王慶奎,邢克智,趙海運(yùn),陳成勛,毋占勇,馬 甡
(1.中國(guó)海洋大學(xué)海水養(yǎng)殖教育部重點(diǎn)實(shí)驗(yàn)室,山東青島266003;2.天津農(nóng)學(xué)院天津市水產(chǎn)生態(tài)及養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室,天津300384)
喂食當(dāng)歸多糖對(duì)點(diǎn)帶石斑魚非特異性免疫力和抗病力的影響*
王慶奎1,2,邢克智2**,趙海運(yùn)2,陳成勛2,毋占勇2,馬 甡1
(1.中國(guó)海洋大學(xué)海水養(yǎng)殖教育部重點(diǎn)實(shí)驗(yàn)室,山東青島266003;2.天津農(nóng)學(xué)院天津市水產(chǎn)生態(tài)及養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室,天津300384)
在餌料中添加0、500、3 000 mg/kg的當(dāng)歸多糖(ASP)喂食點(diǎn)帶石斑魚(Epinephelus malabaricus)(初始體重(158.64±2.14)g),分別在喂食4和8周后取樣,研究ASP對(duì)點(diǎn)帶石斑魚非特異性免疫力和抗病力的影響。結(jié)果表明,ASP能顯著提高血液白細(xì)胞吞噬率和血清LZM活力(P<0.05),對(duì)血清一氧化氮(NO)、體表黏液溶菌酶(LZM)活力和抗菌活力無(wú)顯著影響。ASP能促進(jìn)頭腎白細(xì)胞增殖、呼吸爆發(fā)活力和吞噬活力,降低用遲緩愛德華菌(Edwardsiella tarda)攻毒后試驗(yàn)魚的累積死亡率,3 000 mg/kg組累積死亡率低于500 mg/kg組,連續(xù)喂食ASP 8周的保護(hù)效果優(yōu)于4周。研究表明,用含ASP 3 000 mg/kg的餌料連續(xù)喂食點(diǎn)帶石斑魚8周能有效提高其非特異性免疫力和抗病力。
當(dāng)歸多糖;點(diǎn)帶石斑魚;非特異性免疫力;抗病力
隨著魚類集約化養(yǎng)殖的發(fā)展,高密度養(yǎng)殖容易造成魚類健康水平下降,使其易于被微生物感染。傳統(tǒng)的預(yù)防和治療藥物如抗生素會(huì)導(dǎo)致病菌產(chǎn)生抗藥性,化學(xué)消毒劑會(huì)殺死有益微生物,并會(huì)對(duì)環(huán)境造成污染,水產(chǎn)品中也會(huì)有藥物殘留[1]。研究表明免疫增強(qiáng)劑可能成為抗生素和化學(xué)消毒劑在水產(chǎn)養(yǎng)殖上的替代品[2]。在眾多的免疫增強(qiáng)劑中,植物多糖由于具有生物相容性(Biocompatible)、生物可降解性(Biodegradable)、有效性和對(duì)環(huán)境的安全性等優(yōu)勢(shì),以及對(duì)生物體具有綜合調(diào)理、治標(biāo)治本等功效,已經(jīng)引起社會(huì)的廣泛關(guān)注[3-7]。
當(dāng)歸多糖(Angelica sinensis polysaccharide,ASP)是中草藥當(dāng)歸(Radix Angelica sinensis)中的主要活性成分之一,對(duì)動(dòng)物具有廣泛的生物學(xué)效應(yīng),如具有抗輻射[8-10]、保護(hù)胃腸道[11]、抗?jié)儯?2]、造血[13]、抗腫瘤[14-17]、抗氧化[18-20]、抗病毒[21-22]和免疫調(diào)節(jié)[23-24]活力。雖然ASP能調(diào)節(jié)畜禽類動(dòng)物的免疫系統(tǒng),但它對(duì)水產(chǎn)動(dòng)物是否具有免疫調(diào)節(jié)作用尚未見報(bào)道。
點(diǎn)帶石斑魚(Epinephelus malabaricus)是東南亞沿海重要的高檔海水養(yǎng)殖魚類之一。近十年來(lái),點(diǎn)帶石斑魚高密度養(yǎng)殖在我國(guó)福建、廣東、廣西和海南沿海蓬勃發(fā)展起來(lái),在北方具有地?zé)豳Y源的沿海地區(qū)也有工廠化養(yǎng)殖。石斑魚高密度養(yǎng)殖條件下易患寄生蟲病、細(xì)菌病和病毒?。?5]。寄生蟲以盾纖毛蟲和刺激隱核蟲(Cryptocaryon irritans)危害最嚴(yán)重,細(xì)菌以弧菌[26]危害最嚴(yán)重,病毒以神經(jīng)壞死病毒(Nervous necrosis virus)[27]危害最嚴(yán)重。這些疾病常導(dǎo)致石斑魚大批死亡,是長(zhǎng)期困擾石斑魚養(yǎng)殖發(fā)展的主要問(wèn)題。因此迫切需要尋找能夠提高點(diǎn)帶石斑魚非特異性免疫力和抗病力的免疫增強(qiáng)劑。本試驗(yàn)研究喂食ASP對(duì)點(diǎn)帶石斑魚非特異性免疫力和抗病力的影響,為其在水產(chǎn)養(yǎng)殖中的應(yīng)用提供參考。
