賈春澍,范志民,陳曉亮,任立群*
(1.吉林大學(xué)藥學(xué)院實(shí)驗(yàn)藥理與毒理學(xué)教研室,吉林長(zhǎng)春130021;2.吉林大學(xué)白求恩第一醫(yī)院乳腺外科;3.吉林大學(xué)中日聯(lián)誼醫(yī)院泌尿外科)
心力衰竭是工業(yè)化國(guó)家致死的首要原因[1]。這也是一個(gè)日益嚴(yán)重的公共衛(wèi)生問(wèn)題,主要是由于人口老齡化和老人心力衰竭患病率升高。大量的基礎(chǔ)、臨床和人口科學(xué)研究促進(jìn)了心力衰竭的現(xiàn)代治療,但左心室(left ventricular,LV)衰竭發(fā)生和發(fā)展最根本的機(jī)制仍未完全闡明。活性氧簇(Reactive oxygen species,R OS)如超氧負(fù)離子(·O2-)和羥自由基(-OH)可導(dǎo)致膜磷脂、蛋白和DNA氧化[2],并與一系列病理狀態(tài)有關(guān),如缺血再灌注損傷[3],神經(jīng)變形性疾病[4]及衰老[5]。在生理狀態(tài)下,活性氧簇的毒性效應(yīng)可以被超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GSHPx)、過(guò)氧化氫酶及其他非酶抗氧化劑清除。但是,當(dāng)ROS的產(chǎn)生超過(guò)抗氧化劑的防御能力時(shí),氧化應(yīng)激即對(duì)生物組織產(chǎn)生功能和結(jié)構(gòu)上的破壞效應(yīng)。ROS隨即導(dǎo)致心肌收縮力下降及結(jié)構(gòu)損傷。氧化應(yīng)激在心肌衰竭發(fā)展過(guò)程中的LV重構(gòu)的病理生理機(jī)制中所起的作用日益受到重視。現(xiàn)有的證據(jù)表明,ROS的突出作用是作為一個(gè)信號(hào)分子對(duì)激素、生長(zhǎng)和凝血因子、細(xì)胞因子和氧分壓改變的作用做出反應(yīng)[6]。在低氧狀態(tài)下,高水平的線粒體ROS能夠誘導(dǎo)低氧誘導(dǎo)因子(hypoxiainducible factor,HIF-1α)的激活。HIFs是細(xì)胞對(duì)低氧適應(yīng)性反應(yīng)的主要因子。線粒體ROS與低氧狀態(tài)下HIF-1α的表達(dá)密切相關(guān),多種蛋白激酶參與ROS與HIF-1α表達(dá)之間的信號(hào)轉(zhuǎn)導(dǎo)[7],其具體機(jī)制仍待闡明。另外,也有研究認(rèn)為抗氧化劑加重心力衰竭[8]。
目前的實(shí)驗(yàn)及臨床證明ROS的產(chǎn)生促進(jìn)心力衰竭[9-12]。脂質(zhì)過(guò)氧化物水平和 8-iso-前列腺素 F2α(8-isoprostaglandin F2a,8-iso-PGF2a)是ROS產(chǎn)生的主要生物學(xué)標(biāo)志物。心力衰竭患者的血清和心包液中這兩項(xiàng)指標(biāo)明顯升高并與其嚴(yán)重程度相關(guān)[9,12]。Belch等[9]報(bào)道丙二醛水平與LV射血分?jǐn)?shù)呈現(xiàn)明顯負(fù)相關(guān)(r=-0.35)。Mallat等[12]應(yīng)用NYHA分類(lèi)和超聲心動(dòng)圖評(píng)價(jià)心肌衰竭的嚴(yán)重度,證明其與心包液中8-iso-PGF2a含量相關(guān):有癥狀的心力衰竭患者(NYHA II和III)心包液中8-iso-PGF2a含量明顯高于無(wú)癥狀(NYHA I)心力衰竭患者,并與病情嚴(yán)重程度相關(guān)(P=0.000 3)。另外,心包液中8-iso-PGF2a與LV舒張末期及收縮末期直徑呈正相關(guān)(P=0.008,P=0.026,respectively)[12]。心臟中R OS的細(xì)胞來(lái)源包括心肌細(xì)胞,上皮細(xì)胞和中性粒細(xì)胞。心肌細(xì)胞ROS產(chǎn)生的亞細(xì)胞定位包括線粒體電子傳遞,NAD(P)H氧化酶,和黃嘌呤脫氫酶/黃嘌呤氧化酶。心臟是攝氧率最高的器官,基礎(chǔ)代謝狀態(tài)下每分鐘每克體重消耗約0.1 ml O2[13]。為滿足氧化代謝ATP合成的需要,整個(gè)機(jī)體中心肌細(xì)胞具最高的線粒體體積密度。線粒體通過(guò)單電子經(jīng)呼吸鏈傳遞至氧分子產(chǎn)生ROS。在生理狀態(tài)下,線粒體呼吸鏈傳遞過(guò)程產(chǎn)生微量ROS,肌細(xì)胞的內(nèi)源性清除機(jī)制隨即發(fā)揮清除作用。
