国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

納米鎳催化劑對勝利超稠油水熱裂解降黏的影響

2011-09-28 02:53吳川雷光倫姚傳進蓋平原曹嫣鑌李嘯南
關(guān)鍵詞:黏劑水熱稠油

吳川,雷光倫,姚傳進,蓋平原,曹嫣鑌,李嘯南

(1.中國石油大學石油工程學院,山東青島266555;2.勝利油田采油工藝研究院,山東東營257000)

納米鎳催化劑對勝利超稠油水熱裂解降黏的影響

吳川1,雷光倫1,姚傳進1,蓋平原2,曹嫣鑌2,李嘯南2

(1.中國石油大學石油工程學院,山東青島266555;2.勝利油田采油工藝研究院,山東東營257000)

利用微乳液法合成納米鎳催化劑,采用透射電鏡對其進行表征,在200℃時對超稠油進行水熱裂解催化反應,通過氣相色譜儀、元素分析儀、相對分子質(zhì)量測定儀、紅外光譜儀對反應前后稠油的物化性質(zhì)進行分析。結(jié)果表明:水熱裂解催化反應后,超稠油降黏率達90.36%,稠油膠質(zhì)與瀝青質(zhì)含量減少,稠油相對分子質(zhì)量下降,瀝青質(zhì)相對分子質(zhì)量降低幅度最大;反應后稠油及其重質(zhì)組分的氫碳原子數(shù)比增加,硫與氮含量減少,氧含量增加;稠油發(fā)生水熱裂解反應的同時,存在瀝青質(zhì)的聚合反應,瀝青質(zhì)的裂解在降黏反應中起到了關(guān)鍵的作用;納米鎳催化劑促進了水熱裂解反應,同時抑制了聚合反應;納米鎳催化劑協(xié)同作用使高溫水與稠油發(fā)生反應,產(chǎn)生具有表面活性的醇類、酚類、羧酸類等物質(zhì),導致反應后稠油含氧量增加,黏度降低。

稠油;水熱裂解;納米鎳;降黏

蒸汽吞吐和蒸汽驅(qū)是開采稠油常用的方法[1],而水熱裂解催化反應在注入蒸汽的同時,給予油層合適的催化劑及其他助劑,使稠油中的重質(zhì)組分在水熱條件下實現(xiàn)催化裂解,從而使其黏度降低,該技術(shù)關(guān)鍵是水熱催化裂解降黏劑的選擇。近年來,Hyne等[2-10]選擇金屬離子如鎳、鋁、銅、鋅、錳和鐵等過渡金屬離子對加拿大和委內(nèi)瑞拉稠油進行裂解反應;范洪富等[11-15]選擇過渡金屬鹽、過渡金屬鹽絡合物、過渡金屬鹽膠體分散體系、離子液體等作為催化劑,對遼河油田及勝利油田稠油進行水熱催化裂解實驗;Chen等[16-17]合成芳基雙席夫堿、雜多酸鹽、過渡金屬環(huán)烷酸鹽、金屬螯合物等作為催化劑,對河南油田、勝利油田、新疆油田稠油進行水熱裂解實驗,在分子水平上對催化裂解的機制及反應動力學進行了深入研究;樊澤霞等[18-19]研究表明,水溶性與油溶性分散型催化劑可促進原油的水熱裂解反應;聞守斌等[20-23]選擇硅鎢酸、固體酸對稠油進行室內(nèi)研究,取得了一定效果。前人研究表明[24],利用微乳液法合成的納米鎳顆粒懸浮在體系中,易攜帶注入地層,且進入地層后易與稠油混合接觸,同時鎳催化劑對有機反應有良好的催化活性,而且鎳又是典型的加氫催化劑,有可能使水中氫轉(zhuǎn)移到超稠油中[25]。由此,筆者選擇微乳液法合成納米鎳催化降黏劑[26-27],在相對較低的溫度(200℃)下考察其對勝利超稠油的水熱裂解降黏的作用。

