為增加谷氨酰胺攝入的原因[13]。研究證明,由于被激活的免疫細(xì)胞過(guò)度攝取谷氨酰胺與肌肉分泌谷氨酰胺不足,導(dǎo)致谷氨酰胺耗竭和免疫系統(tǒng)受損。事實(shí)上,力竭運(yùn)動(dòng)訓(xùn)練和長(zhǎng)時(shí)間的運(yùn)動(dòng)引起上呼吸道感染 (URTI)發(fā)病率升高[49]。高水平賽艇運(yùn)動(dòng)員或參加馬拉松比賽的運(yùn)動(dòng)員URTI發(fā)病率相對(duì)較高并且顯現(xiàn)出消耗了大量的谷氨酰胺[50]。然而,適宜的中等強(qiáng)度的訓(xùn)練可以防止免疫抑制和URTI的發(fā)生,可能是由于運(yùn)動(dòng)后骨骼肌谷氨酰胺的分泌增加所致[49]。因此,適度的中等強(qiáng)度運(yùn)動(dòng),肌肉釋放谷氨酰胺會(huì)增多,從而能為免疫系統(tǒng)提供足夠的“免疫燃料”,進(jìn)而促進(jìn)機(jī)體免疫能力增強(qiáng)。
動(dòng)物和人體劇烈運(yùn)動(dòng)后谷氨酰胺耗竭的模型研究證明了補(bǔ)充谷氨酰胺對(duì)免疫系統(tǒng)的作用。在運(yùn)動(dòng)大鼠的研究中,補(bǔ)充谷氨酰胺的保護(hù)效應(yīng)是預(yù)防免疫反應(yīng)標(biāo)志物的改變[43-46]。研究表明運(yùn)動(dòng)刺激人體肌肉分泌IL-6[51]:這種效果在餐后進(jìn)一步提高了谷氨酰胺的濃度[52]。在馬拉松賽中,補(bǔ)充谷氨酰胺與服用安慰劑相比,T輔助 T抑制細(xì)胞作為免疫系統(tǒng)的激活標(biāo)志上調(diào)[53]。此外,在鐵人三項(xiàng)中補(bǔ)充谷氨酰胺能夠防止運(yùn)動(dòng)損壞淋巴細(xì)胞膜的完整性以及線(xiàn)粒體細(xì)胞膜的去極化[48]。因此,人為上調(diào)谷氨酰胺的有效性可防止劇烈運(yùn)動(dòng)引起免疫系統(tǒng)的變化。這些有益的效應(yīng)似乎與長(zhǎng)期補(bǔ)充谷氨酰胺相關(guān),因?yàn)榧毙钥诜劝滨0凡⒉荒芨纳浦行粤<?xì)胞的活性[54]。對(duì)運(yùn)動(dòng)員的流行病學(xué)研究強(qiáng)化了谷氨酰胺的補(bǔ)充和免疫功能改善之間的潛在聯(lián)系。馬拉松運(yùn)動(dòng)員的問(wèn)卷調(diào)查顯示,賽后補(bǔ)充谷氨酰胺的未出現(xiàn)感染比例 (81%)明顯高于安慰劑組 (49%)[55]。此外,對(duì)馬拉松運(yùn)動(dòng)員補(bǔ)充谷氨酰胺可減少1周后感染發(fā)生的可能[53]。這些研究表明,這種營(yíng)養(yǎng)干預(yù)的影響沒(méi)有顯著的免疫活化標(biāo)記,谷氨酰胺的可用性影響運(yùn)動(dòng)介導(dǎo)免疫反應(yīng)的變化[56]。但是,谷氨酰胺耗竭并不是唯一損傷免疫的機(jī)制。事實(shí)上,在優(yōu)秀運(yùn)動(dòng)員力竭性運(yùn)動(dòng)時(shí),盡管補(bǔ)充了足夠的谷氨酰胺,但血液淋巴細(xì)胞的數(shù)目和敏感度還是下降[57]。同樣,在力竭運(yùn)動(dòng)中補(bǔ)充谷氨酰胺也未能防止唾液 IgA分泌下降[58]。最近對(duì)8個(gè)賽艇運(yùn)動(dòng)員谷氨酰胺的營(yíng)養(yǎng)補(bǔ)充或其他干預(yù)措施的訓(xùn)練研究顯示,只有補(bǔ)充維生素C才可顯著降低URTI的發(fā)病率[59]。
Blanchard[60]對(duì)淋巴細(xì)胞增殖所需的谷氨酰胺進(jìn)行了重新評(píng)價(jià)并證明培養(yǎng)液中的淋巴細(xì)胞增殖只有當(dāng)?shù)孜锏墓劝滨0泛繛?00mmol/l時(shí)才顯著降低。因此,淋巴細(xì)胞在濃度300—400mmol/l的谷氨酰胺濃度 (相當(dāng)于運(yùn)動(dòng)后被測(cè)量的最低血漿谷氨酰胺濃度)培養(yǎng)液和在正常水平時(shí)的550—750mmol/l[61]培養(yǎng)液中能同樣好地起作用。事實(shí)上,即使在大強(qiáng)度運(yùn)動(dòng)中,谷氨酰胺濃度也不會(huì)低于100mmol/l。如嚴(yán)重?zé)齻麜r(shí),血漿谷氨酰胺濃度也很少下跌至200mmol/l以下。