張 良 柳建華 葛琪林 楊建超 安守超
(上海理工大學(xué) 能源與動(dòng)力工程學(xué)院 上海 200093)
由于合成制冷劑對(duì)臭氧層破壞或大氣變暖具有重要影響,尋找一種環(huán)保高效的制冷劑一直是制冷領(lǐng)域研究的重要課題之一,全球制冷行業(yè)的普遍觀點(diǎn)是采用自然工質(zhì)。CO2因其無(wú)毒、不易燃、對(duì)環(huán)境友好、極好的熱物性等特點(diǎn),使其在眾多天然替代制冷劑中受到額外的關(guān)注,對(duì)CO2在制冷領(lǐng)域的推廣應(yīng)用又一次成為全球范圍內(nèi)研究的熱點(diǎn)[1]。隨著對(duì)CO2實(shí)際應(yīng)用系統(tǒng)的增加,近年來(lái)對(duì)其在流動(dòng)沸騰過(guò)程中的換熱特性研究也受到廣泛關(guān)注。實(shí)驗(yàn)研究表明CO2在亞臨界區(qū)的沸騰換熱系數(shù)高于傳統(tǒng)制冷劑,這些研究結(jié)果均表明在相同工況CO2的沸騰換熱系數(shù)遠(yuǎn)遠(yuǎn)大于目前常用的HCFC、HFC工質(zhì)。同種實(shí)驗(yàn)條件下,CO2沸騰換熱系數(shù)甚至高出其他制冷劑兩倍之多[2-4],對(duì)此現(xiàn)象研究人員歸結(jié)為由于CO2的熱物性使其在沸騰換熱過(guò)程中具有更好的換熱特性[5]。然而近年來(lái)的一些研究發(fā)現(xiàn)CO2沸騰換熱過(guò)程中在較低干度區(qū)域會(huì)產(chǎn)生明顯干涸現(xiàn)象,隨著干涸的產(chǎn)生其傳熱系數(shù)急劇下降,在相同的溫壓條件下,換熱系數(shù)甚至?xí)陀谀壳俺S弥评鋭瑖?yán)重影響蒸發(fā)器的整體換熱性能,而傳統(tǒng)制冷劑沸騰換熱過(guò)程中干涸現(xiàn)象則不明顯[6]。這里針對(duì)公開(kāi)發(fā)表文獻(xiàn)中對(duì)管內(nèi)流動(dòng)沸騰干涸現(xiàn)象的影響因素進(jìn)行分析,總結(jié)了國(guó)內(nèi)外當(dāng)前的研究進(jìn)展。
通常CO2在流動(dòng)沸騰換熱過(guò)程中隨著干度增加存在著壁面溫度迅速升高,傳熱突然惡化的現(xiàn)象,由于CO2液膜部分干涸而導(dǎo)致?lián)Q熱系數(shù)在較低干度時(shí)迅速降低即干涸現(xiàn)象[8]。CO2較小的液氣密度比、液氣黏度比、表面張力以及高導(dǎo)熱性使其在沸騰換熱過(guò)程中以核態(tài)沸騰為主導(dǎo),隨著蒸發(fā)的進(jìn)行管內(nèi)流態(tài)由低干度區(qū)域的間歇流轉(zhuǎn)變?yōu)橹懈吒啥葏^(qū)域的不均勻環(huán)狀流或霧狀流[9-11],CO2與傳統(tǒng)的制冷劑相比較低的表面張力,使其在特定的熱流密度時(shí)具有更多的氣泡核心,這加速了液膜中氣泡的生成從而形成部分干涸表面[12-14]。同時(shí)在中高干度區(qū)環(huán)狀流時(shí),隨著流動(dòng)沸騰過(guò)程中氣泡破裂導(dǎo)致液滴夾帶增多則加劇了干涸現(xiàn)象的產(chǎn)生[15],如公式(1)中所示,Stevanovic和Studovic[16]提出液滴夾帶與液膜厚度成比例,根據(jù)V P Carey[17]等人的研究CO2液膜厚度在環(huán)狀流模型中接近R22的兩倍。
另外,如公式(2)(3)中所示CO2在沸騰換熱過(guò)程中較低的氣相速度使其具有較高的核態(tài)沸騰抑制干度xsup,這也是造成CO2比傳統(tǒng)制冷劑更易發(fā)生干涸的重要原因[18]。
其中: —密度; —流速;k—導(dǎo)熱系數(shù);Tsat—飽和溫度;下標(biāo)l—液體;下標(biāo)g—?dú)怏w;q—熱流密度;hle—液體對(duì)流換熱系數(shù);hlv—?dú)饣瘽摕帷?/p>
CO2管內(nèi)流動(dòng)沸騰的換熱機(jī)理主要包括對(duì)流沸騰、核態(tài)沸騰或兩者共同作用[19],針對(duì)上述干涸現(xiàn)象的成因,這些不同換熱機(jī)理和流動(dòng)狀態(tài)決定了各種參數(shù)對(duì)干涸產(chǎn)生的影響程度。近來(lái)的研究表明,影響管內(nèi)流動(dòng)沸騰換熱過(guò)程中干涸的主要因素包括:熱流密度、質(zhì)量流量、飽和溫度和管徑。除以上參數(shù)以外,CO2的熱物理性質(zhì)如表面張力、黏度、液氣密度比等也對(duì)干涸現(xiàn)象有顯著影響[20]。