試驗(yàn)魚取自天津市海發(fā)珍品實(shí)業(yè)發(fā)展有限公司。ASP為本實(shí)驗(yàn)室提取純化[28]。
取健康、無(wú)畸形的點(diǎn)帶石斑魚(初始體重(158.64±2.14)g)隨機(jī)分配到18個(gè)水族箱中,每箱25尾。參考前期的研究結(jié)果,ASP設(shè)低劑量組(500 mg/kg餌料)和高劑量組(3 000 mg/kg餌料),對(duì)照組喂食基礎(chǔ)餌料,每組喂食6箱。連續(xù)喂食4周、8周后取樣,每組每次取3箱,每箱隨機(jī)取8尾魚,測(cè)體表黏液溶菌酶(LZM)活力和抗菌活力,血液白細(xì)胞吞噬能力,血清LZM活力和一氧化氮(NO)含量。每箱另取9尾魚用遲緩愛德華菌(Edwardsiella tarda)攻毒,連續(xù)觀察7 d,計(jì)算累計(jì)死亡率。喂食8周后每箱另取8尾,解剖出頭腎并分離頭腎白細(xì)胞,檢測(cè)頭腎白細(xì)胞增殖、呼吸爆發(fā)和吞噬能力。取樣箱剩余的魚不再用于試驗(yàn)。
基礎(chǔ)餌料配方見表1,各原料粉碎后過(guò)60目篩,復(fù)合維生素、復(fù)合礦物質(zhì)和ASP采用逐級(jí)擴(kuò)大法混合,與其它原料混勻后加油和水,充分混勻后用絞肉機(jī)擠成直徑2 mm的面條狀餌料,陰干、搓碎后密封,冷藏備用。
表1 基礎(chǔ)餌料配方aTable 1 Composition of the basal diet a
試驗(yàn)魚飼養(yǎng)在240 L(860×620×455 mm3)聚乙烯箱中,微流水養(yǎng)殖。試驗(yàn)前用基礎(chǔ)餌料馴養(yǎng)3周。每天喂食2次(08:00,16:00),日投餌量約占魚體重的1%,并隨魚的生長(zhǎng)和攝食情況適當(dāng)調(diào)節(jié)。保持箱內(nèi)清潔。水質(zhì)條件為:水溫23~26℃,鹽度28~32,溶解氧>6 mg/L,p H7.8~8.6,-N<0.20 mg/L,-N<0.07 mg/L。
遲緩愛德華菌(E.tarda)分離自發(fā)病石斑魚,由本實(shí)驗(yàn)室鑒定并保存。攻毒試驗(yàn)前1 d將E.tarda在營(yíng)養(yǎng)瓊脂培養(yǎng)基上28℃培養(yǎng)24 h,用滅菌PBS(0.15 mol/L,p H=7.2)洗滌數(shù)次,調(diào)濃度為9×108cfu/m L用于攻毒試驗(yàn)。
按吳葉等[29]的方法制備GSRBCs,4℃保存,使用前用無(wú)菌PBS洗滌5次以除去戊二醛,RPMI-1640培養(yǎng)液(RPMI-1640中加100 IU/mL氨芐青霉素和0.1 mg/mL硫酸鏈霉素)重懸,調(diào)濃度至1.8×107cells/mL。
參考Li等[30]的方法并稍作修改。試驗(yàn)魚用MS-222麻醉致死,無(wú)菌取頭腎,剪碎,置100目無(wú)菌不銹鋼細(xì)胞篩中,用注射器芯輕輕擠壓組織,使單細(xì)胞穿過(guò)篩網(wǎng),并不時(shí)用含20 IU/m L肝素鈉的RPMI-1640維持液(RPMI-1640中加5%胎牛血清、100 IU/m L氨芐青霉素和0.1 mg/m L硫酸鏈霉素)將篩網(wǎng)上單細(xì)胞洗下。單細(xì)胞懸液用Hank’s平衡鹽溶液(HBSS)漂洗2次(4℃640×g離心5 min),RPMI-1640維持液重懸,4℃保存。
無(wú)菌離心管中依次加1.059、1.020 g/m L的Percoll應(yīng)用液和單細(xì)胞懸液各1 m L,4℃840×g離心15 min,收集白細(xì)胞,洗滌2次(4℃640×g離心5 min),RPMI-1640維持液重懸。
取少許白細(xì)胞懸液,加一滴0.4%臺(tái)盼藍(lán)染色2 min,用血球計(jì)數(shù)板檢查活細(xì)胞,要求活細(xì)胞數(shù)大于95%。
1.8.1 體表黏液LZM活力 用比濁法測(cè)定,參照Cheng等[31]的方法并稍作改動(dòng)。以溶壁微球菌(Micrococcus lysodeikticus)為底物,用0.1 mol/L PBS(p H=6.4)調(diào)濃度至O.D.570≈0.3。體表黏液冰水浴中勻漿,2 000 r/min離心10 min,取10μL黏液上清加到250μL預(yù)冷的溶壁微球菌懸液中,混勻后立即在酶標(biāo)儀上450 nm波長(zhǎng)測(cè)O.D.值。將96孔板25℃孵育30 min后,測(cè)O.D.值??捡R斯亮藍(lán)G-250法[32]測(cè)黏液上清蛋白質(zhì)含量。單位LZM活力定義為:每毫克蛋白質(zhì)每分鐘O.D.值減少0.1為1個(gè)活力單位。