如上所述,多數(shù)研究未發(fā)現(xiàn)在運(yùn)動(dòng)和恢復(fù)期間補(bǔ)充谷氨酰胺維持血漿谷氨酰胺濃度對(duì)于運(yùn)動(dòng)后各種免疫功能的有利作用。同樣,沒(méi)有證據(jù)表明血漿谷氨酰胺濃度的降低是引起運(yùn)動(dòng)導(dǎo)致的免疫衰退的原因。對(duì)于口服補(bǔ)充谷氨酰胺也許對(duì)長(zhǎng)跑運(yùn)動(dòng)員有預(yù)防疾病的作用機(jī)制[55],還需通過(guò)進(jìn)一步的研究來(lái)闡明。雖然減少谷氨酰胺可用性不太可能直接影響免疫細(xì)胞,但是谷氨酰胺也許通過(guò)維護(hù)抗氧化谷胱甘肽或保持腸黏膜屏障功能而對(duì)免疫和感染起到間接的作用[62]。
研究顯示,通過(guò)長(zhǎng)期補(bǔ)充谷氨酰胺,機(jī)體力竭運(yùn)動(dòng)后體內(nèi)氨濃度降低[63],這種效應(yīng)必須依賴(lài)運(yùn)動(dòng)的強(qiáng)度和長(zhǎng)期的補(bǔ)充谷氨酰胺[64]。此外,補(bǔ)充谷氨酰胺改善肌肉和肝臟的氧化狀態(tài),潛在提高了谷胱甘肽系統(tǒng)的凈化作用[65]。相反,在大運(yùn)動(dòng)量訓(xùn)練期間,只攝取谷氨酰胺或結(jié)合組織多余氧的研究顯示,補(bǔ)充谷氨酰胺對(duì)機(jī)體氧化代謝和有氧能力沒(méi)有影響[66]。在口服2克谷氨酰胺之后90分鐘,血漿生長(zhǎng)激素濃度增加四倍[67]。然而,1小時(shí)的適度高強(qiáng)度運(yùn)動(dòng)可能導(dǎo)致血漿生長(zhǎng)激素含量增加20倍,因此這不是參與訓(xùn)練的運(yùn)動(dòng)員要補(bǔ)充谷氨酰胺的一個(gè)原因。異常運(yùn)動(dòng)導(dǎo)致的肌肉損傷不影響血漿谷氨酰胺濃度[68]。沒(méi)有科學(xué)證據(jù)表明口服補(bǔ)充谷氨酰胺能有效作用于運(yùn)動(dòng)損傷后的肌肉修復(fù),也沒(méi)有證據(jù)可以表明相對(duì)服用安慰劑而言,補(bǔ)充谷氨酰胺可以緩解肌肉酸疼[68]。有研究表明,運(yùn)動(dòng)后的膳食主要由碳水化合物(100g)與一些蛋白質(zhì) (20g)構(gòu)成似乎是運(yùn)動(dòng)后促進(jìn)糖原和肌肉蛋白質(zhì)合成的最佳方案[69-70]。也有研究顯示,每天攝入20—30g蛋白質(zhì)能使過(guò)度訓(xùn)練的運(yùn)動(dòng)員恢復(fù)下降的血漿谷氨酰胺水平[71]??傊?運(yùn)動(dòng)訓(xùn)練中補(bǔ)充谷氨酰胺對(duì)運(yùn)動(dòng)能力的良好作用有待確證。此外,補(bǔ)充谷氨酰胺對(duì)機(jī)體的副作用尚未見(jiàn)報(bào)道。
谷氨酰胺的存在對(duì)人體生理機(jī)能正常運(yùn)轉(zhuǎn)非常重要,是人類(lèi)長(zhǎng)期進(jìn)化適應(yīng)生存環(huán)境的結(jié)果。最適訓(xùn)練可促進(jìn)機(jī)體谷氨酰胺的合成,經(jīng)過(guò)一段時(shí)間中等強(qiáng)度的訓(xùn)練,能適度增加機(jī)體谷氨酰胺的含量。缺乏運(yùn)動(dòng)者由于谷氨酰胺合成的中間體TCA供應(yīng)減少與低能源消耗引起機(jī)體谷氨酰胺分泌減少而影響健康。在不運(yùn)動(dòng)的條件下,補(bǔ)充谷氨酰胺可能防止由肌肉卸載產(chǎn)生的對(duì)健康的不良影響。此外,機(jī)體力竭運(yùn)動(dòng)和嚴(yán)重?fù)p傷的情況下,補(bǔ)充谷氨酰胺有利于機(jī)體免疫及機(jī)能的恢復(fù)。
在運(yùn)動(dòng)訓(xùn)練實(shí)踐中,可以通過(guò)測(cè)量血漿谷氨酰胺濃度來(lái)評(píng)定訓(xùn)練計(jì)劃是否合理和監(jiān)測(cè)運(yùn)動(dòng)訓(xùn)練中疲勞發(fā)生的程度,可將血漿谷氨酰胺濃度500mmol/l作為評(píng)判運(yùn)動(dòng)訓(xùn)練科學(xué)性的一個(gè)臨界檢測(cè)指標(biāo)。運(yùn)動(dòng)訓(xùn)練與血漿谷氨酰胺濃度之間的某種關(guān)系,有可能是指導(dǎo)人們科學(xué)從事健身和競(jìng)技體育運(yùn)動(dòng)訓(xùn)練的重要生理監(jiān)測(cè)指標(biāo)之一,這方面待深入研究。