圖1 熱流密度對(duì)CO2流動(dòng)沸騰換熱干涸影響Fig.1 Effect of heat fl ux on dryout of CO2 during fl ow boiling heat transfer
在干涸現(xiàn)象產(chǎn)生之前的大部分換熱區(qū)域,與R22,R134a相同CO2的換熱系數(shù)隨著熱流密度的增加而增加,在低干度區(qū)熱流密度對(duì)其換熱系數(shù)影響很大,尤其是在高熱密度的情況下,蒸發(fā)初始階段時(shí)熱流密度對(duì)核態(tài)沸騰起著主導(dǎo)作用;在高干度區(qū)由于核態(tài)沸騰受到抑制,此時(shí)熱流密度對(duì)換熱系數(shù)影響降低[2,21]。如圖1所示J Wu[22]等人研究表明由于熱流密度越高蒸發(fā)越劇烈,相同質(zhì)量流量時(shí),熱流密度增加導(dǎo)致干涸現(xiàn)象提前出現(xiàn),隨著干涸現(xiàn)象的出現(xiàn)CO2的換熱性能出現(xiàn)不確定性,而對(duì)傳統(tǒng)工質(zhì)在相同工況對(duì)比研究中卻沒(méi)有明顯類(lèi)似現(xiàn)象[6]。
Y zhao[23]等研究人員發(fā)現(xiàn)在不同的工況時(shí),同樣CO2的換熱系數(shù)在所有干度區(qū)域內(nèi)隨著熱流密度的增加而增加,但在整個(gè)換熱過(guò)程中換熱系數(shù)均隨著干度的增加而降低,且沒(méi)有發(fā)現(xiàn)明顯的干涸現(xiàn)象,針對(duì)此種現(xiàn)象Rin Yun[24-25]等人提出了CO2在沸騰換熱過(guò)程中的臨界熱流密度(CHF)與臨界蒸汽干度的概念,在Pettersen[26]、Cheng[27]等人研究基礎(chǔ)上進(jìn)行進(jìn)一步研究并擬合了干涸前基于熱流密度的換熱系數(shù)預(yù)測(cè)模型,公式(4)所示,其預(yù)測(cè)誤差與實(shí)驗(yàn)數(shù)據(jù)相比在36.4%以?xún)?nèi)。
其中:pr—蒸發(fā)壓力。
Chaobin Dang[28]等人對(duì)內(nèi)微尺管的細(xì)管徑內(nèi)流動(dòng)沸騰換熱干涸抑制進(jìn)行研究表明,采用內(nèi)部微翅使換熱管在相同熱流密度工況下CO2的沸騰換熱系數(shù)大幅提高,而且其干涸出現(xiàn)干度也得到推遲,如圖2所示。
圖2 光管與內(nèi)齒管CO2沸騰換熱干涸干度比較Fig.2 Comparison of dryout quality of CO2 fl ow boiling heat transfer in smooth tube and micro fi n tube
由于CO2的特殊熱物理性質(zhì)導(dǎo)致其在獲得高換熱系數(shù)的同時(shí)產(chǎn)生了明顯的干涸現(xiàn)象,熱流密度增加能夠提高其換熱系數(shù)但同時(shí)也降低了干涸產(chǎn)生的干度,這嚴(yán)重影響了提高其高效換熱區(qū)域與整體換熱系數(shù),研究人員的最新研究正致力于熱流密度的變化建立相關(guān)理論模型進(jìn)行預(yù)測(cè)其干涸的產(chǎn)生[29]。
Hewitt和Govan[30]提出的臨界液膜流率決定了沸騰換熱過(guò)程中的液滴夾帶量,而研究表明CO2的臨界液膜流率遠(yuǎn)遠(yuǎn)小于傳統(tǒng)制冷劑,式(5)中m代表臨界液膜流率,隨著m的減小蒸發(fā)過(guò)程中出現(xiàn)干涸的可能相應(yīng)增加。
