李相鵬, 王 鵬, 李英霞
(1. 中國海洋大學(xué) 醫(yī)藥學(xué)院,山東 青島 266003; 2. 復(fù)旦大學(xué) 藥學(xué)院,上海 201203)
神經(jīng)節(jié)苷脂GM3(Neu5NAcα2→3Galβ1→4Glc1→1Cer)于1952年由Yamakawa等[1]從馬血紅細(xì)胞中首次分離得到,其親酯性神經(jīng)酰胺基團(tuán)包埋于細(xì)胞膜磷酸雙分子脂層中,而親水性糖鏈部分伸向細(xì)胞膜表面。GM3在細(xì)胞膜的信號(hào)轉(zhuǎn)導(dǎo)中起到了重要作用,對(duì)細(xì)胞的粘附、分化、增殖與癌變等過程起到了調(diào)節(jié)作用[2],其化學(xué)合成工作已經(jīng)成為目前研究的熱點(diǎn)[3~14]。
本研究小組[14]在以往的研究過程中,以唾液酸N-苯基三氟亞胺酯(10)為供體,6位TBDPS(叔丁基二苯基硅基)保護(hù)的半乳糖衍生物為受體,在溫和促進(jìn)劑TBSOTf(叔丁基二甲基硅三氟甲磺酸酯)的條件下,高效地構(gòu)建了α-2,3糖苷鍵,并將此策略成功的應(yīng)用于GM3的合成。該方法采用線性合成策略,唾液酸(7)需要依次連接半乳糖、葡萄糖和鞘氨醇,所需步驟較長,產(chǎn)物不易積累。
Scheme 1
本文分別以乳糖(1)和7為原料,制得受體乳糖二醇(6)和供體10;6與10經(jīng)糖苷化以較高收率(70%)制得α-構(gòu)型的神經(jīng)節(jié)苷脂GM3三糖衍生物(11); 將11的保護(hù)基Bn轉(zhuǎn)化為Ac制得GM3全合成的關(guān)鍵中間體——全乙酰GM3三糖對(duì)甲氧基苯酚苷(12, Scheme 1),其結(jié)構(gòu)經(jīng)1H NMR,13C NMR和HR-MS確證。
JEOL JNM-ECP 600 MHz型核磁共振波譜儀(DMSO-d6為溶劑,TMS為內(nèi)標(biāo)); Q-TOF Global型質(zhì)譜儀(ESI)。
TMSOTf和Dowex-50, Aldrich-Sigma-Acros;其余所用試劑均為國產(chǎn)分析純;CH2Cl2經(jīng)CaH回流重蒸處理,CH3CN經(jīng)P2O5回流重蒸;DMF,吡啶、甲醇經(jīng)分子篩干燥處理。所有反應(yīng)如非特殊說明均在氬氣保護(hù)下進(jìn)行。
(1) 4的合成
在圓底瓶中加入1 5.0 g(14.6 mmol)和吡啶100 mL,攪拌形成混懸液,冰浴冷卻,滴加醋酐16.5 mL(175 mmol),滴畢,于室溫反應(yīng)過夜。減壓濃縮后加入CH2Cl2300 mL,依次用稀鹽酸(3×100 mL),飽和NaHCO3溶液(3×100 mL),飽和NaCl溶液(3×100 mL)洗滌,無水Na2SO4干燥,減壓濃縮得淡黃色黏稠物(2)。用CH2Cl2(300 mL)溶解,加入對(duì)羥基苯甲醚1.8 g(14.6 mmol),冰浴冷卻,攪拌下滴加三氟化硼乙醚2.2 mL(24.8 mmol),滴畢,自然恢復(fù)至室溫反應(yīng)2 h。用三乙胺調(diào)至中性,減壓濃縮,殘余物經(jīng)硅膠柱層析[洗脫劑:A=V(乙酸乙酯) ∶V(石油醚)=1 ∶3]分離得無色漿狀物(3)。用CH2Cl2(50 mL)溶解,加入甲醇50 mL和甲醇鈉780 mg(1.46 mmol),攪拌下于室溫反應(yīng)2 h(析出大量白色固體)。加入酸性樹脂調(diào)至中性,傾出上層混懸液減壓濃縮得白色固體。將其混懸于DMF(20 mL)中,加入二甲氧基丙烷20 mL和對(duì)甲苯磺酸27 mg(0.15 mmol),反應(yīng)2 h。減壓濃縮,殘余物經(jīng)硅膠柱層析[洗脫劑:V(乙酸乙酯) ∶V(MeOH)=25 ∶1]分離得白色固體4 3.7 g,產(chǎn)率52%(以1計(jì)算);1H NMRδ: 6.99~6.97(m, 2H, ArH), 6.87~6.84(m, 2H, ArH), 5.48(d,J=5.5 Hz, 1H, 2a-OH), 4.80(d,J=7.7 Hz, 1H, 1a-H), 4.68~4.66(m, 2H, 3b,6a-OH), 4.29(d,J=8.2 Hz, 1H, 1b-H), 4.11(dd,J=5.5 Hz, 1.8 Hz, 1H, 4b-H), 3.97(dd,J=7.4, 6.0 Hz, 1H, 3b-H), 3.85(ddd,J=7.3 Hz, 5.0 Hz, 1.8 Hz, 1H, 5b-H), 3.74~3.71(m, 1H, 6a-H), 3.70(s, 3H, OCH3), 3.64~3.52(m, 3H, 6a,6b-H), 3.47~3.45(m, 1H, 5a-H), 3.44~3.40(m, 2H, 3a,4a-H), 3.28~3.23(m, 2H, 2a,2b-H), 1.40(s, 3H, CH3), 1.25(s, 3H, CH3)。