[1] Biolo G,Fleming R Y,Maggi SP,et al.Transmembrane transport andintracellular kinetics of amino acids in human skeletal muscle[J].Am J Physiol,1995,268:E75-E84.
[2] Biolo G,Iscra F,Bosutti A,et al.Grow th hormone decreases muscle glutamine p roduction and stimulates p rotein synthesis in hypercatabolic patients[J].Am J Physiol Endocrinol Metab,2000,279:E323-E332.
[3] Gibala M J,MacLean D A,Graham T E,et al.Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise[J].Am J Physiol,1998,275:E235-E242.
[4] Darmaun D,Just B,Messing B,et al.Glutamine metabolism in healthy adult men:response to enteral and intravenous feeding[J].Am J Clin Nutr,1994,59:1395-1402.
[5] Biolo G,De Cicco M,Dal Mas V,et al.Response of muscle p rotein and glutamine kinetics to branchedchain-enriched amino acids in intensive care patients after radical cancer surgery[J].Nutrition,2006,22:475-482.
[6] Biolo G,De Cicco M,Lo renzon S,et al.Treating hyperglycemia imp rovesskeletalmuscle p rotein metabolism in cancer patients after major surgery[J].Crit Care Med,2008,36:1768-1775.
[7] A rdawi M S,New sholme E A.Maximum activities of some enzymes of glycolysis,the tricarboxylic acid cycle and ketone-body and glutamine utilizationpathways in lymphocytes of the rat[J].Biochem J,1982,208(3):743-748.
[8] Castell L,Vance C,Abbott R,et al.Granule localization of glutaminase in human neutrophils and the consequence of glutamine utilization for neutrophil activity[J].JBiol Chem,2004,279:13305-13310.
[9] Sakagami H,Kishino K,Amano O,et al.Cell death induced by nutritional starvation in mouse macrophagelike RAW 264.7 cells[J].Anticancer Res,2009,29:343-347.
[10] Curi T C,De Melo M P,De Azevedo RB,et al.Glutamine utilization by rat neutrophils:p resence of phosphate-dependent glutaminase[J].Am J Physiol,1997,273:C1124-C1129.
[11] Colberg S R,Grieco C R.Exercise in the treatment and p revention of diabetes[J].Curr Spo rts Med Rep,2009,8:169-175.