因此質(zhì)量流量對(duì)干涸的產(chǎn)生起著關(guān)鍵作用,而且對(duì)于CO2干涸現(xiàn)象隨質(zhì)量流量而變化的趨勢(shì)在不同熱流密度下表現(xiàn)出截然不同的效果。在沸騰換熱低干度區(qū)質(zhì)量流量變化對(duì)換熱系數(shù)影響很小,Schael &Kind[31],Pettersen[32]和Hihara & Tanaka[33]在大量實(shí)驗(yàn)中發(fā)現(xiàn)質(zhì)量流量的變化對(duì)于換熱系數(shù)并沒(méi)有明顯影響[4]。但在沸騰換熱中高干度區(qū)由于質(zhì)量流量增加強(qiáng)化了管內(nèi)對(duì)流沸騰換熱,使得在中高干度區(qū)的換熱系數(shù)得到明顯強(qiáng)化[3],然而隨著質(zhì)量流量增加卻導(dǎo)致干涸現(xiàn)象出現(xiàn)在較低干度區(qū)域,如圖3所示。
圖3 CO2沸騰換熱系數(shù)隨質(zhì)量流量變化(1)Fig. 3 Effect of mass fl ow on fl ow boiling heat transfer of CO2 (1)
對(duì)于上述現(xiàn)象相當(dāng)多的研究實(shí)驗(yàn)都有相同趨勢(shì),對(duì)此現(xiàn)象研究人員解釋為較高的質(zhì)量流量造成CO2液滴夾帶增加,液滴對(duì)液膜的沖擊加劇導(dǎo)致干涸提前出現(xiàn)[34],研究人員據(jù)此提出了設(shè)計(jì)低質(zhì)量流量CO2制冷蒸發(fā)器理念,希望能夠在不降低換熱系數(shù)的前提下使蒸發(fā)器內(nèi)部分液更加均勻[5]。但其它研究中也發(fā)現(xiàn)與之相反的結(jié)果,如Maxime Ducoulombier[35]等人的實(shí)驗(yàn)結(jié)果發(fā)現(xiàn)隨著質(zhì)量流量的增加,換熱過(guò)程中的干涸發(fā)生干度反而增加,如圖4所示,對(duì)此現(xiàn)象的解釋既有認(rèn)為CO2在較低蒸發(fā)溫度所導(dǎo)致,也有認(rèn)為是熱流密度較小的原因所導(dǎo)致,目前研究人員也僅對(duì)各自的實(shí)驗(yàn)現(xiàn)象進(jìn)行了分析,還沒(méi)有系統(tǒng)研究結(jié)論。
圖4 CO2沸騰換熱系數(shù)隨質(zhì)量流量變化(2)Fig. 4 Effect of mass fl ow on fl ow boiling heat transfer of CO2 (2)
質(zhì)量流量不僅對(duì)干涸出現(xiàn)前的換熱系數(shù)及干涸出現(xiàn)的干度有影響,在干涸出現(xiàn)之后隨著質(zhì)量流量的變化其換熱特性也表現(xiàn)出不同趨勢(shì),當(dāng)質(zhì)量流量小于臨界值時(shí)干涸發(fā)生之后換熱系數(shù)基本維持不變,而當(dāng)質(zhì)量流量大于臨界值時(shí)干涸現(xiàn)象之后隨著干度增加換熱系數(shù)相應(yīng)增加[24],同樣現(xiàn)象Groeneveld[36]等人在對(duì)水-蒸汽的實(shí)驗(yàn)研究中也有發(fā)現(xiàn),當(dāng)管徑較小、質(zhì)量流量較大、流體表面張力較小時(shí)該現(xiàn)象更加明顯。因此,現(xiàn)有研究結(jié)論可以確認(rèn)CO2質(zhì)量流量的變化對(duì)于換熱過(guò)程中的干涸現(xiàn)象有極大影響,不僅改變了干涸出現(xiàn)的干度,而且與干涸出現(xiàn)前后的換熱系數(shù)也密切相關(guān)。
圖5 CO2沸騰換熱系數(shù)隨飽和溫度變化(1)Fig.5 Effect of saturation temperature on fl ow boiling heat transfer of CO2 (1)
眾多實(shí)驗(yàn)表明:飽和溫度對(duì)CO2沸騰換熱系數(shù)具有很大影響,隨著飽和溫度的上升,干涸發(fā)生之前CO2沸騰換熱系數(shù)在所有干度區(qū)域均相應(yīng)增加,干涸發(fā)生干度隨飽和溫度升高而降低,這與研究人員的預(yù)期基本一致,如圖5所示。Hoo-Kyu Oh等人研究結(jié)果還顯示干涸發(fā)生后在較高飽和溫度情況下?lián)Q熱系數(shù)下降更為劇烈[5,14]。