(2) 6的合成
冰浴冷卻,在圓底瓶中加入4 1.00 g(2.05 mmol)的DMF(50 mL)溶液和NaH 370 mg(15 mmol),攪拌下于室溫反應(yīng)30 min;加入TBAI(四丁基碘化銨)20 mg,冰浴冷卻下滴加BnBr(溴芐)1.46 mL(12.2 mmol),滴畢,于室溫反應(yīng)2 h。冰浴冷卻下用甲醇終止反應(yīng),減壓濃縮,殘余物用CH2Cl2(200 mL)稀釋,依次用稀鹽酸(3×80 mL), 飽和NaHCO3溶液(3×80 mL),飽和NaCl溶液(3×80 mL)洗滌,無水Na2SO4干燥,減壓濃縮得微黃色漿狀物(5)。加入80%AcOH(50 mL),于80℃反應(yīng)2 h,減壓蒸除溶劑,殘余物經(jīng)硅膠柱層析(洗脫劑:A=1 ∶1)分離得白色無定形固體61.31 g,產(chǎn)率71%(以4計(jì)算);1H NMRδ: 7.42~7.40(m, 4H, AHr), 7.32~7.24(m, 21H, ArH), 7.01~7.99(m, 2H, ArH), 6.84~6.81(m, 2H, ArH), 5.07(d,J=7.3 Hz, 1H, 1a-H), 5.04(d,J=10.5 Hz, 1H, PhCH2), 4.99(br s, 1H, OH), 4.86(d,J=11.5 Hz, 1H, PhCH2), 4.79~4.72(m, 4H, OH, PhCH2), 4.63(d,J=11.0 Hz, 1H, PhCH2), 4.48(d,J=11.9 Hz, 1H, PhCH2), 4.41(d,J=7.1 Hz, 1H, 1b-H), 4.39(d,J=11.5 Hz, 1H, PhCH2), 4.34(d,J=11.9 Hz, 1H, PhCH2), 4.31(d,J=11.9 Hz, 1H, PhCH2), 3.86~3.80(m, 2H, 3a,6a-H), 3.78~3.72(m, 2H, 4a,5a-H), 3.70(s, 3H, OCH3), 3.69~3.67(m, 2H, 6a,4b-H), 3.63(dd,J=9.6 Hz, 5.5 Hz, 1H, 6b-H), 5.31(t,J=5.9 Hz, 1H, 5b-H), 3.47~3.40(m, 4H, 2a,2b,3b,6b-H) 。
(3)8的合成
在反應(yīng)瓶中加入71.5 g(4.8 mmol)與Dowex-50 4 g的無水甲醇(105 mL)溶液,攪拌下于室溫反應(yīng)2 h。抽濾,濾餅用無水甲醇洗滌,合并濾液與洗液,濃縮干燥得白色固體81.53 g,產(chǎn)率98%;1H NMR(CD3OD)δ: 4.05~4.00(m, 1H, 8-H), 3.98(dd,J=10.6 Hz, 1.5 Hz, 1H, 7-H), 3.82~3.77(m, 2H, 4,5-H), 3.77(s, 3H, OCH3), 3.71~3.68(m, 1H, 9-H), 3.61(dd,J=11.3 Hz, 5.8 Hz, 1H, 9-H), 3.47(dd,J=9.1 Hz, 1.4 Hz, 1H, 6-H), 2.20(dd,J=12.8 Hz, 4.8 Hz, 1H, 3eq-H), 2.00(s, 3H, NCOCH3), 1.88(dd,J=12.8 Hz, 11.7 Hz, 1H, 3ax-H)。
(4)9的合成
