孫 琳,蒲萬(wàn)芬,吳雅麗,辛 軍
(1.西南石油大學(xué)石油工程學(xué)院,四川成都 610500;2.中海油能源發(fā)展采油技術(shù)服務(wù)公司,天津 300452; 3.中石油川慶鉆探公司地質(zhì)勘探開(kāi)發(fā)研究院,四川成都 610051)
表面活性劑作用后的固體潤(rùn)濕性
孫 琳1,蒲萬(wàn)芬1,吳雅麗2,辛 軍3
(1.西南石油大學(xué)石油工程學(xué)院,四川成都 610500;2.中海油能源發(fā)展采油技術(shù)服務(wù)公司,天津 300452; 3.中石油川慶鉆探公司地質(zhì)勘探開(kāi)發(fā)研究院,四川成都 610051)
通過(guò)考察經(jīng)石油磺酸鹽(PS)浸泡后的載玻片與油、水的接觸角以及經(jīng)石油磺酸鹽浸泡后的云母片的表面形貌,研究表面活性劑作用后的固體潤(rùn)濕性。結(jié)果表明:對(duì)于親水固體,經(jīng)低質(zhì)量濃度的石油磺酸鹽作用后,其上因石油磺酸鹽單分子層吸附而發(fā)生潤(rùn)濕性反轉(zhuǎn),而經(jīng)高質(zhì)量濃度的石油磺酸鹽作用后,其上因石油磺酸鹽雙分子層吸附而保持水濕性,同時(shí)其潤(rùn)濕性達(dá)到穩(wěn)定的時(shí)間隨石油磺酸鹽溫度的升高而縮短;對(duì)于親油固體,經(jīng)低溫高質(zhì)量濃度的石油磺酸鹽作用后,其潤(rùn)濕性難以改善,而經(jīng)高溫低質(zhì)量濃度的石油磺酸鹽作用后,其潤(rùn)濕性易因油濕性物質(zhì)脫附而反轉(zhuǎn),但若此后該溶液繼續(xù)作用,石油磺酸鹽則會(huì)在新固體表面發(fā)生單層吸附,令其再次親油;要高效利用表面活性劑改善潤(rùn)濕性,需要綜合考慮表面活性劑濃度、溫度以及作用時(shí)間的影響。
表面活性劑;潤(rùn)濕性反轉(zhuǎn);吸附;脫附;表面形貌
潤(rùn)濕性是影響驅(qū)油效率的關(guān)鍵因素[1-6],利用表面活性劑將親油油藏轉(zhuǎn)變?yōu)?偏)親水油藏可以提高采收率[7-9]。潤(rùn)濕性的測(cè)定方法[10-12]以接觸角法最為簡(jiǎn)單直觀(guān)。接觸角法一般是測(cè)量固體-油-表面活性劑溶液的三相接觸角[13-14]。由于以改善潤(rùn)濕性為目的的表面活性劑通常以小劑量段塞注入,所以考察后續(xù)水驅(qū)時(shí)的潤(rùn)濕性具有重要意義。筆者以載玻片、云母于表面活性劑溶液中浸泡模擬砂巖與表面活性劑的接觸,通過(guò)測(cè)量浸泡后的固體與油、水的接觸角,并結(jié)合固體表面的原子力顯微鏡形貌掃描,研究固體經(jīng)表面活性劑作用后的潤(rùn)濕性。
實(shí)驗(yàn)材料有石油磺酸鹽(PS)、高30原油與煤油混合而成的模擬油(黏度為490.5 mPa·s)、模擬鹽水(礦化度為11.438 g/L,其中Na++K+質(zhì)量濃度為4.008 g/L,Ca2++Mg2+質(zhì)量濃度為0.063 g/L)、載玻片、云母、HCl、二甲基硅油。
實(shí)驗(yàn)儀器包括 DSA100光學(xué)接觸角測(cè)量?jī)x、Multimode Nanoscope IIIa原子力顯微鏡、恒溫箱、西林瓶。
1.2.1 接觸角測(cè)定方法
(1)將載玻片或用HCl處理為親水,或用二甲基硅油處理為親油。
(2)將親水/親油載玻片浸泡于PS溶液中,并于一定溫度下放置。
(3)將與PS作用不同時(shí)間的載玻片取出,并用DSA100在25℃下測(cè)定載玻片-模擬油-模擬水的三相接觸角。
1.2.2 表面形貌測(cè)定方法
(1)將新鮮剝離或用二甲基硅油處理后的云母片浸入PS溶液中,并于一定溫度下放置20 h。
(2)取出云母片并用高純氮?dú)獯蹈?,然后使用Multimode Nanoscope IIIa在輕敲模式下進(jìn)行掃描(共振頻率為300 kHz,力常數(shù)為35 N/m)。