對(duì)此解釋為:由于傳熱過(guò)程中核態(tài)沸騰占主導(dǎo),換熱表面的氣泡分離對(duì)換熱影響起了重要作用,隨著飽和溫度增加CO2液氣密度比相應(yīng)減小,液膜中氣泡浮力得到增加,使其在換熱表面更容易分離,增加了流動(dòng)換熱中核態(tài)沸騰區(qū)域的面積,因此換熱系數(shù)得到提高[4,37,38]。但是,在特殊工況下研究人員也得出了完全相反的結(jié)論:大質(zhì)量流量低熱流密度時(shí),CO2微通道內(nèi)換熱系數(shù)隨著飽和溫度的增加而降低[36],如圖6所示。
圖6 CO2沸騰換熱系數(shù)隨飽和溫度變化(2)Fig.6 Effect of saturation temperature on fl ow boiling heat transfer of CO2 (2)
研究人員對(duì)此歸結(jié)為:在較低的溫度時(shí)蒸汽密度降低導(dǎo)致管內(nèi)氣相流速增加,同時(shí)CO2液體的導(dǎo)熱系數(shù)增加使換熱系數(shù)有所提高。因此,飽和溫度對(duì)于CO2在換熱過(guò)程中對(duì)干涸的影響不容忽視,飽和溫度不僅影響了干涸現(xiàn)象出現(xiàn)的干度,甚至在飽和溫度較低的工況下不出現(xiàn)干涸現(xiàn)象[39],而且對(duì)干涸過(guò)后的換熱系數(shù)影響也很大,Xiumin Zhao[40]等人的研究顯示-30℃時(shí)的換熱系數(shù)在干涸前隨干度增加變化趨勢(shì)與0℃時(shí)相反。從目前公開(kāi)的研究成果分析,飽和溫度對(duì)CO2在換熱過(guò)程中干涸的影響要比其對(duì)于換熱系數(shù)的影響更為復(fù)雜,產(chǎn)生影響的機(jī)理也有待進(jìn)一步探討。
由于CO2特殊的熱物理性質(zhì)使其與目前常用的制冷工相比隨著換熱管徑的減小沸騰換熱系數(shù)能夠得到更大幅度的提高[41],Yamamoto[42]等人的研究表明當(dāng)換熱管徑從1mm減小至0.5mm時(shí)管徑對(duì)于換熱系數(shù)的影響與熱流密度相當(dāng),同時(shí)換熱過(guò)程中的流態(tài),壓降也隨之改變,在不同管徑中其干涸現(xiàn)象也較其它制冷劑明顯。Kandlikar[43]參考了大量的微通道兩相流的研究成果對(duì)換熱管徑進(jìn)行了劃分,根據(jù)此管徑劃分CO2沸騰換熱干涸現(xiàn)象尚并沒(méi)有顯示出規(guī)律性的趨勢(shì),John R Thome[44]對(duì)不同管型內(nèi)換熱系數(shù)的計(jì)算進(jìn)行了研究,但并沒(méi)有涉及對(duì)干涸的影響。Hoo-Kyu Oh[5]在對(duì)4.5mm管徑內(nèi)CO2流動(dòng)沸騰換熱研究過(guò)程中發(fā)現(xiàn)了明顯的干涸現(xiàn)象, C Y Park[45]對(duì)3mm的管徑實(shí)驗(yàn)研究表明核態(tài)沸騰的影響受到削弱,但是CO2沸騰換熱效率比傳統(tǒng)的制冷劑還是要高,隨著干度變化換熱系數(shù)沒(méi)有出現(xiàn)明顯干涸現(xiàn)象,對(duì)此研究人員解釋為:工質(zhì)流動(dòng)速度增加使換熱過(guò)程中具有較高的流動(dòng)沸騰換熱系數(shù),而且溫度較低時(shí)表面張力與液體黏度較高,流體不易分層且液膜不易受到破壞避免了干涸現(xiàn)象的出現(xiàn)。在小管徑較高蒸發(fā)溫度時(shí)(管徑小于3mm,蒸發(fā)溫度5~20℃)時(shí),CO2流動(dòng)沸騰換熱過(guò)程中均表現(xiàn)出明顯的干涸現(xiàn)象,但管徑對(duì)于干涸的影響作用并沒(méi)有獲得一致的結(jié)論,Yun[6],Jong-Taek Oha[46]等人對(duì)于不同小管徑內(nèi)的沸騰換熱性能進(jìn)行了對(duì)比,實(shí)驗(yàn)結(jié)果發(fā)現(xiàn)相同工況下在1.54mm的管徑內(nèi)則沒(méi)有出現(xiàn)明顯的干涸現(xiàn)象,而管徑減小至1.14mm時(shí)干涸現(xiàn)象很明顯。在Mamoru Ozawa[47]等人在對(duì)1mm與0.51mm管徑的對(duì)比實(shí)驗(yàn)研究結(jié)果中卻發(fā)現(xiàn)相反現(xiàn)象,隨著管徑變小干涸現(xiàn)象發(fā)生的干度變化并不大,而且干涸發(fā)生干度呈增加趨勢(shì)。