應(yīng)用電子自旋共振(electron spin resonance,ESR)光譜學(xué),5,5’二甲基-1-吡咯啉-N-氧化物(DMPO)作為捕捉物,在正常的亞線粒體結(jié)構(gòu)抑制電子傳遞鏈的復(fù)合體I和復(fù)合體 Ш導(dǎo)致大量·O2-的產(chǎn)生[14]。在NADH作用下,衰竭心臟的線粒體較正常心臟產(chǎn)生更多的·O2-,說(shuō)明線粒體電子傳遞鏈?zhǔn)恰2-的主要來(lái)源。進(jìn)一步來(lái)說(shuō),線粒體功能衰竭伴隨著復(fù)合酶活力的降低。因此,線粒體是衰竭心臟ROS的主要來(lái)源,同時(shí)也證明線粒體衰竭和氧化應(yīng)激[15]的病理生理關(guān)聯(lián)。
線粒體具其單獨(dú)的基因組,即mtDNA,一個(gè)閉合環(huán)狀雙鏈DNA分子,約16.5 KB。mtDNA有兩個(gè)啟動(dòng)子,輕鏈(LSP)和重鏈啟動(dòng)子(HSP)。線粒體功能受mtDNA的調(diào)控,同時(shí)mtDNA轉(zhuǎn)錄和/或復(fù)制因子也對(duì)其產(chǎn)生影響[16]。這就提出了mtDNA損傷和線粒體基因轉(zhuǎn)錄或復(fù)制的異常與心力衰竭相關(guān)的可能。實(shí)際上,很多證據(jù)表明心力衰竭與mtDNA在質(zhì)和量上的缺陷相關(guān)[17-20]。線粒體功能和mtDNA拷貝數(shù)的下降在心肌缺血后心力衰竭的發(fā)展中發(fā)揮著重要作用[17,21]。
ROS能夠在其形成或靠近形成部位損傷線粒體大分子。因此,除了產(chǎn)生 R OS,線粒體本身也能被ROS損傷,mtDNA是主要的靶點(diǎn)。原因如下,首先,線粒體基因組無(wú)組蛋白參與組裝,即缺少了對(duì)抗ROS損傷的一道屏障。第二,mtDNA的DNA修復(fù)能力有限。第三,線粒體內(nèi)形成大量的·O2-,并且不能通過(guò)線粒體膜,因此,ROS損傷大部分局限在線粒體內(nèi)。實(shí)際上,mtDNA聚集了大量DNA氧化產(chǎn)物,8-羥基,明顯高于核DNA[22]。與核編碼基因不同,線粒體編碼基因表達(dá)調(diào)控主要依賴于mtDNA的拷貝數(shù)[23]。因此,線粒體損傷主要表現(xiàn)在mtDNA的損傷,即線粒體RNA(mtRNA)轉(zhuǎn)錄子,蛋白合成和線粒體功能的下降[24,25]。衰竭心臟中線粒體結(jié)構(gòu)損傷和功能衰竭與ROS升高水平有關(guān),主要表現(xiàn)為線粒體脂質(zhì)過(guò)氧化物水平升高,mtDNA拷貝數(shù)下降,mtRNA轉(zhuǎn)錄子數(shù)目下降,及低復(fù)合酶活力導(dǎo)致的氧化能力下降[21]。更重要的是,衰竭心臟的Ⅰ,Ⅲ,和Ⅳ復(fù)合酶活力下降,而單純由核DNA編碼的復(fù)合酶Ⅱ和檸檬酸合成酶活力無(wú)下降表現(xiàn)。慢性的ROS產(chǎn)生增高與線粒體損傷和功能衰竭有關(guān),即形成線粒體功能下降的惡性循環(huán),大量的ROS產(chǎn)生引起細(xì)胞損傷。mtDNA損傷通過(guò)上述機(jī)制參與心肌重構(gòu)和心力衰竭的發(fā)生和發(fā)展。
氧化應(yīng)激對(duì)心肌細(xì)胞結(jié)構(gòu)和功能有直接的作用,能夠直接激活心肌重構(gòu)和心力衰竭的信號(hào)分子。ROS導(dǎo)致心肌細(xì)胞的表型變化,即離體的心肌細(xì)胞肥大和凋亡[26]。
