張媛華
始于20世紀(jì)中葉的新技術(shù)革命,可稱為第三次技術(shù)革命。它是在20世紀(jì)自然科學(xué)理論最新突破的基礎(chǔ)上產(chǎn)生的,包括信息技術(shù)、生物技術(shù)、新材料技術(shù)、新能源技術(shù)、空間技術(shù)和海洋技術(shù)等。近20年現(xiàn)代生物技術(shù)在環(huán)境保護及食品工業(yè)、醫(yī)藥衛(wèi)生、農(nóng)林牧漁等領(lǐng)域示了廣闊的發(fā)展前景。植物生物技術(shù)不僅從根本上改變了傳統(tǒng)農(nóng)作物的培育和種植,也為社會生產(chǎn)帶來了新一輪的革命。
隨著植物生物技術(shù)的發(fā)展,轉(zhuǎn)基因作物的種植面積不斷擴大,我國主要是黃豆、玉米、棉花、油菜4種轉(zhuǎn)基因作物,約占全球轉(zhuǎn)基因作物栽培面積的99%,其中抗除草劑黃豆占63%,抗蟲玉米占19%,抗蟲棉花占13%,轉(zhuǎn)基因油菜占5%。其他還有抗病毒南瓜、番木瓜、抗蟲土豆、水稻和甜菜等。各國加大轉(zhuǎn)基因植物研究開發(fā),取得了重大突破,進入田間試驗的轉(zhuǎn)基因,作物已超過500多種。
中國等發(fā)展中國家是采用轉(zhuǎn)基因作物最迅速的國家,我國于80年代初期后開始啟動,在基因組研究和轉(zhuǎn)基因技術(shù)等重要關(guān)鍵技術(shù)方面取得了一系列重大突破。科學(xué)家創(chuàng)造了一系列新技術(shù),國家給研究者提供了培育高產(chǎn)優(yōu)質(zhì)的轉(zhuǎn)基因作物的激勵機制,我國政府在植物生物技術(shù)方面投資經(jīng)費的增長速度遠(yuǎn)超過其他發(fā)展中國家。目前,我國正在研究的轉(zhuǎn)基因植物種類達47種,涉及各類基因103個,6種轉(zhuǎn)基因植物被批準(zhǔn)進行商品化生產(chǎn),特別是Bt抗蟲棉,不僅降低成本,而且改善農(nóng)民的健康狀況。
植物生物技術(shù)主要應(yīng)用于以下幾個方面:
自從孟德爾發(fā)現(xiàn)遺傳規(guī)律,雜交優(yōu)勢被揭示之后,利用植物基因工程的原理和方法,進行栽培作物的遺傳育種和新物種的創(chuàng)造。當(dāng)前,已創(chuàng)造了一批不育系,并生產(chǎn)上得以應(yīng)用,最典型的例子是油菜和煙草不育系培育。
①抗除草劑作物。全世界目前約有2000多個品種的除草劑。除草劑的使用有著自身難以克服的局限性,如很多除草劑無法區(qū)別莊稼和雜草,有些除草劑必須在野草生長前就施用,而且由于抗性草類群落的出現(xiàn)導(dǎo)致使用量增大對環(huán)境的危害也日益嚴(yán)重。因此,抗除草劑的轉(zhuǎn)基因作物是最理想的途徑。1987年美國科學(xué)家成功從矮牽牛中克隆出EPSP合酶基因轉(zhuǎn)入油菜細(xì)胞的葉綠體中,使油菜能有效地抵抗草甘膦的毒殺作用。另有人把降解除草劑的蛋白質(zhì)編碼基因?qū)胨拗髦参铮瑥亩WC宿主植物免受其害,該方法已成功地用于選育抗磷酸麥黃酮的工程植物。還有人用基因突變的方法改造除草劑作用底物特定位點上相應(yīng)氨基酸殘基,從而阻止除草劑與酶的結(jié)合及生物功能的發(fā)揮??钩輨┑霓D(zhuǎn)基因植物將給農(nóng)業(yè)生產(chǎn),特別是大面積的機械化生產(chǎn)帶來極大的方便。目前已商品化的轉(zhuǎn)基因抗除草劑作物有大豆,玉米,棉花,油菜,向日葵。由于抗除草劑作物在選育過程中具有耗資少,周期短,見效快,無污染等特點,越來越受到人們的關(guān)注。
②抗昆蟲作物。植物病蟲害數(shù)目多達數(shù)百種,幾乎所有作物在生長期內(nèi)都會遭受到不同程度的危害。全世界因蟲害所造成的糧食產(chǎn)量損失占14%左右。長期以來人們普遍采用化學(xué)殺蟲劑來控制害蟲。一方面,全世界每年用于化學(xué)殺蟲劑的總金額在200億美元以上;另一方面,化學(xué)殺蟲劑的長期使用造成農(nóng)藥的殘留,害蟲的耐受性,環(huán)境污染等嚴(yán)重的問題。而利用基因工程的手段培育抗蟲植物新品種除可以克服以上缺點外,還具有成本低,保護全,特異性強等優(yōu)點,成為當(dāng)前研究的熱點。1987年,比利時科學(xué)家首次成功地將Bt(Bacillus thuringiensis,Bt)毒蛋白基因?qū)霟煵?,美國用農(nóng)桿菌介導(dǎo)法將Bt基因?qū)霘ぷ衙蓿墒澜缟鲜桌瓜x棉,棉鈴蟲危害率下降50%。