1 實驗

1.1 儀器與試劑

主要儀器包括500 mL FYXD05 20/350永磁旋轉(zhuǎn)攪拌高壓釜(大連通產(chǎn)高壓釜容器制造有限公司生產(chǎn))、美國Briekfield DV-Ⅲ型可編程控制式黏度計、SYD-260石油產(chǎn)品水分試驗器(上海昌吉地質(zhì)儀器有限公司生產(chǎn))、日本JEM 2100透射電鏡、德國Knauer K-700相對分子質(zhì)量測定儀和美國Agilent 6890N氣相色譜儀、德國Elementar Vario EL III元素分析儀、美國Nicolet 5700 FT-IR紅外光譜儀。

主要試劑有:正庚烷、石油醚、甲苯、無水乙醇、二甲苯、氫氧化鈉、正丁醇、硼氫化鈉,均為分析試劑;氯化鎳、水合肼,均為化學試劑;磺酸(工業(yè)級);層析用硅膠、氧化鋁;勝利油田單56-13-19油井超稠油樣品;單56-13-19油井現(xiàn)場地層水,屬硫酸鈉水型,總礦化度為7.275 31 g/L,含鈉與鉀共2.255 12 g/L、鈣0.27589 g/L、鎂0.09198 g/L。

1.2 催化降黏劑的制備

將純化后的工業(yè)磺酸加入到三頸瓶中,通入高純氮氣,在70℃水浴下攪拌加熱,緩慢滴加氫氧化鈉溶液,調(diào)節(jié)pH值約為8,反應35 min;然后緩慢滴加正丁醇溶液,恒溫反應30 min;緩慢滴加溶劑溶液,恒溫反應45 min;將還原劑慢慢加到上述溶液中,反應10 min;最后將氯化鎳的溶液緩緩地滴加到三頸瓶中,恒溫反應4~5 h,即得用于稠油熱采的納米鎳水熱裂解催化降黏劑。

1.3 稠油基本性質(zhì)

在50℃、SC4-29型號轉(zhuǎn)子、轉(zhuǎn)速8 r/min、力矩約50%條件下測量,原油黏度為61.5 Pa·s,按GB260-77石油產(chǎn)品水分測定法測定,含水率為39.06%,按照SY/T 5119-2008巖石中可溶有機物及原油族組成分析測定,單56-13-19超稠油含飽和烴20.46%,芳香烴29.54%,膠質(zhì)34.85%,瀝青質(zhì)15.15%。

2 結(jié)果分析

將稠油與地層水按一定質(zhì)量比加入反應釜中,加入催化劑,初始壓力3 MPa。反應一段時間后停止,冷卻到50℃,取出油樣,測量油樣脫水后50℃時的黏度。反應前后的稠油黏度差與反應前稠油黏度的比值即為稠油降黏率。

通過大量的正交實驗及單因子實驗,得到較優(yōu)的工藝條件,即:溫度為200℃,原油50 g,油水質(zhì)量比為7∶3,催化劑用量為0.5%。單56-13-19超稠油黏度由原來61.5 Pa·s降低到5.93 Pa·s,降黏率達90.36%。

2.1 催化降黏劑的表征

圖1為納米鎳透射電鏡圖及納米鎳晶格透射電鏡圖。由圖1可得,合成納米鎳顆粒的平均尺寸為4.2 nm,晶間距為0.23 nm,晶面為010,由此證實合成的催化劑屬于納米鎳顆粒。

2.2 稠油黏度及族組分變化

單56-13-19稠油反應前后族組成見表1。由表1可知:無催化劑參與,稠油在高溫水作用下發(fā)生了裂解反應,瀝青質(zhì)膠質(zhì)的含量降低,飽和烴與芳烴的含量增加,降黏率達33.96%;加入納米鎳催化降黏劑后,稠油在催化降黏劑與高溫水的作用下,裂解反應程度加大,膠質(zhì)及瀝青質(zhì)含量進一步減少,降黏率達90.36%。說明納米鎳參與稠油水熱裂解反應,促進反應的進行,使稠油的重質(zhì)組分向輕質(zhì)組分轉(zhuǎn)化,稠油的黏度也大幅度降低。