1.8.2 體表黏液抗菌活力 按照王偉慶等[33]的方法并稍作改動(dòng)。以溶藻弧菌(Vibrio alginolyticus)為底物,用0.1 mol/L PBS(p H=6.4)調(diào)濃度至O.D.570≈0.3。取50μL黏液上清加到200μL菌懸液中,混勻后立即在酶標(biāo)儀上570 nm測(cè)O.D.值A(chǔ)0。25℃孵育30 min后置冰水浴中止反應(yīng),測(cè)O.D.值A(chǔ)。抗菌活力Uα=[(A0-A)/A]1/2。
1.8.3 血液白細(xì)胞吞噬能力 按郭小華等[34]的配方培養(yǎng)枯草芽孢桿菌(Bacillus subtilis),無(wú)菌PBS洗滌數(shù)次后4℃保存,用前將濃度調(diào)至4×107cfu/mL。200μL抗凝血中加50μL菌懸液,混勻,28℃孵育30 min,每10 min搖勻1次。孵育結(jié)束后涂血涂片,吉姆薩染色,油鏡計(jì)數(shù)白細(xì)胞吞噬情況。按下列公式計(jì)算吞噬率(Phagocytic rate,PR)和吞噬指數(shù)(Phagocytic index,PI)。吞噬率(PR,%)=(100個(gè)白細(xì)胞中參與吞噬的細(xì)胞數(shù)/100)×100%;吞噬指數(shù)(PI)=被吞噬的枯草芽孢桿菌數(shù)/吞噬枯草芽孢桿菌的白細(xì)胞數(shù)。
1.8.4 血清LZM活力 150μL溶壁微球菌懸液均勻涂布在固體培養(yǎng)基上,等間距放置直徑4.32 mm滅菌濾紙片,濾紙片上加濃度為375、750、1 125、1 500、1 875、2 250 U/m L的LZM標(biāo)準(zhǔn)品溶液10μL,28℃培養(yǎng)12 h測(cè)抑菌圈直徑。以抑菌圈直徑為X,溶菌酶標(biāo)準(zhǔn)品濃度的對(duì)數(shù)為Y,求回歸方程。濾紙片上加10 μL血清,按上述方法孵育,測(cè)量抑菌圈直徑,代入回歸方程得血清LZM活力。
1.8.5 血清NO含量 血清NO(硝酸還原酶法)用南京建成生物工程研究所生產(chǎn)的試劑盒測(cè)定。
1.8.6 頭腎白細(xì)胞呼吸爆發(fā) 用HBSS調(diào)白細(xì)胞濃度至5×106cells/m L,按Cheng等[31]的方法測(cè)定,用脂多糖(LPS)刺激細(xì)胞。呼吸爆發(fā)系數(shù)(Respiratory burst index,RBI)=用LPS刺激孔O.D.-未用LPS刺激孔O.D.。
1.8.7 頭腎白細(xì)胞增殖 參照Wu等[35]的方法測(cè)定并稍作改動(dòng)。頭腎白細(xì)胞用RPMI-1640增殖液(含10%胎牛血清,2%熱滅活石斑魚血清(合并若干尾非試驗(yàn)用石斑魚血清,45℃孵育30 min),100 IU/m L氨芐青霉素,0.1 mg/m L硫酸鏈霉素)重懸。向平底96孔板中加入90μL增殖液(含5×105個(gè)頭腎白細(xì)胞),10μL 100μg/m L LPS或HBSS(每尾魚加8個(gè)孔,LPS和HBSS各4個(gè)孔),5%CO2培養(yǎng)箱27℃孵育24和48 h。孵育結(jié)束后每孔加1 mg/mL的四甲基偶氮唑藍(lán)(MTT)20μL,繼續(xù)孵育4 h。離心(500×g,10 min),小心棄去上清液,每孔加200μL二甲基亞砜(DMSO),25μL甘氨酸緩沖液(0.1 mol/L甘氨酸,0.1 mol/L氯化鈉,調(diào)p H至10.5),充分混勻,10 min后550 nm測(cè)O.D.值。刺激指數(shù)(Stmulation index,SI)=(加LPS刺激的平均O.D./未加LPS刺激的平均O.D.)-1。
1.8.8 頭腎白細(xì)胞吞噬 白細(xì)胞濃度調(diào)整至5×107cells/m L,以GSRBCs為吞噬原,按Gebran等[36]和Wu等[35]的方法測(cè)定。吞噬活力=試驗(yàn)孔O.D.-對(duì)照孔O.D.。測(cè)完后離心96孔板,棄上清,每孔加100μL溶解緩沖液(0.1 mol/L檸檬酸,1%Tween 20,0.05%結(jié)晶紫),混勻,血球計(jì)數(shù)板計(jì)數(shù)細(xì)胞核數(shù)。每孔細(xì)胞數(shù)約為2×105個(gè)。