ROS另一個(gè)作用靶點(diǎn)是金屬基質(zhì)蛋白酶(matrix metalloproteinases,MMPs)。MMPs在正常組織重構(gòu)中發(fā)揮重要的作用,如細(xì)胞遷移,侵襲,增殖和凋亡。并參與多種發(fā)育過(guò)程,如血管分枝形態(tài)建成,血管發(fā)生,創(chuàng)傷愈合及細(xì)胞外基質(zhì)降解。MMPs表達(dá)于大量細(xì)胞和組織中并廣泛的降解細(xì)胞外基質(zhì)蛋白[27]。ROS有激活心肌成纖維細(xì)胞MMP的作用[28]。衰竭心肌細(xì)胞MMP活力增高[26,29]。MMP抑制劑具有限制心肌缺血大鼠模型早期LV擴(kuò)張的作用[30]。心肌缺血模型中,MMP-2基因敲除明顯抑制了早期心臟破裂和LV衰竭的發(fā)展,生存率明顯提高[31]。由于 ROS能激活MMP[32],隨即提出了ROS的過(guò)多產(chǎn)生過(guò)度激活MMPs導(dǎo)致LV重構(gòu)的學(xué)說(shuō)。持續(xù)的MMP激活可能通過(guò)提供一個(gè)異常的細(xì)胞外環(huán)境影響心肌的結(jié)構(gòu)特點(diǎn)?!H清除劑二甲叉三脲能夠抑制心肌重構(gòu)和心力衰竭相關(guān)的MMP-2激活[33]。這些證據(jù)均表明心肌缺血后的過(guò)度氧化應(yīng)激是心肌MMP激活的刺激物,并在心力衰竭發(fā)展過(guò)程中發(fā)揮重要作用。
運(yùn)動(dòng)能力受限是心衰患者的主要癥狀[34],而不依賴于心力衰竭程度[35]。心衰患者運(yùn)動(dòng)能力受限與過(guò)度的氧化應(yīng)激有關(guān)[36]。心肌缺血導(dǎo)致的心肌衰竭大鼠骨骼肌ROS含量明顯升高,主要是線粒體產(chǎn)生的·O2-[37]。目前,Kinugawa等[38]闡述了·O2-與運(yùn)動(dòng)能力受限的關(guān)系,·O2-含量升高運(yùn)動(dòng)能力下降,同時(shí)與全身氧耗升高有關(guān)。解偶聯(lián)蛋白(Uncoupling proteins,UCPs)是線粒體內(nèi)膜質(zhì)子運(yùn)載體,能夠降低質(zhì)子線粒體內(nèi)膜電化學(xué)梯度。電化學(xué)梯度的降低導(dǎo)致ATP生物合成的降低。衰竭心肌線粒體表達(dá)UCPs明顯上調(diào)[39]。另外,Echtay等[40]的研究表明線粒體內(nèi)ROS激活UCPs。這些結(jié)果表明ROS能通過(guò)上調(diào)UCPs表達(dá)引起能效改變,這可能在心力衰竭發(fā)展過(guò)程中骨骼肌的功能失調(diào)發(fā)揮作用。
為改善心力衰竭患者的預(yù)后,我們需要基于心肌重構(gòu)和心力衰竭病理生理過(guò)程的深入探尋發(fā)展一種新型的治療方法。線粒體氧化應(yīng)激和mtDNA損傷的調(diào)節(jié)方法的研究可能有助于建立有效治療心力衰竭策略。氧化應(yīng)激不僅涉及心力衰竭,而且與各種心血管疾病包括動(dòng)脈粥樣硬化,高血壓及衰老過(guò)程相關(guān)。因此,以調(diào)節(jié)這種不當(dāng)?shù)倪m應(yīng)性的反應(yīng)作為治療策略可能得到廣泛的應(yīng)用。
[1]Ho KK,Pinsky JL,Kannel WB,et al.The epidemiology of heart failure:the Framingham Study[J].J Am Coll Cardiol,1993,22:6A.
[2]McCord JM.Oxygen-derived free radicals in postischemic tissue injury[J].N Engl J Med,1985,312:159.
[3]Chen H,Hu CJ,He YY,et al.Reduction and restoration of mitochondrial dna content after focal cerebral ischemia/reperfusion[J].Stroke,2001,32:2382.
[4]Mizuno Y,Yoshino H,Ikebe S,et al.Mitochondrial dysfunction in Parkinson’s disease[J].Ann Neurol,1998,44:S99.