[12] Coutts A J,Reaburn P,Piva T J,et al.Monitoring for overreaching in rugby league p layers[J].Eur J App l Physiol,2007,99:313-324.
[13] Walsh N P,Blannin A K,Clark A M,et al.The effects of high-intensity intermittent exercise on the p lasma concentrations of glutamine and o rganic acids[J].Eur J App l Physiol Occup Physiol,1998,77:434-438.
[14] Robson PJ,Blannin A K,Walsh N P,et al.Effects of exercise intensity,duration and recovery on in vitro neutrophil function in male athletes[J].Int J Spo rts Med,1999,20:128-135.
[15] Dos Santos R V,Caperuto EC,De Mello M T,et al.Effect of exercise on glutamine synthesis and transpo rt in skeletal muscle from rats[J].Clin Exp Pharmacol Physiol,2009,36:770-775.
[16] Hiscock N,Mackinnon L T.A comparison of p lasma glutamine concentration in athletes from different sports[J].Med Sci Sports Exerc,1998,30:1693-1696.
[17] Santos R V,Caperuto E C,Costa Rosa L F.Effects of acute exhaustive physical exercise upon glutamine metabolism of lymphocytes from trained rats[J].Life Sci,2007,80:573-578.
[18] Kargotich S,Row bottom D G,Keast D,et al.Plasma glutamine changes after high-intensity exercise in elite male sw immers[J].Res Spo rts Med,2005,13:7-21.
[19] Blom strand E,Essen-Gustavsson B.Changes in amino acid concentration in plasma and type Iand type II fibres during resistance exercise and recovery in human subjects[J].Amino Acids 2008[Epub ahead of p rint].
[20] Keast D,A rstein D,Harper W.Dep ression of p lasma glutamine concentration after exercise stress and its possible influence on the immune system[J].M ed J Aust,1995,162:15-18.
[21] Walsh N P,Blannin A K,Robson P J,et al.Glutamine,exercise and immune function.Links and possible mechanism s[J].Spo rts Med,1998,26:177-191.
[22] Margonis K,Fatouros IG,Jamurtas A Z,et al.Oxidative stress biomarkers responses to physicalovertraining:imp lications fo r diagnosis[J].Free Radic Biol Med,2007,43:901-910.
[23] Fatouros I G,Destouni A,Margonis K,et al.Cellfree p lasma DNA as a novelmarker of asep tic inflammation severity related to exercise overtraining[J].Clin Chem,2006,52:1820-1824.
[24] W illiam s B D,Chinkes D L,Wolfe R R.A lanine and glutamine kinetics at rest and during exercise in humans[J].Med Sci Spo rts Exerc,1998,30:1053-1058.
[25] Hood D A,Terjung R L.Endurance training alters alanine and glutamine release from muscle during contractions[J].FEBSLett,1994,340:287-290.
[26] Kargotich S,Keast D,Goodman C,et al.Monito ring 6 weeks of p rogressive endurance training w ith p lasma glutamine[J].Int J Sports Med,2007,28:211-216.
[27] Dos Santos Cunha W D,Giampietro M V,De Souza DF,et al.Exercise resto res immune cell function in energy-restricted rats[J].Med Sci Spo rts Exerc,2004,36:2059-2064.
[28] Van Hall G,Saltin B,Wagenmakers A J.M uscle p ro-tein degradation and amino acid metabolism during p rolonged knee-extensor exercise in humans[J].Clin Sci(Lond),1999,97:557-567.
[29] Colbert L H,Visser M,Simonsick EM,et al.Physical activity,exercise,and inflammato ry markers in older adults:findings from the Health,Aging and Body Composition Study[J].J Am Geriatr Soc,2004,52:1098-1104.
[30] Thomas S J,Cooney T E,Thomas D J.Comparison of exertional indices follow ing moderate training in collegiate athletes[J].J Spo rts Med Phys Fitness,2000,40:156-161.
[31] Cornier M A,Dabelea D,Hernandez T L,et al.The metabolic syndrome[J].Endocr Rev,2008,29:777-822.
[32] Bosutti A,Malaponte G,Zanetti M,et al.Calo rie restriction modulates inactivity-induced changes in the inflammato ry markers C-reactive p rotein and pentraxin-3[J].J Clin Endocrinol Metab,2008,93:3226-3229.
[33] Kanikow ska D,Sato M,Iwase S,et al.Immune and neuroendocrine responses to head-dow n rest and countermeasures[J].Aviat Space Environ Med,2008,79:1091-1095.