除上述影響因素外,研究人員也對(duì)CO2沸騰換熱過(guò)程中的流態(tài)變化,壓降變化,壁面過(guò)熱度等進(jìn)行了相應(yīng)的研究,主要有Mamoru Ozawa[47],John R Thome[44],Lixin Cheng[48]等人[27]對(duì)CO2在整個(gè)換熱過(guò)程中的流型圖進(jìn)行了研究,并分析了干涸時(shí)發(fā)生的各種流型以及壓降,但此類(lèi)研究均是針對(duì)各自實(shí)驗(yàn)條件下的分析,對(duì)流態(tài)與壓降變化與干涸現(xiàn)象之間的聯(lián)系尚沒(méi)有做具體分析。
綜合以上研究成果可以發(fā)現(xiàn)CO2管內(nèi)流動(dòng)沸騰換熱過(guò)程中干涸的發(fā)生是一個(gè)普遍的現(xiàn)象,對(duì)整個(gè)換熱過(guò)程的平均換熱系數(shù)有著不可忽略的影響。這里對(duì)目前的研究進(jìn)行了綜述得到如下結(jié)論:
1)熱流密度對(duì)于干涸產(chǎn)生的影響目前僅僅獲得了趨勢(shì)性結(jié)論,對(duì)于臨界熱流密度(CHF)前后對(duì)CO2管內(nèi)流動(dòng)沸騰換熱干涸現(xiàn)象的影響沒(méi)有研究。研究表明質(zhì)量流量在作為換熱系數(shù)影響因素考慮時(shí)其影響遠(yuǎn)小于熱流密度,但對(duì)沸騰換熱過(guò)程中干涸產(chǎn)生的干度及干涸發(fā)生后換熱系數(shù)卻有重要影響。
2)目前研究人員提出的CO2管內(nèi)流動(dòng)沸騰換熱系數(shù)的實(shí)驗(yàn)關(guān)聯(lián)式比較多,且針對(duì)干涸前后均分別有相應(yīng)的換熱系數(shù)計(jì)算關(guān)聯(lián)式,但針對(duì)干涸現(xiàn)象產(chǎn)生的預(yù)測(cè)模型及全過(guò)程換熱系數(shù)精確預(yù)測(cè)關(guān)聯(lián)式還沒(méi)有。
3)現(xiàn)有研究表明換熱管徑對(duì)干涸有著重要影響,尤其在微通道沸騰換熱過(guò)程中干涸現(xiàn)象的出現(xiàn)對(duì)換熱系數(shù)的影響遠(yuǎn)遠(yuǎn)大于常規(guī)管,而且傳統(tǒng)管內(nèi)的沸騰換熱系數(shù)、壓降、流態(tài)等關(guān)聯(lián)式在應(yīng)用于微通道管時(shí)偏差很大,對(duì)于微通道內(nèi)CO2管內(nèi)流動(dòng)沸騰干涸現(xiàn)象的研究還處在初始階段。
4)目前對(duì)CO2管內(nèi)流動(dòng)沸騰干涸發(fā)生時(shí)管內(nèi)流態(tài)的轉(zhuǎn)變均是采用以往傳統(tǒng)關(guān)聯(lián)式進(jìn)行分析,而且模型以絕熱模型為主,今后需進(jìn)一步擴(kuò)展可視化實(shí)驗(yàn)研究觀察其干涸過(guò)程內(nèi)部實(shí)際流態(tài)變化。同時(shí)對(duì)于實(shí)際應(yīng)用過(guò)程中采用內(nèi)微翅管,不同管型,含油等因素對(duì)CO2沸騰換熱時(shí)干涸的影響仍有待研究。
本文受高等學(xué)校博士學(xué)科點(diǎn)專(zhuān)項(xiàng)科研基金(200932011 0003)、上海市重點(diǎn)學(xué)科建設(shè)項(xiàng)目(S30503)、上海高校選拔培養(yǎng)優(yōu)秀青年教師科研專(zhuān)項(xiàng)基金(slg08002)、上海市研究生創(chuàng)新基金項(xiàng)目(JWCXSL0901)資助。(The project was supported by the Research Fund for the Doctoral Program of Higher Education of China(No.2009320110003), Shang hai Leading Academic Discipline Project (No.S30503), Shanghai University Select Outstanding Young Teachers Program(No.slg08002),The Innovation Fund Project For Graduate Student of Shanghai (No.JWCXSL0901))