表1為載玻片在114℃條件下經(jīng)不同質(zhì)量濃度PS溶液浸泡后與模擬油、模擬水間的接觸角。由表1可知,親水載玻片的潤(rùn)濕性在PS溶液作用46 h后均達(dá)到穩(wěn)定。但當(dāng)PS質(zhì)量濃度為0.1 g/L時(shí),PS分子在親水載玻片上以疏水基朝外的方式單層吸附,且吸附量隨浸泡時(shí)間的延長(zhǎng)逐漸增加,導(dǎo)致潤(rùn)濕性發(fā)生反轉(zhuǎn)。而當(dāng)PS質(zhì)量濃度達(dá)到0.5 g/L后,PS分子在浸泡過(guò)程中由單層吸附向雙層吸附轉(zhuǎn)變,使得載玻片的水濕性先減弱后增強(qiáng)。
親油載玻片在PS溶液中浸泡5 h后,潤(rùn)濕性均發(fā)生了反轉(zhuǎn),并在隨后的浸泡過(guò)程中經(jīng)歷了與親水載玻片相似的潤(rùn)濕性變化:在低質(zhì)量濃度PS溶液中浸泡的載玻片再次親油,而在高質(zhì)量濃度PS溶液中浸泡的載玻片保持親水??梢?jiàn),PS分子不是通過(guò)疏水基吸附在親油載玻片來(lái)改善其潤(rùn)濕性(否則各接觸角會(huì)隨浸泡時(shí)間的延長(zhǎng)而減小),而是通過(guò)先將硅油分子從載玻片上拉拽下來(lái),接著自身在載玻片上發(fā)生吸附來(lái)實(shí)現(xiàn)對(duì)其潤(rùn)濕性的改變。
表1 不同質(zhì)量濃度PS溶液作用后載玻片-油-水的接觸角Table 1 Contact angle of glass slide-oil-water after different concentration PSacting
表2為載玻片經(jīng)不同溫度下的2 g/LPS溶液浸泡后與模擬油、模擬水間的接觸角。表2表明,親水載玻片的最終潤(rùn)濕性受PS溫度的影響不大,但溫度升高,PS分子的熱運(yùn)動(dòng)加劇,在載玻片上的吸附速率加快,潤(rùn)濕性容易達(dá)到穩(wěn)定。而親油載玻片的潤(rùn)濕性則受到PS溫度的顯著影響,PS溫度越高,親油載玻片越易向水濕轉(zhuǎn)變。其原因在于:低溫下硅油分子與載玻片間的氫鍵作用強(qiáng)烈,而PS活性較弱,難以使兩者分離;高溫下硅油分子與載玻片間的氫鍵作用減弱,而PS活性增強(qiáng),能夠通過(guò)膠束對(duì)硅油分子的增溶作用使其從載玻片上脫附,從而恢復(fù)載玻片的親水本性。
表2 不同溫度下PS溶液作用后載玻片-油-水的接觸角Table 2 Contact angle of glass slide-oil-water after different temperature PSacting
使用原子力顯微鏡直接觀(guān)察固體的表面形貌,可以從分子水平對(duì)表面活性劑作用后的潤(rùn)濕性進(jìn)行更為深刻的認(rèn)識(shí)[15-16]。圖1為新鮮剝離的云母片在114℃PS溶液中浸泡20 h后的表面形貌(10 μm ×10 μm)。從圖1看出:當(dāng)質(zhì)量濃度為0.1 g/L時(shí),PS在親水云母片上呈不規(guī)則針狀吸附,高度為2~3 nm,呈單分子特征;當(dāng)質(zhì)量濃度為2 g/L時(shí),PS在親水云母片上的吸附密度明顯增大,且立體結(jié)構(gòu)呈半徑為150~200 nm、高度為16~18 nm的圓錐狀,表現(xiàn)出雙層吸附的特征。
圖1 親水云母經(jīng)114℃PS溶液浸泡后的表面形貌Fig.1 Surface topography of hydrophilic mica after 114℃PSsolution soaking
圖2 親油云母經(jīng)2 g/LPS溶液浸泡后的表面形貌Fig.2 Surface topography of hydrophobic mica after 2 g/LPSsolution soaking