在反應(yīng)瓶中于40 ℃加入Ac2O 0.33 mL和60%HClO42.5μL,攪拌均勻后分批加入8110 mg(0.34 mmol)(30 min內(nèi)),反應(yīng)2 h。冷卻至室溫,加入冷水(5 mL)淬滅反應(yīng),加入NH4Cl至飽和,用CH2Cl2(3×20 mL)萃取,合并萃取液,依次用飽和NaHCO3溶液(5 mL),飽和NaCl溶液(5 mL)洗滌,無水Na2SO4干燥,濃縮后經(jīng)硅膠柱層析(洗脫劑:A=3 ∶1)分離得微黃色固體9148 mg,產(chǎn)率89%;1H NMR(CDCl3)δ: 5.94(m, 1H, NH), 5.38(dd,J=5.5 Hz, 2.3 Hz, 1H, 7-H), 5.25~5.26(m, 1H, 8-H), 5.18~5.24(m, 1H, 4-H), 4.82(m, 1H, OH), 4.56(dd,J=12.4 Hz, 1H, 5-H), 4.23(dd,J=10.6 Hz, 1.9 Hz, 1H, 6-H), 4.17(q,J=10.1 Hz, 1H, 9-H), 4.03(dd,J=12.4 Hz, 7.8 Hz, 1H, 9-H), 3.86(s, 3H, OCH3), 2.19~2.27(m, 2H, 3eq,3ax-H), 2.15, 2.11, 2.03, 2.01, 1.90(5s, 15H, CO2CH3)。
(5)10的合成
于0 ℃在反應(yīng)瓶中加入PPh351.8 g(200 mmol)和三乙胺11 mL(80 mmol)的CCl4(32 mL)懸混液,三氟乙酸5 mL(65 mmol),攪拌10 min后加入苯胺7.3 mL(80 mmol)的CCl4(31 mL)溶液,回流反應(yīng)4 h。冷卻至室溫,傾出上清液,殘余固體用正己烷洗滌數(shù)次,合并上清液及洗滌溶液,減壓蒸除溶劑,殘余物減壓蒸餾得淺黃色液體N-苯基三氟亞胺氯。
在反應(yīng)瓶中加入9 492 mg(1 mmol)的丙酮(20 mL)溶液,K2CO3414 mg(3 mmol)和N-苯基三氟乙酰氯3.1 g(15 mmol),攪拌下于室溫反應(yīng)2 h。過濾,濾液加壓濃縮,殘余物經(jīng)硅膠柱層析(洗脫劑:A=3 ∶2)分離得微黃色固體10599 mg,產(chǎn)率85%(α∶β=1 ∶1);1H NMR(CDCl3)δ:β-anomer: 6.72~7.29(m, 5 H, ArH), 5.49(d,J=9.9 Hz, 1H, NH), 5.44(dd,J=4.4 Hz, 2.2 Hz, 1H, 7-H), 5.26 (td,J=11.1 Hz, 4.9 Hz, 1H, 4-H), 5.13~5.14(m, 1H, 8-H), 4.57(dd,J=12.7 Hz, 2.2 Hz, 1H, 9a-H), 4.28(q,J=10.4 Hz, 1H, 5-H), 4.21(dd,J=10.4 Hz, 2.2 Hz, 1H, 6-H), 4.08(dd,J=12.7 Hz, 7.7 Hz, 1H, 9b-H), 3.83(s, 3H, CO2CH3), 2.81(dd,J=13.8 Hz, 5.0 Hz, 1H, 3eq-H), 2.18(m, 1H, 3ax-H), 2.16, 2.09, 2.06, 1.91, 1.77(5s, 15H, CO2CH3, NCOCH3);α-anomer: 6.72, 7.60(m, 5H, ArH), 5.57(d,J=9.9 Hz, 1H, NH), 5.36(dd,J=6.2 Hz, 1.8 Hz, 1H, 7-H), 5.24(dd,J=6.2 Hz, 1.8 Hz, 1H, 8-H), 5.12(dt,J=10.3 Hz, 4.7 Hz, 1H, 4-H), 4.68(dd,J=10.6 Hz, 1.8 Hz, 1H, 6-H), 4.38(dd,J=12.4 Hz, 2.9 Hz, 1H, 9a-H), 4.24(dd,J=12.4 Hz, 6.3 Hz, 1H, 9b-H), 4.13~4.18(m, 1H, 5-H), 3.83(s, 3H, CO2CH3), 2.74(dd,J=13.6 Hz, 5.1 Hz, 1H, 3eq-H), 2.32(dd,J=13.6 Hz, 10.6 Hz, 1H, 3ax-H), 2.17, 2.04, 1.99, 1.97, 1.92(5s, 15H, CO2CH3, NCOCH3)。
(6)11的合成