表1 單56-13-19稠油反應前后族組成Table 1 SARA composition of Shan56-13-19 before and after reaction%

圖1 納米鎳透射和晶格透射電鏡圖Fig.1 TEM and HRTEM images of Ni

2.3 稠油全烴氣相色譜分析

由圖2可知:無催化劑的作用下,原油經(jīng)過高溫水的作用后,發(fā)生了系列反應,小于C10烴的種類增多,含量由0增加到3.73%,大于C25烴含量也增加,由20.7%增加到50.6%,說明發(fā)生部分水熱裂解的同時發(fā)生了聚合反應;加入納米鎳催化降黏劑反應后,小于C10烴的含量增加較大,由3.73%增加到30.72%,大于C25烴的含量由50.6%減小到36.3%,說明納米鎳催化降黏劑加速水熱裂解反應的同時抑制了聚合反應。

2.4 稠油相對分子質(zhì)量分析

單56-13-19稠油反應前后相對分子質(zhì)量的變化見表2。由表2可知:稠油在無催化劑的作用下,瀝青質(zhì)平均相對分子質(zhì)量增加,膠質(zhì)的平均相對分子質(zhì)量變化不大,稠油整體相對分子質(zhì)量下降,說明稠油在發(fā)生水熱裂解反應的同時部分瀝青質(zhì)也發(fā)生聚合反應;加入納米鎳催化降黏劑反應后,瀝青質(zhì)的平均相對分子質(zhì)量降低28.06%,稠油整體的平均相對分子質(zhì)量降低22.33%,瀝青質(zhì)的裂解對稠油黏度及其平均相對分子質(zhì)量的下降起到了非常重要的作用。

圖2 單56-13-19稠油全烴氣相色譜圖Fig.2 GC spectrum of hydrocarbon of Shan 56-13-19

表2 單56-13-19稠油反應前后的相對分子質(zhì)量Table 2 Average molecular weight of Shan56-13-19 before and after reaction

2.5 稠油元素分析

單56-13-19稠油反應前后元素分析結(jié)果見表3。由表3可知:加入納米鎳催化降黏劑反應后,稠油及其重質(zhì)組分瀝青質(zhì)及膠質(zhì)的氫碳原子比(nH/nC)均增加,說明納米鎳催化降黏劑與高溫水協(xié)同作用與稠油發(fā)生了系列加氫反應,大量的氫轉(zhuǎn)移到稠油組分里;反應后硫含量降低,氮含量略減小,氧含量大大增加,特別是稠油及其瀝青質(zhì)中氧含量增加的幅度較大。通過對反應前后稠油芳香烴組分紅外光譜的分析可知,催化劑促進了高溫水參與反應,產(chǎn)生了具有表面活性的醇類、酚類和羧酸類等物質(zhì),導致反應后稠油含氧量增加,促進了稠油黏度降低,稠油及其重質(zhì)組分的氫碳原子比增加,稠油的品質(zhì)得到一定程度的改善。

表3 單56-13-19稠油反應前后元素分析Table 3 Elemental analysis of Shan56-13-19 before and after reaction

2.6 稠油族組成結(jié)構(gòu)變化

催化水熱裂解反應前后稠油中分離出的膠質(zhì)和瀝青質(zhì)的紅外光譜見圖3。由圖3可以看出:反應后瀝青質(zhì)3 444.24 cm-1處的峰消失,說明發(fā)生了脫氮反應;反應后1 607.30 cm-1s處的峰消失,說明不飽和共軛的結(jié)構(gòu)減弱,發(fā)生了加氫反應;反應后1723.94 cm-1處的峰產(chǎn)生,說明發(fā)生了加氫脫硫反應;反應后膠質(zhì)1 455.96 cm-1處的峰減弱,說明有CN鍵、SO鍵斷裂,由不飽和轉(zhuǎn)化為飽和,發(fā)生了加氫反應;反應后2 923.34,2 855.85,1 373.90 cm-1處的峰減弱,說明發(fā)生環(huán)烷烴橋鍵及烷烴支鏈的斷裂反應。