1.8.9 攻毒試驗(yàn) 喂食4周、8周后每組取3箱,每箱隨機(jī)取9尾魚,MS-222麻醉后腹腔注射E.tarda(4周50μL/尾,8周100μL/尾)。攻毒魚單獨(dú)飼養(yǎng)(9尾/箱,共9箱)。每天喂食2次,記錄死亡數(shù)并撈出死魚,連續(xù)觀察7 d,計(jì)算累積死亡率。
所得數(shù)據(jù)用SPSS 16.0統(tǒng)計(jì)軟件做單因素方差分析(ANOVA),差異顯著(P<0.05)的用Duncan’s法作多重比較。數(shù)據(jù)用平均值±標(biāo)準(zhǔn)誤表示。
ASP對(duì)點(diǎn)帶石斑魚體表黏液LZM活力和抗菌活力無(wú)顯著影響(見圖1)。
圖1 喂食ASP對(duì)點(diǎn)帶石斑魚體表黏液LZM活力和抗菌活力的影響(n=8)Fig.1 Dietary ASP on skin mucus lysozyme activity and antibacterial activity of E.malabaricus(n=8)
由圖2可以看出,喂食ASP 4和8周均能顯著提高點(diǎn)帶石斑魚血液白細(xì)胞吞噬率(PR),500 mg/kg組和3 000 mg/kg組差異不顯著。吞噬指數(shù)(PI)隨ASP添加量的增多呈升高趨勢(shì)。
ASP對(duì)點(diǎn)帶石斑魚血清LZM、NO的影響見圖3。喂食ASP 4周能顯著提高點(diǎn)帶石斑魚血清LZM活力,8周后500 mg/kg組LZM活力與對(duì)照組持平,3 000 mg/kg組LZM活力顯著高于對(duì)照組。ASP對(duì)血清NO含量影響不顯著。
由圖4可以看出,無(wú)論是否存在LPS,ASP均能促進(jìn)頭腎白細(xì)胞增殖,各組間增殖24 h的差異大于48 h,方差分析表明各組間增殖差異不顯著。由圖5可以看出,無(wú)論是否存在LPS,ASP均能促進(jìn)頭腎白細(xì)胞呼吸爆發(fā)活力,方差分析表明各組間差異不顯著。ASP能顯著提高頭腎白細(xì)胞吞噬活力,3 000 mg/kg組吞噬活力高于500 mg/kg組。
由圖6可以看出,喂食ASP 4周后用E.tarda攻毒第3天的累積死亡率顯著低于對(duì)照組,第4天3 000 mg/kg組累積死亡率仍顯著低于對(duì)照組,第5天后各組累積死亡率穩(wěn)定不變,500 mg/kg組和3 000 mg/kg組累積死亡率分別比對(duì)照組降低了9.3%和18.6%,各組間差異不顯著。喂食ASP 8周后攻毒,在攻毒后第2天3000 mg/kg組累積死亡率顯著低于對(duì)照組,第3天喂食ASP組累積死亡率顯著低于對(duì)照組,第4天后各組累積死亡率保持不變,500 mg/kg組和3 000 mg/kg組累積死亡率分別比對(duì)照組降低了3.8%和26.9%,3 000 mg/kg組顯著低于對(duì)照組。
圖6 喂食ASP 4周、8周后用E.tarda攻毒累積死亡率(n=9)Fig.6 Cumulative mortality of E.malabaricus challenged by E.tarda after 4 and 8-week ASP feeding(n=9)
魚類免疫系統(tǒng)可分為非特異性免疫系統(tǒng)和特異性免疫系統(tǒng)兩大類。作為低等脊椎動(dòng)物,魚類的特異性免疫系統(tǒng)比較原始,而非特異性免疫機(jī)制在防止感染中扮演更重要的角色。
魚類體表黏液是魚體與外界直接接觸的第一道屏障,富含能形成凝膠的大分子(主要是黏蛋白)。這些大分子遇水膨脹并相互交織,在水中形成粘稠的三維結(jié)構(gòu),能對(duì)病原起到有效的俘獲(Trapping)和陷入(Sloughing)作用。另外黏液所含的免疫成分也能有效殺死病原,這些成分包括LZM、幾丁質(zhì)酶、免疫球蛋白、補(bǔ)體、碳酸酐酶(Carbonic anhydrase)、白介素、凝集素、激泌毒素(Crinotoxin)、鈣調(diào)蛋白、C-反應(yīng)蛋白、轉(zhuǎn)鐵蛋白、蛋白酶及抗菌蛋白/肽等[37-40]。Palaksha等認(rèn)為L(zhǎng)ZM可能是牙鲆抵御病原菌入侵的非常重要的粘液免疫因子[38]。Cha等將殼聚糖(Chitosan)包裹餌料喂食牙鲆(Paralichthys olivaceus)12周后,發(fā)現(xiàn)其體表黏液LZM活力顯著升高[41]。本研究發(fā)現(xiàn)點(diǎn)帶石斑魚體表黏液具有一定的溶菌酶活力和抗菌活力,但ASP對(duì)其活力無(wú)顯著影響。