在兩口瓶中加入10500 mg(0.75 mmol),6452 mg(0.50 mmol), CH2Cl225 mL, CH3CN 25 mL和4 ?分子篩1 g,于室溫?cái)嚢?0 min后將兩口瓶置于-70 ℃低溫反應(yīng)裝置中,10 min后以微量進(jìn)樣器加入TMSOTf 18μL(0.10 mmol), 于-70 ℃反應(yīng)1.5 h。 用三乙胺終止反應(yīng),逐漸升至室溫后抽濾除去分子篩,濾液濃縮后經(jīng)硅膠柱層析[洗脫劑:B=V(CH2Cl2) ∶V(MeOH)=100 ∶1]分離得白色無定型固體11480 mg,產(chǎn)率70%;1H NMR(CDCl3)δ: 7.42~7.41(m, 2H, ArH), 7.34~7.22(m, 23H, PhH), 7.02~7.01(m, 2H, PhH), 6.78~6.77(m, 2H, PhH), 5.42(ddd,J=8.2 Hz, 5.9 Hz, 2.3 Hz, 1H, 8c-H), 5.32(dd,J=8.2 Hz, 2.3 Hz, 1H, 7c-H), 5.15(d,J=10.1 Hz, 1H, NH), 5.01(d,J=11.0 Hz, 1H, PhCH2), 4.98(d,J=11.0 Hz, 1H, PhCH2), 4.88~4.85(m, 1H, 4c-H), 4.84(d,J=7.4 Hz, 1H, 1a-H), 4.81(d,J=10.1 Hz, 1H, PhH), 4.80(d,J=11.9 Hz, 1H, PhCH2), 4.77(d,J=10.5 Hz, 1H, PhCH2), 4.69(d,J=11.9 Hz, 1H, PhCH2), 4.58(d,J=7.8 Hz, 1H, 1b-H), 4.43(d,J=11.9 Hz, 1H, PhCH2), 4.34(d,J=11.9 Hz, 1H, PhCH2), 4.31(dd,J=12.4 Hz, 2.8 Hz, 1H, 9a-H), 4.10(d,J=11.0 Hz, 1H, PhCH2), 4.07(d,J=11.0 Hz, 1H, PhCH2), 3.96(dd,J=12.4 Hz, 5.9 Hz, 1H, 9a-H), 3.77(s, 6H, OCH3), 3.56(dd,J=9.1 Hz, 7.7 Hz, 1H, 2b-H), 2.51(dd,J=13.3 Hz, 4.6 Hz, 1H, 3c eq-H), 2.10(s, 3H, COCH3), 2.07(t like,J=12.4 Hz, 12.0 Hz, 1H, 3c ax-H), 2.02(s, 3H, COCH3), 2.00(s, 3H, COCH3), 1.89(s, 3H, COCH3), 1.88(s, 3H, COCH3);13C NMR(CDCl3)δ: 170.8, 170.6, 170.3, 170.0, 169.9, 168.3, 155.1, 151.6, 139.0, 138.9, 138.5, 138.3, 128.3, 128.3, 128.2, 128.1, 128.1, 128.0, 127.6, 127.5, 127.5, 127.4, 127.3, 127.2, 118.4, 114.4, 102.7, 102.5, 98.4, 83.0, 81.6, 78.4, 77.4, 76.6, 76.3, 75.5, 75.2, 75.1, 74.9, 69.0, 68.7, 68.4, 67.9, 67.1, 62.2, 55.6, 49.2, 36.5, 29.7, 23.2, 21.2, 20.7, 20.5; HR-MS: Calcd for C74H85NO24Na{[M+Na]+} 1 394.535 9, found 1 394.539 1。
(7)12的合成
在單口瓶中加入11300 mg(0.21 mmol)的乙酸乙酯(20 mL)-乙醇(20 mL)溶液和Pt/C 100 mg,接上回流管及帶有氫氣球的三通閥,攪拌下回流反應(yīng)10 h。抽濾除去Pt/C,濾液濃縮得漿狀物,用吡啶(10 mL)溶解后再加入醋酐3 mL,于室溫反應(yīng)8 h。減壓濃縮,用CH2Cl2(30 mL)稀釋,依次用稀鹽酸(3×10 mL),飽和NaHCO3溶液(3×10 mL),飽和NaCl溶液(3×10 mL)洗滌,無水Na2SO4干燥,減壓濃縮后經(jīng)硅膠柱層析(洗脫劑:B=50 ∶1)分離得白色無定型固體12207 mg,產(chǎn)率82%;1H NMR(CDCl3)δ: 6.93~6.91(m, 2H, PhH), 6.81~6.79(m, 2H, PhH), 5.55(ddd,J=9.6 Hz, 5.0 Hz, 2.3 Hz, 1H, 8c-H), 5.38(dd,J=9.2 Hz, 2.8 Hz, 1H, 7c-H), 5.25(t like,J=9.2 Hz, 9.1 Hz, 1H, 3a-H), 5.15~5.12(m, 2H, NH, 2a-H), 4.94(dd,J=8.2 Hz, 7.4 Hz, 1H, 2b-H), 4.91(d,J=7.8 Hz, 1H, 1a-H), 4.89~4.86(m, 2H, 