圖2為不同溫度條件下親油云母片在2 g/LPS溶液中浸泡20 h后的表面形貌。由圖2可知:當(dāng)PS溫度為25℃時(shí),云母片上存在大量高度在5~9 nm之間形狀各一的吸附物,以及另一種密集程度較小、高度在21~30 nm之間的圓錐狀吸附物,前者為處理云母片時(shí)不均勻吸附的硅油分子,后者為以雙層吸附的PS分子;當(dāng)PS溫度為114℃時(shí),云母片上的吸附物急劇減少,僅可觀(guān)察到高度約24 nm的圓錐狀吸附物,即硅油分子已從云母片上完全脫落??梢?jiàn),固體的表面形貌與接觸角的測(cè)量結(jié)果存在良好的一致性。
(1)表面活性劑與固體間需存在足夠的作用時(shí)間才能使固體的潤(rùn)濕性達(dá)到穩(wěn)定,而作用時(shí)間的長(zhǎng)短以及最終的潤(rùn)濕性與表面活性劑的質(zhì)量濃度、溫度密切相關(guān)。
(2)經(jīng)表面活性劑作用后,親水固體的潤(rùn)濕性取決于其上表面活性劑分子的吸附模式和吸附數(shù)量,而親油固體(因油濕性物質(zhì)吸附而親油)的潤(rùn)濕性先取決于其上油濕性物質(zhì)的脫附,然后取決于其上表面活性劑分子的吸附。
[1]ZHAO Xiucai,BLUNT MJ,YAO Jun.Pore-scale modeling:effects of wettablity on waterflood oil recovery[J]. Journal of Petroleum Science and Engineering,2010,71 (3/4):169-178.
[2]AGBALAKA CC,DANDEKARA Y,PATILSL,et al. The effect of wettability on oil recovery:a review[R]. SPE 114496,2008.
[3]DONALDSONE C,THOMASRD,LORENZ P B.Wettability determination and its effect on recovery efficiency[J].Soc Pet Eng J,1969(3):13-20.
[4]姚同玉,李繼山,周廣厚.影響驅(qū)油劑洗油效率的參數(shù)分析[J].中國(guó)石油大學(xué)學(xué)報(bào):自然科學(xué)版,2008,32 (3):99-102.
YAO Tong-yu,LI Ji-shan,ZHOU Guang-hou.Analysis of parameters influencing oil displacement efficiency of oil displacement agent[J].Journal of China University of Petroleum(Edition of Natural Science),2008,32(3): 99-102.
[5]李華斌.不同潤(rùn)濕性條件下適合于不同滲透率油層的超低界面張力驅(qū)油體系[J].石油學(xué)報(bào),2008,29(4): 573-576.
LI Hua-bin.Oil-displacement system with ultra-low interfacial tension for reservoirs of different permeability under different wettability on rock surface[J].Acta Petrolei Sinica,2008,29(4):573-576.
[6]劉中云,曾慶輝,唐周懷,等.潤(rùn)濕性對(duì)采收率及相對(duì)滲透率的影響[J].石油與天然氣地質(zhì),2000,21(2): 148-150.
LIU Zhong-yun,ZHENQing-hui,TANG Zhou-huai,et al.Effect of wettability on recovery and relative permeability[J].Oil&Gas geology,2000,21(2):148-150.
[7]RAO D N,AYIRALA SC,XU W.Impact of low-cost dilute surfactants on wettability and relative permeability[R].SPE 99609,2006.