吞噬作用在魚類抵御外界病原入侵過(guò)程中起著非常重要的作用,主要通過(guò)在呼吸爆發(fā)過(guò)程中產(chǎn)生的大量氧自由基來(lái)殺死吞入胞內(nèi)的病原[42]。研究發(fā)現(xiàn),喂食殼聚糖[43]、海藻酸鈉(Sodium alginate)[44]以及從雜色云芝菌(Coriolus versicolor)中分離出的一種蛋白質(zhì)結(jié)合多糖PS-K[45]均能提高魚類吞噬和呼吸爆發(fā)能力。本試驗(yàn)中喂食ASP后點(diǎn)帶石斑魚血液和頭腎白細(xì)胞吞噬能力顯著提高,頭腎白細(xì)胞呼吸爆發(fā)活力增強(qiáng),說(shuō)明ASP能提高點(diǎn)帶石斑魚白細(xì)胞免疫能力。本試驗(yàn)檢測(cè)頭腎白細(xì)胞呼吸爆發(fā)和增殖時(shí)加入LPS,目的是為了檢驗(yàn)LPS與ASP對(duì)點(diǎn)帶石斑魚頭腎白細(xì)胞免疫是具有協(xié)同還是頡頏作用。從圖4和5中可以看出,LPS與ASP對(duì)白細(xì)胞增殖和呼吸爆發(fā)具有協(xié)同作用的趨勢(shì)。
通過(guò)口服途徑給予動(dòng)物的多糖會(huì)在消化道中被消化酶降解,為動(dòng)物提供能量。López等[46]報(bào)道β-1,3-葡聚糖在凡納濱對(duì)蝦(Litopenaeus vannamei)消化腺中被β-葡聚糖酶(β-glucanases)降解,使餌料中更多的蛋白質(zhì)用于生長(zhǎng)。Zhao等[47]用β-1,3-葡聚糖喂食凡納濱對(duì)蝦84 d發(fā)現(xiàn),喂食低劑量的β-1,3-葡聚糖(250 mg/kg餌料)能提高對(duì)蝦的生長(zhǎng)率,而高劑量的β-1,3-葡聚糖(500、1000 mg/kg餌料)能提高對(duì)蝦的免疫力和抗亞硝酸鹽能力,說(shuō)明低劑量的β-1,3-葡聚糖(≤250 mg/kg餌料)可能大部分作為能量來(lái)源,只有高劑量的β-1,3-葡聚糖(≥500 mg/kg餌料)才能提供足夠的β-1,3-葡聚糖來(lái)刺激對(duì)蝦的免疫反應(yīng)。本試驗(yàn)也發(fā)現(xiàn)了類似的現(xiàn)象,雖然2種劑量的ASP均能提高試驗(yàn)魚血液白細(xì)胞吞噬能力、血清LZM活力以及頭腎白細(xì)胞呼吸爆發(fā)活力、吞噬活力和增殖能力,但從攻毒試驗(yàn)可以看出,低劑量(500 mg/kg)組的累積死亡率高于高劑量(3000 mg/kg)組,尤其是喂食8周后。這說(shuō)明ASP在點(diǎn)帶石斑魚消化道中可能被降解,需要在餌料中添加高劑量的ASP才能提高點(diǎn)帶石斑魚的抗病力。至于ASP在點(diǎn)帶石斑魚消化道中如何被降解,被以哪種形式(ASP原型、酶降解產(chǎn)物)吸收、轉(zhuǎn)運(yùn)并對(duì)其免疫力產(chǎn)生作用,尚需進(jìn)一步研究。
從本試驗(yàn)結(jié)果可以看出,長(zhǎng)期(8周)高劑量(3 000 mg/kg)喂食ASP比長(zhǎng)期低劑量(500 mg/kg)和短期(4周)高/低劑量喂食更能提高點(diǎn)帶石斑魚((158.64±2.14)g)非特異性免疫力和抗病力。該規(guī)格點(diǎn)帶石斑魚餌料中ASP的最適添加量和最適喂食時(shí)間還需進(jìn)一步研究。
致謝:天津海發(fā)珍品實(shí)業(yè)發(fā)展有限公司為本試驗(yàn)提供試驗(yàn)用魚和養(yǎng)殖場(chǎng)地,在養(yǎng)殖過(guò)程中給予大力協(xié)助,在此表示衷心感謝。
[1] Reilly A,Kaferstein F.Food safety hazards and the application of the principles of the Hazard Analysis and Critical Control Point(HACCP)system for their control in aquaculture production[J].Aqucult Res,1997,28(10):735-752.
[2] Sakai M.Current research status of fish immunostimulants[J].Aquacult,1999,172:63-92.
[3] Tzianabos A O.Polysaccharide immunomodulators as therapeutic agents:structural aspects and biologic function[J].Clin Microbiol Rev,2000,13:523-533.