4,4b-H), 4.70(d,J=7.8 Hz, 1H, 1b-H), 4.52(dd,J=10.1 Hz, 3.2 Hz, 1H, 3b-H), 4.47(dd,J=11.9 Hz, 2.3 Hz, 1H, 6a-H), 4.41(dd,J=12.4 Hz, 2.8 Hz, 1H, 9c-H), 4.21(dd,J=11.9 Hz, 5.9 Hz, 1H, 6a-H), 4.06~3.95(m, 5H, 6a,4b,5b,5c,9c-H), 3.85(m, 1H, 6b-H), 3.84(s, 3H, OCH3), 3.76(s, 3H, OCH3), 3.73~3.71(m, 1H, 5a-H), 3.63(dd,J=11.0 Hz, 2.3 Hz, 1H, 6c-H), 2.57(dd,J=12.4 Hz, 4.6 Hz, 1H, 3c eq-H), 2.25(s, 3H, COCH3), 2.16(s, 3H, COCH3), 2.08~2.06(m, 21H, COCH3), 2.00(s, 3H, COCH3), 1.85(s, 3H, NCOCH3), 1.68(t,J=12.4 Hz, 1H, 3cax-H);13C NMR(CDCl3)δ: 170.9, 170.7, 170.6, 170.4, 170.3, 170.2, 169.7, 169.6, 169.6, 167.9, 155.6, 150.9, 118.6, 114.5, 101.0, 99.9, 96.7, 76.3, 73.4, 72.8, 71.6, 71.3, 70.5, 69.3, 76.7, 67.3, 66.9, 62.2, 61.5, 55.6, 53.1, 49.1, 41.1, 37.3, 29.7, 23.1, 21.5, 20.9, 20.8, 20.7, 20.7, 20.6; HR-MS: Calcd for C51H67NO30Na{[M+Na]+} 1 196.364 6; found 1 196.366 2。
基于簡單易得并可大量制備的考慮,設(shè)計(jì)了受體6,對(duì)甲氧基苯酚苷作為異頭碳保護(hù)基,可在較溫和的條件下脫除并轉(zhuǎn)化為三糖供體與鞘氨醇偶聯(lián)[13],而芐基保護(hù)除3,4-位以外的羥基,雖然不具有鄰基參與作用,但其可以方便的脫除轉(zhuǎn)化為?;?,同時(shí)芐基的供電子效應(yīng)可以提高受體親核性。
11的合成首先采用了以往的糖苷化條件[14],以 TBSOTf為催化劑,反應(yīng)過程非常緩慢,即使將反應(yīng)溫度提高到室溫也只有少量供體分解,于室溫反應(yīng)24 h,產(chǎn)率僅為40%。改用酸性較強(qiáng)的TMSOTf為催化劑,反應(yīng)在1.5 h內(nèi)結(jié)束,且收率提高至70%。其原因可能是TBSOTf催化活性較弱,反應(yīng)以SN1歷程為主,而乳糖受體較大位阻使得親核進(jìn)攻難以發(fā)生;而高活性催化劑TMSOTf可使供體分解為氧鎓離子中間體,可促進(jìn)反應(yīng)。
11和12的NMR數(shù)據(jù)與文獻(xiàn)報(bào)道[13]一致,確定為α-構(gòu)型。以TBSOTf或MSOTf為催化劑,產(chǎn)物均為α-構(gòu)型。推測(cè)原因?yàn)橐译娴娜軇┬?yīng)及乳糖受體6的特殊空間結(jié)構(gòu)使得難以生成β-構(gòu)型產(chǎn)物。
總之,本文首次以唾液酸N-苯基三氟亞胺酯10為供體與乳糖受體6進(jìn)行了糖苷化嘗試,以極高的產(chǎn)率、立體選擇性得到了GM3三糖衍生物,并將其保護(hù)基全部轉(zhuǎn)化為乙?;?,得到了GM3全合成的關(guān)鍵中間體12。這將使GM3及其衍生物的合成更加簡潔有效,為其生物活性的深入研究解決了材料來源問題。
[1] Yamakawa T, Suzuki S. The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes.Ⅲ.Globoside,the sugar-containing lipid of human blood stroma[J].J Biochem,1952,39(4):393-402.
[2] Prokazova N V, Samovilova N N, Gracheva E V,etal. Ganglioside GM3and its biological functions[J].Biochemistry (Moscow),2009,74(3):235-249.