圖3 稠油瀝青質(zhì)和膠質(zhì)組分的紅外光譜圖Fig.3 IR spectrums of asphaltene and resin

3 結(jié)論

(1)利用微乳液法合成用于稠油水熱裂解納米鎳催化降黏劑,納米鎳顆粒的平均尺寸為4.2 nm,晶間距為0.23 nm。納米鎳催化降黏劑對勝利超稠油有較好的催化降黏效果,當溫度為200℃,原油50 g,油水質(zhì)量比為7∶3,催化劑用量為0.5%時,單56-13-19超稠油黏度由原來61.5 Pa·s降低到5.93 Pa·s,降黏率達90.36%。

(2)稠油在高溫水蒸汽的作用下,同時發(fā)生聚合反應及裂解反應,導致瀝青質(zhì)相對分子質(zhì)量升高。加入納米鎳催化降黏劑,有效抑制了聚合反應,同時促進了水熱裂解反應,水熱裂解催化反應后稠油瀝青質(zhì)的平均相對分子質(zhì)量降低28.06%,稠油整體的平均相對分子質(zhì)量降低22.33%。瀝青質(zhì)的裂解對稠油黏度及其平均相對分子質(zhì)量的下降起到了非常重要的作用。

(3)納米鎳催化降黏劑協(xié)同作用高溫水與稠油發(fā)生反應,產(chǎn)生具有表面活性的醇類、酚類、羧酸類等物質(zhì),導致反應后稠油含氧量增加,促進了稠油黏度的降低,稠油及其重質(zhì)組分的氫碳原子比增加,稠油品質(zhì)得到一定程度的改善。

[1]趙福麟.油田化學[M].東營:石油大學出版社,2003:175-176.

[2]HYNE J B,GREIDANUS J W,TYRER J D,et al.Aquathermolysis of heavy oil[C]//Proceedings of the 2nd international conference on heavy crude and tar sands,Caracas,Venezuela,c1982:25-30.

[3]CLARK P D,HYNE J B,TYRER J D.Chemistry of organosulfur compound type occurring in heavy oil sands(3):reaction of thiophene and tetrahydro-thiophene with vanadyl and nickel salts[J].Fuel,1984,63(7):1649-1655.

[4]MONIN J C,AUDLBERT A.Thermal crackilng of heavyoil mineral matrix system[J].SPE Reservoir Engineering,1988,3(4):1243-1250.

[5]RIVAS O R,CAMPOS R E,BORGES L G,et al.Experimental evaluation of transition metals salt solutions as additives in steam recovery processes[R].SPE 18076,1988.

[6]CLOUGHT J.Process for recovering hydrocarbon:US,4846274[P].1989-07-11.

[7]CLARK P D,CLARKE R A,HYNE J B,et al.Studies on the effect of metal species on oil sands undergoing steam treatments[J].AOSTRA J Res,1990,6(1):53-64.

[8]CLARK P D,KIRK M J.Studies on the upgrading of bituminous oils with water and transition metal catalysts[J].Energy Fuels,1994,8(2):380-387.

[9]RICHARD P D,WILLIAM C M,MURRAY R G.Thermal cracking of Athabasca bitumen:influence of steam on reaction chemistry[J].Energy&Fuels,2000,14(2):671-676.

[10]BRUCE P P,ALFRED G C.Iron-based ionic liquid catalysts for hydro-processing carbonaceous feeds:UP,6139723[P].1999-01-28.

[11]范洪富,劉永建,趙曉非.稠油在水蒸汽作用下組成變化研究[J].燃料化學學報,2001,29(3):269-272.FAN Hong-fu,LIU Yong-jian,ZHAO Xiao-fei.Study on composition changes of heavy oils under steam treatment[J].Journal of Fuel Chemistry and Technology,2001,29(3):269-272.