[4] Han S B,Park S K,Ahn H J,et al.Characteriaztion of B cell membrane receptors of polysaccharide isolated from the root of Acanthopanax koreanum[J].Int Immunopharmacol,2003,3:683-691.
[5] Lee K Y,Jeon Y J.Polysaccharide isolated from Poria cocos scerotium induces NF-κB/Rel activation and iNOS expression in murine macrophages[J].Int Immunopharmacol,2003,3:1353-1362.
[6] Schepetkin I A,Quinn M T.Botanical polysaccharides:Macrophage immunomodulation and therapeutic potential[J].Int Immunopharmacol,2006,6:317-333.
[7] Sun Y X,Xu Y P,Wang T T,et al.Effects of Astragalus polysaccharide on gene expression of lysozyme in coelmocytes of sea cucumber Apostichopus japonicus[J].Fish Sci,2009,28(10):572-574.
[8] Mei Q B,Tao J Y,Zhang H D,et al.Effects of Angelica sinensis polysaccharides on hemopoietic stem cells in irradiated mice[J].Zhongguo Yao Li Xue Bao,1988,9(3):279-282.
[9] Hong Y,Zhang Y H,Wang H L,et al.Effect of Angelica polysaccharide on the immune function in60Co radiated mice[J].Central China Medical Journal,2000,24(6):291-292.
[10] Hong Y,Liu Y M,Xiong X H,et al.Protective effect of Angelica polysaccharide on the function of erythrocyte immunity and hematopoiesis in mice damaged by radiation[J].J Clin Res,2002,19(1):31-32.
[11] Ye Y N,Koo M W L,Li Y,et al.Angelica sinensis modulates migration and proliferation of gastric epithelial cells[J].Life Sci,2001,68(8):961-968.
[12] Ye Y N,So H L,Liu E S L,et al.Effect of polysaccharides from Angelica sinensis on gastric ulcer healing[J].Life Sci,2003,72(8):925-932.
[13] Liu P J,Hsieh W T,Huang S H,et al.Hematopoietic effect of water-soluble polysaccharides from Angelica sinensis on mice with acute blood loss[J].Exp Hematol,2010,38(6):437-445.
[14] Zheng M,Wang Y P.Experimental study on effect of angelica polysaccharide in inhibitory proliferation and inducing differentiation of K562 cells[J].Chinese Journal of Integrated Traditional and Western Medicine,2002,22(1):54-57.
[15] Yang X B,Mei Q B,Zhou S Y,et al.The role of Angelica polysaccharides in inducing effector molecule release by peritoneal macrophages[J].Chin J Cell Mol Immunol,2004,20(6):747-749.