③抗真菌作物。自1986年schlumbaum等首次報道提純的菜豆幾丁質(zhì)酶具有抗真菌活性以來,已經(jīng)相繼從菜豆、水稻、煙草、油菜、馬鈴薯、小麥、玉米和甜菜等多種植物中克隆到了幾丁質(zhì)酶基因,對立枯絲菌等20多種真菌表現(xiàn)出體外抑菌活性。將幾丁質(zhì)酶等基因?qū)敕?、馬鈴薯、萵苣和甜菜,達到抗真菌的目的。
④抗重金屬作物。由于人類活動,礦山的開采,工業(yè)化進程的加劇,空氣,土壤,水體面臨著越來越嚴(yán)重的重金污染,不但嚴(yán)重影響作物的產(chǎn)量和品質(zhì),更重要的是通過植物食物鏈危害人類的健康。土壤中的重金屬主要有Cd、Cr、Cu、Hg、Ni、Pb、Zn、As等。 20 世紀(jì) 80 年代,提出植物修復(fù),超富集植物。但由于自然界中已發(fā)現(xiàn)的絕大多數(shù)重金屬富集或超富集植物往往生長周期長,生物量低,植株矮小,因而限制了其對污染土壤重金屬的移除效率。通過基因工程技術(shù)改良植物對重金屬的抗性,增加或減少重金屬在植物體內(nèi)的累積量被認(rèn)為是進行污染土壤的生態(tài)恢復(fù)以及減少食物鏈重金屬污染的一條切實可行的有效途徑。富集重金屬的相關(guān)基因不斷克隆,應(yīng)用轉(zhuǎn)基因技術(shù)提高植物對重金屬的耐性已取得一些重要進展,一些轉(zhuǎn)基因植物地上部分表現(xiàn)了較高的重金屬離子富集量,并在污染土壤的生態(tài)恢復(fù)中進行了初步應(yīng)用。
⑤抗病毒作物。傳統(tǒng)的抗病毒作物,是將植物天生的抗病毒基因從一個植物品種轉(zhuǎn)移到另一個植物品種,然而抗病植株常會轉(zhuǎn)變?yōu)楦胁≈仓辏易饔梅秶^窄。目前最有效的是將病毒外殼蛋白基因?qū)胫仓戢@得抗病毒的工程植物。如1986年美國華盛頓大學(xué)已將煙草花葉病毒(TMV)的外殼蛋白基因轉(zhuǎn)移到煙草、番茄中。除上述以外,我國還將黃瓜花葉病毒(CMV)衛(wèi)星RNA基因轉(zhuǎn)入煙草,番茄,黃瓜,馬鈴薯x病毒(PVX)的CP蛋白基因轉(zhuǎn)入馬鈴薯等。其中煙草抗TMV工程植株已進入大田試驗。
微生物農(nóng)藥具有對人畜安全,不破壞生態(tài)平衡,害蟲不易產(chǎn)生抗性等優(yōu)點,但也存在著藥效速度慢,專一性強,受自然條件影響大的缺點。而利用基因工程改造微生物菌種,創(chuàng)造出自然界不存在的新型菌種就可以克服這些缺點。20世紀(jì)70年代末國外就把蘇云金桿菌伴孢晶體毒素蛋白基因(BtICP基因)轉(zhuǎn)移到大腸桿菌和枯草桿菌中,通過發(fā)酵工程進行工業(yè)化大量生產(chǎn),降低了成本,提高了產(chǎn)量。目前已轉(zhuǎn)到假單胞桿菌中,由于該菌對環(huán)境適應(yīng)性強,土壤中廣泛存在,可望成為更優(yōu)良的細(xì)菌殺蟲劑。我國對雜合毒素基因的廣譜蘇云金桿菌Bt新毒株的研究也在進行之中。
應(yīng)用植物生物技術(shù),生產(chǎn)具有商業(yè)價值的次生代謝產(chǎn)物(如生物堿、類黃酮等)、改良種子貯藏蛋白品質(zhì)、改良藥用植物品種、提高作物收獲后貯藏能力。
綜上所述,隨著現(xiàn)代生物技術(shù)發(fā)展,植物生物技術(shù)將在社會生產(chǎn)和實踐中的應(yīng)用越來越廣闊。相信不久的將來,隨著我國現(xiàn)代生物技術(shù)的發(fā)展,我國的社會生產(chǎn)將獲得突飛猛進的發(fā)展,將會迎來更加美好的未來。
[1]王偉,等.雙價抗蟲基因陸地棉轉(zhuǎn)化植株的獲得[J].植物學(xué)報,1999,41:384-388.
[2]王凌健,等.利用轉(zhuǎn)基因胡蘿卜表達肺結(jié)核疫苗[J].植物學(xué)報,2001,43(2):132-137.
[3]劉春明,等.豇豆胰蛋白酶抑制劑抗蟲轉(zhuǎn)基因煙草的獲得[J].科學(xué)通報,1992,37:1694-1697.
[4]易自力,等.植物外源基因直接導(dǎo)入技術(shù)及其在禾谷類作物中的應(yīng)用[J].作物研究,1999,4:43-46.
[5]焦瑞身.展望即將到來的“分子農(nóng)業(yè)”[J].生物工程學(xué)報,2001,17(4):361-364.