[12]范洪富,劉永建,趙曉非.井下水熱催化降黏開采稠油新技術(shù)研究[J].油田化學,2001,18(1):13-16.FAN Hong-fu,LIU Yong-jian,ZHAO Xiao-fei.A study on heavy oil recovery by in-situ catalyitc aquahtermal carcikng[J].Oilfield Chemistry,2001,18(1):13-16.

[13]范洪富,劉永建,趙曉非,等.國內(nèi)首例井下水熱裂解催化降黏開采稠油現(xiàn)場實驗[J].石油鉆采工藝,2001,23(3):42-44.FAN Hong-fu,LIU Yong-jian,ZHAO Xiao-fei,et al.First field experimental of recovery heavy oil using downhole catalytic method in China[J].Oil Drilling and Produciton Technology,2001,26(3):42-44.

[14]WEN Shou-bin,ZHAO Yu-jian,LIU Yong-jian,et al.A study on catalytic aquathermolysis of heavy crude oil during steam stimulation[R].SPE 106180,2007.

[15]范洪富,李忠寶,梁濤,等.離子液體催化改質(zhì)稠油實驗研究[J].燃料化學學報,2007,35(1):32-35.FAN Hong-fu,LI Zhong-bao,LIANG Tao,et al.Experimental study on using ionic liquids to upgrade heavy oil[J].Journal of Fuel Chemistry and Technology,2007,35(1):32-35.

[16]CHEN Yan-ling,WANG Yuan-qing,WU Chuan,et al.Laboratory experiments and field tests of an amphiphilic metallic chelate for catalytic aquathermolysis of heavy oil[J].Energy&Fuels,2008,22(3):1501-1508.

[17]CHEN Yan-ling,WANG Yuan-qing,LU Jiang-yi,et al.The viscosity reduction of nano-keggin-K3PMo12O40in catalytic aquathermolysis of heavy oil[J].Fuel,2009,88(8):1426-1434.

[18]樊澤霞,趙福麟,王杰祥,等.超稠油供氫水熱裂解改質(zhì)降黏研究[J].燃料化學學報,2006,34(3):315-318.FAN Ze-xia,ZHAO Fu-lin,WANG Jie-xiang,et al.Upgrading and viscosity reduction of super heavy oil by aquathermolysis with hydrogen donor[J].Journal of Fuel Chemistry and Technology,2006,34(3):315-318.

[19]宋向華,蒲春生,劉洋,等.井下乳化/水熱催化裂解復合降黏開采稠油技術(shù)研究[J].油田化學,2006,23(2):153-157.SONG Xiang-hua,PU Chun-sheng,LIU Yang,et al.A study on heavy oil recovery by in-situ emulsification/catalytic aquathermolysis[J].Oilfield Chemistry,2006,23(2):153-157.

[20]聞守斌,劉永建,宋玉旺,等.硅鎢酸對勝利油田超稠油的催化降黏作用[J].大慶石油學院學報,2004,28(1):25-27.WEN Shou-bin,LIU Yong-jian,SONG Yu-wang,et al.Effect of silicotungstic acid on catalytic visbreaking of extra heavy oil from Shengli oilfield[J].Journal of Daqing Petroleum Institute,2004,28(1):25-27.

[21]STRAUSZ O P,MOJELSKY T W,PAYZANT J D.Upgrading of Albertas heavy oils by superacid-catalyzed hydrocracking[J].Energy&Fuels,1999,13(3):558-569.

[22]BABCOCK L M,MORRELL D G.Fluorinated solid acid as catalysts for the preparation of hydrocarbonresins:EP,0964844[P].2003-08-19.

[23]JING P,LI Q B,HAN M.Effect of Ni2+and Sn2+modiedsolid super-acid catalysts on visbreaking of heavy petroleum oil[J].Petrochem Technol,2007,36:237-241.

[24]李偉,朱建華,齊建華.納米Ni催化劑在超稠油水熱裂解降黏中的應用研究[J].燃料化學學報,2007,35(2):176-180.LI Wei,ZHU Jian-hua,QI Jian-hua.Application of nano-nickl catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis[J].Journal of Fuel Chemistry and Technology,2007,35(2):176-180.