[16] Cao W,Li X Q,Liu L,et al.Structure of an anti-tumor polysaccharide from Angelica sinensis(Oliv.)Diels[J].Carbohydrate Polymers,2006,66(2):149-159.
[17] Song S D,Wang J W,Wang Y P,et al.Experimental study on the effect of Angelica polysaccharide on inhibition of proliferation and induced differentiation towards erythroid cell of human erythroleukemia cell line(K562)[J].Journal of Chongqing Medical University,2008,33(1):1-5.
[18] Ling X M,Ding H,Luo S D,et al.Study on the pharmacological mechanism of Angelilca polysaccharide on the immunocompetence and the effects of its anti-oxidation[J].Chin Hosp Pharm J,2002,22(10):584-586.
[19] Liu S P,Dong W G,Wu D F,et al.Study on the protective effects of Angelica sinensis polysaccharides on the colon injury in immunological colitis rats[J].Chin Pharmacol Bull,2003,19(6):693-696.
[20] Liu S P,Dong W G,Yu B P,et al.Protective effects of Angelica sinensis polysaccharides on acetic acid-induced rat colitis[J].World Chin J Digestol,2004,12(2):367-370.
[21] Hu Y L,Liu J G,Chen Y K,et al.Effect of Chinese herbal medicinal ingredients on IBDV infected cell[J].Animal Husbandry&Veterinary Medicine,2003,35(12):8-10.
[22] Jia M,Yao X J,Yang T H,et al.Antivirus effects of Angelica polysaccharides sulfate on L6565 murine leukemia virus[J].Chin J Pharmacol Toxicol,2005,19(2):93-97.
[23] Chen Y,Duan J A,Qian D W,et al.Assessment and comparison of immunoregulatory activity of four hydrosoluble fractions of Angelica sinensis in vitro on the peritoneal macroophages in ICR mice[J].Int Immunopharmacol,2010,10(4):422-430.
[24] Yang T H,Jia M,Meng J,et al.Immunomodulatory activity of polysaccharide isolated from Angelica sinensis[J].Int J Biol Macromol,2006,39(4-5):179-184.
[25] 林克冰,方瓊珊.石斑魚苗種期常見病害及其防治[J].福建水產(chǎn),2006(4):52-54.
[26] 李寧求,白俊杰,吳淑琴,等.斜帶石斑魚3種致病性弧菌的分子生物學(xué)鑒定[J].水產(chǎn)學(xué)報(bào),2005,29(3):356-361.
[27] Fukuda Y,Nguyen H D,F(xiàn)uruhashi M,et al.Mass mortality of cultured sevenband grouper,Epinephelus septemfasciatus,associated with viral nervous necrosis[J].Fish Path,1996,31:165-170.
[28] Wang Q K,Chen C X,Guo Y J,et al.Dietary polysaccharide from Angelica sinensis enhanced cellular defence responses and disease resistance of grouper Epinephelus malabaricus[J].Aquacult Int,2011,19:945-956.
[29] 吳葉,王昌梅,張麗芬,等.人及兔醛化紅細(xì)胞的制備和應(yīng)用[J].安徽農(nóng)業(yè)科學(xué),2008,36(21):8885-8886.
[30] Li Q,Zhan W B,Xing J,et al.Production,characterisation and applicability of monoclonal antibodies to immunoglobulin of Japanese?ounder(Paralichthys olivaceus)[J].Fish Shell?sh Immunol,2007,23:982-990.
[31] Cheng A C,Tu C W,Chen Y Y,et al.The immunostimulatory effects of sodium alginate and iota-carrageenan on orange-spotted grouper Epinephelus coicoides and its resistance against Vibrio algino-lyticus[J].Fish &Shellfish Immunology,2007,22:197-205.
[32] Bradford M M.A rapid and sensitive method for the quantitation of microgram quantifies of protein utilizing the principle of protein-dye binding[J].Anal Biochem,1976,7(72):248-254.
[33] 王偉慶,李愛杰.維生素C對(duì)中國(guó)對(duì)蝦(Penaeus chinensis)免疫功能的影響[C]∥動(dòng)物營(yíng)養(yǎng)研究論文集.北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,1996:53-58.
[34] 郭小華,陸文清,鄧萍,等.益生枯草芽孢桿菌MA139增殖培養(yǎng)基的優(yōu)化[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2006,11(3):41-46.
[35] Wu F C,Ting Y Y,Chen H Y.Dietary docosahexaenoic acid is more optimal than eicosapentaenoic acid affecting the level of cellular defence responses of the juvenile grouper Epinephelus malabaricus[J].Fish &Shellfish Immunology,2003,14:223-238.