[1]R Z Wang, Y Li. Perspectives for natural working fl uids in China[J].International Journal of Refrigeration, 2007,(30): 568-581.
[2]K I Choi, A S Pamitran, C Y Oh, et al. Boiling heat transfer of R-22, R-134a, and CO2in horizontal smooth minichannels[J]. International Journal of Refrigeration 2007, (30):1336-1346.
[3]Sehwan In, Sangkwon Jeong. Flow boiling heat transfer characteristics of R123 and R134a in a micro-channel[J].International Journal of Multiphase Flow, 2009,(35):987-1000.
[4]Hoo-Kyu Oh, Hak-Geun Ku, Geon-Sang Roh, et al. Flow boiling heat transfer characteristics of carbon dioxide in a horizontal tube[J]. Applied Thermal Engineering, 2008,(28): 1022-1030.
[5]Hoo-Kyu Oh, Chang-Hyo Son. Flow boiling heat transfer and pressure drop characteristics of CO2in horizontal tube of 4.57-mm inner diameter[J].Applied Thermal Engineering , 2011, (31): 163-172.
[6]R Yun, Y Kim, M S Kim. Convective boiling heat transfer characteristics of CO2in microchannels[J]. Int. J. Heat Mass Transfer, 2005, (48) :235-242.
[7]A M Bredesen, A Hafner, J Pettersen, et al. A fl eckt. Heat transfer and pressure drop for in-tube evaporation of CO2[C]// Proceedings of the International Conference on Heat Transfer Issues in Natural Refrigerants,College Park,MD, 1997:1-15.
[8]Rin Yun, Yongchan Kim, Min Soo Kim, et al. Boiling heat transfer and dryout phenomenon of CO2in a horizontal smooth tube[J].International Journal of Heat and Mass Transfer, 2003, (46) :2353-2361.
[9]Y Taitel, A E Dukler. A model for predicting fl ow regime transitions in horizontal and near horizontal gas-liquid fl ow[C]// AIChE J. 1976, 22 (1):47-55.
[10]Yun, R, Kim, et al. Flow regimes for horizontal two-phase fl ow of CO2in a heated narrow rectangular channel[J]. Int.J.Multiphase Flow, 2004, (30):1259-1270.