[8]?SMUND Haugen.Fluid flow in fractured carbonates: wettability effects and enhanced oil recovery[D].Bergen,Norway:The Doctoral Dissertation of University of Bergen,2010:18-19.
[9]AGBALAKA CC,DANDEKARA Y,PATILSL,et al. Coreflooding studies to evaluate the impact of salinity and wettability on oil recovery efficiency[J].Transport in Porous Media,2009,76(1):77-94.
[10]鄢捷年.一種定量測(cè)定油藏巖石潤(rùn)濕性的新方法[J].石油勘探與開(kāi)發(fā),2001,28(2):83-86.
YANJie-nian.A new method for determination of wettability of reservoir rocks[J].Petroleum Exploration and Development,2001,28(2):83-86.
[11]ROBINM,COMBESR,ROSENBERG E.Cryo-ESMand ESEM:new techniques to investigate phase interactions within reservoir rocks[R].SPE 56829,1999.
[11]秦之錚.利用接觸角計(jì)測(cè)角評(píng)價(jià)油層潤(rùn)濕性[J].石油勘探與開(kāi)發(fā),1987(3):79-81. QING Zhi-zheng.Using contact angle evaluate reservoir wettability[J].Petroleum Exploration and Development,1987(3):79-81.
[12]TREIBERLE,OWENSW W.A laboratory evaluation of the wettability of fifty oil-producing reservoirs[J]. SPE Journal,1972,12(6):531-540.
[13]ZHENG Y,RAO D N.Surfactant-induced spreading and wettability effects in condensate reservoirs[R]. SPE 129668,2010.
[14]AYIRALA SC,VIJAPURAPU CS,RAO D N.Beneficial effects of wettability altering surfactants in oil-wet fractured reservoirs[J].Journal of Petroleum Science and Engineering,2006,52(1/4):261-274.
[15]KAROUSSIA O,HAMOUDA A A.Macroscopic and nanoscale study of wettability alteration of oil-wet calcite surface in presence of magnesium and sulfate ions[J]. Journal of Colloid and Interface Science,2008,317(1): 26-34.
[16]KUMARK,DAO E K,MOHANTY K K.Atomic force microscopy study of wettability alteration by surfactants[J].SPE Journal,2008(6):137-145.
Solid wettability after surfactant acting
SUNLin1,PU Wan-fen1,WU Ya-li2,XINJun3
(1.School of Petroleum Engineering in Southwest Petroleum University,Chengdu610500,China; 2.CNOOCEnergy Development Oil Technical Services Company,Tianjin300452,China; 3.Geological Exploration and Development Research Institute,CNPCChuanqing Drilling Engineering Company,Chengdu610051,China)
By measuring the contact angle of oil/water/glass slide that has been soaked in petroleum sulfonate(PS),as well as examining the surface topography of mica which also has been soaked by petroleum sulfonate,the solid wettability after surfactant acting was researched.The results show that,for hydrophilic solid,after being soaked in low concentration PSsolution,its wettability alternates due to the adsorption of PSmonomolecule layer on its surface.However,after being soaked in high concentration PSsolution,its wettability keeps water-wet due to the adsorption of PSbilayer on its surface.Meanwhile,the time for hydrophilic solid reaching stable wettability shortens with elevated PStemperature.For hydrophobic solid,after being soaked in low temperature high concentration PSsolution,its wettability rarely improves.However,after being soaked in high temperature low concentration PSsolution,its wettability improves easily due to the desorption of oil-wet materials from its surface.But if the solid is soaked any more,its wettability will alternate again due to the adsorption of PSmonomolecule layer on the new solid surface.Consequently,it demands comprehensive consideration about the surfactant concentration,temperature and action time to effectively use surfactant improving wettability.
surfactant;wettability alteration;adsorption;desorption;surface topography
TE 357
A
10.3969/j.issn.1673-5005.2012.01.029
1673-5005(2012)01-0162-03
2011-09-23
國(guó)家科技重大專(zhuān)項(xiàng)課題(2008ZX05049-005-007HZ)
孫琳(1982-),女(漢族),四川南充人,講師,博士,研究方向?yàn)樘岣卟墒章试砼c技術(shù)。
(編輯 劉為清)