[36] Gebran S J,Romano E L,Pons H A,et al.A modified colorimetric method for the measurement of phagocytosis and antibodydependent cell cytotoxicity using 2,7-diaminofluorene[J].Journal of Immunological Methods,1992,151:255-260.
[37] Shephard K L.Functions for fish mucus[J].Reviews in Fish Biology and Fisheries,1992,4:401-429.
[38] Palaksha K J,Shin G W,Kim Y R,et al.Evaluation of non-specific immune components from the skin mucus of olive flounder(Paralichthys olivaceus)[J].Fish &Shellfish Immunology,2008,24:479-488.
[39] 黃智慧,馬愛軍,王岷.魚類體表黏液分泌功能與作用研究進(jìn)展[J].海洋科學(xué),2009,33(1):90-94.
[40] 梁英,黃文樹,關(guān)瑞章,等.魚類表皮黏液抗菌蛋白/肽研究進(jìn)展[J].水生生物學(xué)報(bào),2009,33(5):963-969.
[41] Cha S H,Lee J S,Song C B,et al.Effects of chitosan-coated diet on improving water quality and innate immunity in the olive flounder,Paralichthys olivaceus[J].Aquaculture,2008,278:110-118.
[42] 嚴(yán)儀昭.吞噬細(xì)胞產(chǎn)生氧自由基的機(jī)制及意義[J].生理科學(xué),1989,9(4):10-13.
[43] Siwicki A K,Anderson D P,Rumsey G L.Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis[J].Vet Immunol Immunopathol,1994,41:125-139.
[44] Yeh S P,Chang C A,Chang C Y,et al.Dietary sodium alginate administration affects fingerling growth and resistance to Streptococcus sp.and iridovirus,and juvenile non-specific immune responses of the orage-spotted grouper,Epinephelus coioides[J].Fish Shellfish Immunol,2008,25:19-27.
[45] Park K H,Jeong H D.Enhanced resistance against Edwardsiella tarda infection in tilapia(Oreochromis niloticus)by administration of protein-bound polysaccharide[J].Aquaculture,1996,143:135-143.
[46] L pez N,Cuzonb G,Gaxiolac G,et al.Physiological,nutritional,and immunological role of dietaryβ1-3 glucan and ascorbic acid 2-monophosphate in Litopenaeus vannamei juveniles[J].Aquaculture,2003,224:223-243.
[47] Zhao H X,Cao J M,Wang A L,et al.Effect of long-term administration of dietaryβ-1,3-glucan on growth,physiological,and immune responses in Litopenaeus vannamei(Boone,1931)[J].Aquaculture International,2012,20(1):145-158.
Dietary Angelica sinensis polysaccharide on Innate Immunity and Disease Resistance Against Edwardsiella tarda of Epinephelus malabaricus
WANG Qing-Kui1,2,XING Ke-Zhi2,ZHAO Hai-Yun2,CHEN Cheng-Xun2,WU Zhan-Yong2,MA Shen1
(1.The Key Laboratory of Mariculture,Ministry of Education,Ocean University of China,Qingdao 266003,China;2.Tianjin Key Laboratory of Aqua-Ecology and Aquaculture,Tianjin Agricultural University,Tianjin 300384,China)
In order to study the effects of Angelica sinensis polysaccharide(ASP)on innate immunity and disease resistance of Epinephelus malabaricus,fish(initial body weight(158.64±2.14)g)were fed diets containing different doses of ASP(0,500,3000 mg/kg)for four and eight weeks.Results showed that dietary ASP enhanced blood leucocytes phagocytic rate and serum lysozyme activity significantly(P<0.05),but exerted no influence on serum nitric oxide(NO),skin mucus lysozyme activity and antibacterial activity.Dietary ASP boosted head kidney leucocytes proliferation,respiratory burst activity and phagocytosis.The cumulative mortalities of fish challenged by Edwardsiella tarda were reduced in ASP-fed groups,compared to that in control groups.The cumulative mortality in fish fed with ASP at 3000 mg/kg for eight weeks was the lowest.The innate immunity and disease resistance against E.tarda in fish fed ASP at 3000 mg/kg for eight weeks were effectively enhanced.
Angelica sinensis polysaccharide;Epinephelus malabaricus;innate immunity;antibacterial activity
S963
A
1672-5174(2012)09-015-07
“十二五”國(guó)家科技支撐計(jì)劃項(xiàng)目(2011BAD13B07)資助
2011-08-24;
2011-11-25
王慶奎(1978-),男,副教授。E-mail:wqkmail@yahoo.com.cn
**通訊作者:E-mail:kzxing@yahoo.com.cn
責(zé)任編輯 朱寶象
中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版)2012年9期