[11]Thome, J R, Ribatski, et al. State-of-art of two-phase fl ow and fl ow boiling heat transfer and pressure drop of CO2in macro and micro-channels[J]. Int. J. Refrigeration, 2005,(28):1149-1168.
[12]A Inoue, S Lee. In fl uence of two-phase fl ow characteristic on critical heat flux in low pressure[C]// International Conference on Nuclear Engineering, vol. 1, ASME, 1996:657-667.
[13]T Fujita, T Ueda. Heat transfer to falling liquid fi lms and film breakdown II (saturated liquid films with nucleate boiling)[J].Int. J. Heat Mass Transfer, 1978, (21):109-118.
[14]J Pettersen. Flow vaporization of CO2in microchannel tubes, Part 1: Experimental method and two-phase flow[C]// Fifth IIR-GustavLorentzen Conference on Natural Working Fluids, Guangzhou, China, 2002: 76-83.
[15]Yun, R, Kim, et al. Critical quality prediction for saturated fl ow boiling of CO2in horizontal small diameter tubes[J].Int.J. Heat Mass Transf., 2003, (46):2527-2535.
[16]V Stevanovic, M Studovic. A simple model for vertical annular and horizontal stratified two-phase flows with liquid entrainment and phase transitions: one-dimensional steady state conditions[J]. Nucl. Eng. Design, 1995, (154): 357-379.
[17]V P Carey. Liquid-Vapor Phase-Change Phenomen[J].Taylor & Francis, 1992:439-448.
[18]T Sato, H Matsumura. On the conditions of incipient subcooled-boiling with forced convection[J]. Bull. JSME 7,1964, (26): 392-398.
[19]Zhao Y, Ohadi M M, Dessiatoun S V, et al. Forced convection boiling heat transfer of CO2in horizontal tubes[C]. Proceedings of the 5th ASME J SME Joint Thermal Enigneering Conference, March15-19. San Diego, California, USA. 1999.
[20]楊亮,丁國(guó)良,黃冬平,等.亞臨界二氧化碳換熱特性研究進(jìn)展[J].制冷學(xué)報(bào),2003,(4):28-34. (Yang Liang,Ding Guoliang, Huang Dongping, et al. Review on Heat Transfer of Subcritical Carbon Dioxide[J]. Journal of Refrigeration, 2003,(4):28-34.)
[21]吳曉敏,趙紅藝,王維城,等. CO2在細(xì)徑管內(nèi)蒸發(fā)換熱的實(shí)驗(yàn)研究[J]. 工程熱物理學(xué)報(bào), 2005, 26(5): 823-825.(Wu Xiaomin, Zhao Hongyi, Wang Weicheng, et al.Experimental Study On Evaporating Heat Transfer of CO2in Thin Tube [J]. Journal of Engineering Thermophysics,2005, 26 (5):823-825.)
[22]J Wu, T Koettig, Ch Franke, et al. Investigation of heat transfer and pressure drop of CO2two-phase flow in a horizontal minichannel[J].International Journal of Heat and Mass Transfer, 2011, (58):121-131.
[23]Y Zhao, M Molki, M M Ohadi, et al. Flow boiling of CO2in microchannels[C]//ASHRAE Trans. DA-00-2-1,2000:437-445.
[24]R Yun, Y Kim, M S Kim. Flow boiling heat transfer of carbon dioxide in horizontal mini tubes[J]. Int. J. Heat Fluid Flow, 2005,(26): 801-809.
[25]R Yun, Y Kim. Post-dryout heat transfer characteristics in horizontal mini-tubes and a prediction method for fl ow boiling of CO2[J]. International Journal of Refrigeration,2009, (32): 1085-1091.
[26]J Pettersen. Flow vaporization of CO2in microchannel tubes[J].Exp. Thermal Fluid Sci. 2004, (28):111-121.
[27]Cheng L, Ribatski G, Quiben J, et al. New prediction methods for CO2evaporation inside tubes: part I -a two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops[J]. Int. J Heat Mass Transf., 2008, 51(1-2):111-124.
[28]Chaobin Dang, Nobori Haraguchi, Eiji Hihara.Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube[J]. International journal of refrigeration,2010, (33):655-663.