[5]Trifunovic A,Wredenberg A,Falkenberg M,et al.Premature ageing in mice expressing defective mitochondrial DNA polymerase[J].Nature,2004,429:417.
[6]Finkel T.Oxidant signals and oxidative stress[J].Curr Opin Cell Biol,2003,15:247.
[7]Sanjuan-Pla A,Cervera AM,Apostolova N,et al.A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha[J].FEBS Lett,2005,579:2669.
[8]Nightingale AK,Crilley JG,Pegge NC,et al.Chronic oral ascorbic acid therapy worsens skeletal muscle metabolismin patients with chronic heart failure[J].Eur J Heart Fail,2007,9:287.
[9]Belch JJ,Bridges AB,Scott N,et al.Oxygen free radicals and congestive heart failure[J].Br Heart J,1991,65:245.
[10]Hill MF,Singal PK.Antioxidant and oxidative stress changes during heart failure subsequent to MI in rats[J].Am J Pathol,1996,148:291.
[11]Hill MF,Singal PK.Right and left myocardial antioxidant responses during heart failure subsequent to MI[J].Circulation,1997,96:2414.
[12]Mallat Z,Philip I,Lebret M,etal.Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure:a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure[J].Circulation,1998,97:1536.
[13]Antoni H.Function of the heart[A].In:Schmidt RF,Thews G(eds).HumanPhysiology[C].Berlin,Heidelberg,New York:Springer-Verlag,1991:358-396.
[14]Ide T,Tsutsui H,Kinugawa S,et al.Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium[J].Circ Res,1999,85:357.
[15]Sawyer DB,Colucci WS.Mitochondrial oxidative stress in heart failure:’oxygen wastage’revisited[J].Circ Res,2000,86:119.
[16]Clayton DA.Replication and transcription of vertebrate mitochondrialDNA[J].Annu Rev Cell Biol,1991,7:453.
[17]Kajander OA,Karhunen PJ,Jacobs HT.The relationship between somatic mtDNA rearrangements,humanheart disease and aging.HumMol Genet,2002,11:317.
[18]Lebrecht D,Setzer B,Ketelsen UP,et al.Timedependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy[J].Circulation,2003,108:2423.