[34] Blair SN,Mo rris J N.Healthy hearts-and the universal benefits of being physically active:physical activity and health[J].Ann Epidemiol,2009,19:253-256.
[35] Jaspers SR,Henriksen E J,Satarug S,et al.Effects of stretching and disuse on amino acids in muscles of rat hind limbs[J].M etabolism,1989,38:303-310.
[39] Steffen J M,M usacchia X J.Spaceflight effects on adult ratmuscle p rotein,nucleic acids,and amino acids[J].Am J Physiol,1986,251:R1059-R1063.
[37] Agostini F,Heer M,Guarnieri G,et al.Physical inactivity decreases w hole body glutamine turnover independently from changes in p roteolysis[J].J Physiol,2008,586:4775-4781.
[38] Hundal H S,Babij P,Watt P W,et al.Glutamine transport and metabolism in denervated rat skeletal muscle[J].Am J Physiol,1990,259:E148-E154.
[39] Bacurau R F,Bassit R A,Sawada L,et al.Carbohydrate supp lementation during intense exercise and the immune response of cyclists[J].Clin Nutr,2002,21:423-429.
[40] Blom strand E,Andersson S,Hassmen P,et al.Effect of branched-chain amino acid and carbohydrate supp lementation on the exercise-induced change in p lasma and muscle concentration of amino acids in human subjects[J].Acta Physiol Scand,1995,153:87-96.
[41] M itchell J B,Pizza F X,Paquet A,et al.Influence of carbohydrate status on immune responses before and after endurance exercise[J].J App l Physiol,1998,84:1917-1925.
[42] Bassit R A,Sawada L A,Bacurau R F.Branchedchain amino acid supplementation and the immune response of long-distance athletes[J].Nutrition,2002,18:376-379.
[43] Lagranha C J,Senna SM,de Lima TM,et al.Beneficial effect of glutamine on exercise-induced apop tosis of rat neutrophils[J].M ed Sci Spo rts Exerc,2004,36:210-217.
[44] Lagranha C J,Hirabara S M,Curi R,et al.Glutamine supp lementation p revents exercise-induced neutrophil apop tosis and reduces p38 MAPK and JNK phosphorylation and p53 and caspase 3 exp ression[J].Cell Biochem Funct,2007,25:563-569.
[45] Lagranha C J,De Lima T M,Senna SM,et al.The effect of glutamine supp lementation on the function of neutrophils from exercised rats[J].Cell Biochem Funct,2005,23:101-107.
[46] Lagranha CJ,Alba-Loureiro T C,Martins E F,et al.Neutrophil fatty acid composition:effect of a single session of exercise and glutamine supp lementation[J].Amino Acids,2008,35:243-245.
[47] Sloan R P,Shapiro P A,Demeersman R E,et al.Aerobic exercise attenuates inducible TNF p roduction in humans[J].J Appl Physiol,2007,103:1007-1011.
[48] Cury-Boaventura M F,Levada-Pires A C,Folador A,et al.Effects of exercise on leukocyte death:p revention by hydrolyzed w hey p ro tein enriched w ith glutamine dipep tide[J].Eur J App l Physiol,2008,103:289-294.
[49] Weidner T G.Literature review:upper respiratory illness and sport and exercise[J].Int J Spo rts Med,1994,15:1-9.
[50] Castell L M,Poortmans J R,Leclercq R,et al.Some aspects of the acute phase response after a marathon race,and the effects of glutamine supp lementation[J].Eur J Appl Physiol Occup Physiol,1997,75:47-53.
[51] Ostrow ski K,Rohde T,Zacho M,et al.Evidence that interleukin-6 is p roduced in human skeletal muscle during p rolonged running[J].J Physiol,1998,508(Pt 3):949-953.
[52] Hiscock N,Petersen E W,Krzyw kow ski K,et al.Glutamine supp lementation further enhances exerciseinduced p lasma IL-6[J].J App l Physiol,2003,95:145-148.
[53] Castell L M,New sholme EA.The effectsof oral glutamine supp lementation on athletes after p rolonged,exhaustive exercise[J].Nutrition,1997,13:738-742.
[54] Walsh N P,Blannin A K,Bishop N C,et al.Effectof oral glutamine supp lementation on human neutrophil lipopolysaccharide-stimulated degranulation follow ing p rolonged exercise[J].Int J Spo rt Nutr Exerc Metab,2000,10:39-50.