[25]CACCIOLA G,ARISTOV Yu I,RESTUCCIAG,et al.Influence of hydrogen-permeable membranes upon the efficiency of the high-temperature chemical heat pumps based on cyclohexane dehydrogenation-benzene hydrogenation reactions[J].Int J Hydrogen Energy,1993,18(8):673-680.

[26]周海安,史鴻鑫,項菊萍,等.W/O微乳液體系穩(wěn)定條件與納米鎳的制備[J].工業(yè)催化,2005,13(5):46-49.ZHOU Hai-an,SHI Hong-xin,XIANG Ju-ping,et al.The stabilization conditions of W/O microemulsion system and preparation of nickel nanoparticles[J].Industrial Catalysis,2005,13(5):46-49.

[27]吳美寧,史鴻鑫,周海安,等.十二烷基硫酸鈉/正戊醇/二甲苯/H2O微乳液及納米Ni催化劑制備[J].納米加工工藝,2008,5(4):58-62.WU Mei-ning,SHI Hong-xin,ZHOU Hai-an,et al.Microemulsion of sodium dodecyl sulfate/n-pentanol/xylene/H20 and preparation of nano-Ni[J].Nano-processing Technique,2008,5(4):58-62.

(編輯 劉為清)

Influence of nano-nickl catalyst on viscosity reduction of Shengli extra-heavy oil by aquathermolysis

WU Chuan1,LEI Guang-lun1,YAO Chuan-jin1,GAI Ping-yuan2,CAO Yan-bin2,LI Xiao-nan2
(1.College of Petroleum Engineering in China University of Petroleum,Qingdao 266555,China;2.Oil Production Technology Research Institute,Shengli Oilfield,Dongying 257000,China)

Nano-nickel catalyst was synthesized by microemulsion method,characterized by transmission electron microscopy(TEM),and then used in the extra-heavy oil aquathermolysis at 200℃.The physicochemical properties of heavy oil both before and after reaction were analyzed by using gas chromatography(GC),elemental analysis(EL),molecular weight analysis(VPO),fourier transform infrared(FT-IR).The results show that the viscosity reduction ratio of extra-heavy oil reaches 90.36%,the contents of resin and asphaltene decrease,and the average moleculars of heavy oil and asphaltene reduce after the catalytic aquathermolysis.The H-C ratio in heavy oil,resin and asphaltene increases.The contents of sulfur and nitrogen decrease,but oxygen content increases in the heavy oil after treatment.A lot of polymerize reactions occurred in the course of aquathermolysis,and the nano-nickel catalyst not only slowed down the polymerize reactions but also speeded up the aquathermolysis.The pyrolysis of asphaltene plays a very important role in synergism reactions between high temperature water and nano-nickel catalyst during the catalytic aquathermolysis,and produces more substances such as alcohol,carboxylate and fatty acid which results in the viscosity reduction of heavy oil.

heavy oil;aquathermolysis;nano-nickel;viscosity reduction

TE 357.46

A

10.3969/j.issn.1673-5005.2011.01.033

2010-09-25

中國石油化工集團公司先導性科技項目(P08057);中國石油大學(華東)研究生創(chuàng)新基金項目

吳川(1983-),男(漢族),湖北仙桃人,博士研究生,研究方向為提高采收率與采油化學。

1673-5005(2011)01-0164-05

猜你喜歡
黏劑水熱稠油
相變換熱技術(shù)在油田稠油開采中應用
稠油熱采區(qū)塊冷采降粘技術(shù)應用
水熱條件下火山灰基模擬137Cs地質(zhì)聚合物固化體的結(jié)構(gòu)與固化性能
廚余垃圾水熱炭化處理技術(shù)研究進展
玉米酒精粕基木材膠黏劑的制備及其性能
南海礁灰?guī)r稠油油藏注富氣混相驅(qū)實驗研究
克拉瑪依稠油MOA基質(zhì)瀝青改性及應用
來自法國的新型水基膠黏劑使用經(jīng)驗
水熱還是空氣熱?
富營養(yǎng)化藻的特性與水熱液化成油的研究