[19]Naya FJ,Black BL,Wu H,et al.Mitochondrial deficiency and cardiac suddendeath in mice lacking the MEF2A transcription factor[J].Nat Med,2002,8:1303.
[20]Wallace DC.Mitochondrial diseases in man and mouse[J].Science,1999,283:1482.
[21]Ide T,Tsutsui H,Hayashidani S,et al.Mitochondrial DNA damage and dysfunction associatedwith oxidative stress in failing hearts aftermyocardial infarction[J].Circ Res,2001,88:529.
[22]Giulivi C,Boveris A,Cadenas E.Hydroxyl radical generation during mitochondrial electron transfer and the formation of8-hydroxydesoxyguanosine in mitochondrial DNA[J].Arch Biochem Biophys,1995,316:909.
[23]Williams RS.Mitochondrial gene expression in mammalian striated muscle.Evidence that variation in gene dosage is the major regulatory event[J].J Biol Chem,1986,261:12390.
[24]BallingerSW,Patterson C,Yan CN,et al.Hydrogen peroxide-and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells[J].Circ Res,2000,86:960.
[25]Williams RS.Canaries in the coal mine:mitochondrial DNA and vascular injury from reactive oxygen species[J].Circ Res,2000,86:915.
[26]Spinale FG,Coker ML,Thomas CV,et al.Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure:relation to ventricular and myocyte function[J].Circ Res,1998,82:482.
[27]Vu TH,Werb Z.Matrix metalloproteinases:effectors of development and normal physiology[J].Genes Dev,2000,14:2123.
[28]Siwik DA,Tzortzis JD,Pimental DR,et al.Inhibition of copper-zinc superoxide dismutase induces cell growth,hypertrophic phenotype,and apoptosis in neonatal rat cardiac myocytes in vitro[J].Circ Res,1999,85:147.
[29]Creemers EE,Cleutjens JP,Smits JF,et al.Matrix metalloproteinase inhibition after myocardial infarction:a new approach to prevent heart failure[J]?Circ Res,2001,89:201.
[30]Rohde LE,Ducharme A,Arroyo LH,et al.Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice[J].Circulation,1999,99:3063.
[31]Hayashidani S,Tsutsui H,Ikeuchi M,et al.Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction[J].Am J Physiol Heart Circ Physiol,2003,285:H1229.
[32]Rajagopalan S,Meng XP,Ramasamy S,et al.Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro.Implications for atherosclerotic plaque stability[J].J Clin Invest,1996,98:2572.
[33]Kinugawa S,Tsutsui H,Hayashidani S,et al.Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice:role of oxidative stress[J].Circ Res,2000,87:392.
[34]Sullivan MJ,Green HJ,Cobb FR.Skeletal muscle biochemistry and histology in ambulatory patientswith long-term heart failure[J].Circulation,1990,81:518.
[35]Wilson JR.Exercise intolerance in heart failure.Importance of skeletal muscle[J].Circulation,1995,91:559.
[36]Nishiyama Y,Ikeda H,Haramaki N,et al.Oxidative stress is related to exercise intolerance in patients with heart failure[J].Am Heart J,1998,135:115.
[37]Tsutsui H,Ide T,Hayashidani S,et al.Enhanced generation of reactive oxygen species in the limb skeletal muscles from a murine infarct model of heart failure[J].Circulation,2001,104:134.
[38]Kinugawa S,Wang Z,Kaminski PM,et al.Limited exercise capacity in heterozygous manganese superoxidedismutase gene-knockout mice:roles of superoxide anion and nitric oxide[J].Circulation,2005,111:1480.
[39]Noma T,Nishiyama A,Mizushige K,et al.Possible role of uncoupling protein in regulation of myocardial energy metabolism in aortic regurgitation model rats[J].FASEB J,2001,15:1206.
[40]Echtay KS,Roussel D,St-Pierre J,et al.Superoxide activates mitochondrial uncoupling proteins[J].Nature,2002,415:96.