[55] Castell L M,Poo rtmans J R,New sholme E A.Does glutamine have a role in reducing infections in athletes[J].Eur J App l Physiol Occup Physiol,1996,73:488-490.
[56] Gleeson M.Dosing and efficacy of glutamine supp lementation in human exercise and spo rt training[J].J Nutr,2008,138:2045S-2049S.
[57] Rohde T,MacLean D A,Pedersen B K.Effectof glutamine supp lementation on changes in the immune system induced by repeated exercise[J].Med Sci Sports Exerc,1998,30:856-862.
[58] Krzyw kow ski K,Petersen EW,Ostrow ski K,et al.Effectof glutamine and p rotein supp lementation on exercise-induced decreases in salivary IgA[J].J App l Physiol,2001,91:832-838.
[59] Moreira A,Kekkonen R A,Delgado L,et al.Nutritionalmodulation of exerciseinduced immunodep ression in athletes:a systematic review and meta-analysis[J].Eur J Clin Nutr,2007,61:443-460.
[60] Blanchard M.Carbohydrate supp lementation and high intensity exercise:glutamine metabolism and immune function in well trainedathletes[D].Brisbane:University of Queensland,2002.
[61] Hiscock N,Pedersen B K.Exercise-induced immunodep ression:plasmaglutamine is not the link[J].J App l Physiol,2002,93:813-22.
[62] Castell L M.Glutamine supp lementation in vitro and in vivo,in exercise and in immunodep ression[J].Spo rts Med,2003,33:323-45.
[63] Carvalho-Peixoto J,A lves R C,Cameron L C.Glutamine and carbohydrate supp lements reduce ammonemia increase during endurance field exercise[J].App l Physiol Nutr Metab,2007,32:1186-1190.
[64] Bassini-Cameron A,Monteiro A,Gomes A,et al.Glutamine p rotects against increases in blood ammonia in foo tball p layers in an exercise intensity dependent way[J].B r J Sports Med,2008,42:260-266.
[65] Cruzat V F,Tirapegui J.Effects of oral supp lementation w ith glutamine and alanyl-glutamine on glutamine,glutamate,and glutathione status in trained rats and subjected to long-duration exercise[J].Nutrition,2009,25:428-435.
[66] Marwood S,Bow tell J.No effect of glutamine supp lementation and hyperoxia on oxidative metabolism and perfo rmance during high-intensity exercise[J].J Spo rts Sci,2008,26:1081-1090.
[67] Welbourne T C.Increased p lasma bicarbonate and grow th ho rmone after an o ral glutamine load[J].Am J Clin Nutr,1995,61:1058-61.
[68] Gleeson M,Walsh N P,Blannin A K,et al.The effectof severe eccentric exercise-induced muscle damage on p lasma elastase,glutamine and zinc concentrations[J].Eur J App l Physiol Occup Physiol,1998,77:543-6.
[69] Jeukendrup A E,Gleeson M.Sports nutrition:an introduction to energy p roduction and performance[M].Champaign(IL):Human Kinetics,2004.
[70] M iller S L,Tip ton K D,Chinkes D L,et al.Independent and combined effects of amino acids and glucose after resistance exercise[J].Med Sci Sports Exerc,2003,35:449-55.
[71] Kingsbury K J,Kay L,Hjelm M.Contrasting p lasma amino acid patterns in elite athletes:association w ith fatigueand infection[J].Br J Spo rts M ed,1998,32:25-33.
Exercise Training and Glutam ine Metabolism in Sports Train ing
QING Qian-dong
(Sport College,Guangxi Normal University,Guilin 541004,China)
Glutamine is themost abundant amino acids in human bodies,w hich can p rovide the necessary p recursors and intermediates for the immune cells p roliferation and the p rotein synthesis.Sports training may lead to the changes in the p lasma glutamine concentration,w hich is related w ith time,intensity and modalitiesof themovement.Thispaper summarized the physiological function of glutamine and the spo rts training impactson glutaminemetabolism and supp lements,w hich would p rovide the reference for the application of glutamine in sports training.
glutamine;exercise;immunization;supp lement
G804.7
A
1008-3596(2010)06-0074-06
2010-05-10
卿前東 (1982-),男,湖南邵陽(yáng)人,碩士,研究方向?yàn)轶w育教育理論與訓(xùn)練。