[3] Numata M, Sugimoto M, Shibayama S,etal. A total synthesis of hematoside,αNeuGc(2-3)-βGal(1-4)-βGlc(1-1)Cer[J].Carbohydr Res,1988,174(1):73-85.
[4] Murase T, Ishida H, Kiso M,etal. A facile,regio- and stereo-selective synthesis of ganglioside GM3[J].Carbohydr Res,1989,188(1):71-80.
[5] Hasegawa A, Murase T, Morita M,etal. Synthetic studies on sialoglycoconJugates 15:Synthesis of ganglioside GM3analogs containing a variety of lipophilic parts[J].J Carbohydr Chem,1990,9(2-3):201-214.
[6] Ito Y, Paulson J C. A novel strategy for synthesis of ganglioside GM3using an enzymically produced sialoside glycosyl donor[J].J Am Chem Soc,1993,115(4):1603-1605.
[7] Liu K K C, Danishefsky S. A striking example of the interfacing of glycal chemistry with enzymatically mediated sialylation:A concise synthesis of ganglioside GM3[J].J Am Chem Soc,1993,115(11):4933-4934.
[8] Tomoo T, Kondo T, Abe H,etal. An efficient short-step total synthesis of ganglioside GM3:Effective usage of the neighbouring group participation strategy[J].Carbohydr Res,1996,284(2):207-222.
[9] Zehavi U, Tuchinsky A. Enzymic glycosphingolipid synthesis on polymer supports.Ⅲ.Synthesis of GM3,its analog [NeuNAcα(2-3)Galβ(1-4)Glcβ(1-3) Cer] and their lyso-derivatives[J].GlycoconJugate J,1998,15(7):657-662.
[10] Lutz F T, Dirk G. Synthesis of Specifically Labelled Ganglioside[1c-13C]-GM3[J].Eur J Org Chem,1998,9:1895-1899.
[11] Mauri L, Casellato R, Kirschner G,etal. A procedure for the preparation of GM3ganglioside from GM1-lactone[J].GlycoconJugate J,1999,16(3):197-203.
[12] Richard I, Duclos Jr. The total synthesis of ganglioside GM3[J].Carbohydr Res,2000,328(4):489-507.
[13] 朱振元,張勇民. 神經(jīng)節(jié)苷脂GM3的有效合成[J].化學(xué)學(xué)報(bào),2007,65(24):2909-2916.
[14] Liu Y, Ruan X, Li X,etal. Efficient synthesis of a sialic acidα(2→3)galactose building block and its application to the synthesis of ganglioside GM3[J].J Org Chem,2008,73(11):4287-4290.