[29]Bredesen, A M, Hafner, et al. Heat Transfer and Pressure Drop for In-tube Evaporation of CO2[C]// Proc. of Int.Conference on Heat Transfer Issues in natural refrigerants,University of Maryland, 1997:1-15.
[30]G F Hewitt, A H Govan. Phenomenological modeling of non-equilibrium flows with phase change[J].Int. J. Heat Mass Transfer, 1990,(33): 229-242.
[31]A E Schael, M Kind. Flow pattern and heat transfer characteristics during fl ow boiling of CO2in a horizontal micro fin tube and comparison with smooth tube data[J].International Journal of Refrigeration, 2004,(28):1186-1195.
[32]J Pettersen. Two-phase flow pattern, heat transfer and pressure drop in micro-channel vaporization of CO2[C]//ASHRAE Transaction (Symposia) 2003: 523-532.
[33]E Hihara, S Tanaka. Boiling heat transfer of carbon dioxide in horizontal tubes[C]// Proc. 4th IIR-Gustav Lorentzen Conf. On Natural Working Fluids,Purdue University, USA, 2000:279-284.
[34]Hewitt, G F Pressure drop[C]// Hetsroni G. (Ed.),Handbook of Multiphase System. Hemisphere Publishing Corporation, Washington DC, 1982: 244-275.
[35]Maxime Ducoulombie, Stéphane Colasson. Carbon dioxide fl ow boiling in a single microchannel-Part II: Heat transfer[J].Experimental Thermal and Fluid Science, 2011,(34):1021-1031.
[36]Groeneveld, D C, Delorme, et al. Prediction of thermal non-equilibrium in the post-dryout regime[J]. Nucl. Eng.Design ,1976, (36):17-26.
[37]E S Cho, S H Yoon, M S Kim. A study on the characteristics of evaporative heat transfer for carbon dioxide in a horizontal tube[C]// Proceedings of the KSME Spring Annual Meeting, 2000:104-107.
[38]M G Cooper. Heat flow rates in saturated nucleate pool boiling a wide-ranging examination using reduced properties[J]. Advances in Heat Transfer, 1984, (16):157-239.
[39]C Y Park, P S Hrnjak. CO2and R410A flow boiling heat transfer, pressure drop, and flow pattern at low temperatures in a horizontal smooth tube[J].International Journal of Refrigeration, 2007, (30): 166-178.
[40]Xiumin Zhao, P K Bansal. Flow boiling heat transfer characteristics of CO2at low temperatures[J].International Journal of Refrigeration, 2007, (30):937-945.
[41]E Hihara, C Dang. Boiling heat transfer of carbon dioxide in horizontal tubes[C]// Proceedings of 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference,2007:1-7.
[42]T Yamamoto, Y Ueda, I Ishihara, et al. Flow boiling heat transfer of carbon dioxide at high pressure in horizontal minichannels[C]// Proceedings of the 6th International Conference on Multiphase Flow, 2007.
[43]Kandlikar S G. Fundamental issues related to fl ow boiling in minchannels and microchannels[J]. Exp. Therm. Fluid Sci., 2001, (26): 389-407.
[44]John R Thome, Gherhardt Ribatski. State-of-the-art of two-phase fl ow and fl ow boiling heat transfer and pressure drop of CO2in macro- and micro-channels[J].International Journal of Refrigeration, 2005, (28) :1149-1168.
[45]C Y Park, P S Hrnjak. Flow boiling heat transfer of CO2at low temperatures in a horizontal smooth tube[J]. J. Heat Transfer, 2005, (127):1305-1312.
[46]Jong-Taek Oha, A S Pamitran, Kwang-Il Choi, et al.Experimental investigation on two-phase fl ow boiling heat transfer of fi ve refrigerants in horizontal small tubes of 0.5,1.5 and 3.0 mm inner diameters[J]. International Journal of Heat and Mass Transfer, 2011 (20): 187-197.
[47]Mamoru Ozawa, Takeyuki Ami, Hisashi Umekawa, et al.Forced fl ow boiling of carbon dioxide in horizontal minichannel[J].International Journal of Thermal Sciences,2011, (50) :296-308.
[48]Lixin Cheng, Gherhardt Ribatski, Leszek Wojtan, et al.New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes[J]. International Journal of Heat and Mass Transfer,2006, (49): 4082-4094.