劉璋寅 綜述 沈尊理 審校
周圍神經(jīng)中許旺細(xì)胞特異性標(biāo)記物
劉璋寅 綜述 沈尊理 審校
周圍神經(jīng)損傷后,其近、遠(yuǎn)端神經(jīng)纖維將發(fā)生瓦勒氏變性(Wallerian degeneration)。許旺細(xì)胞(Schwann Cell)起源于神經(jīng)嵴細(xì)胞,是周圍神經(jīng)的種子細(xì)胞。目前周圍神經(jīng)損傷的修復(fù),主要圍繞神經(jīng)內(nèi)部結(jié)構(gòu)重建,促進(jìn)神經(jīng)纖維再生進(jìn)行。通過特異性標(biāo)記物標(biāo)記、識(shí)別移植的許旺細(xì)胞,對(duì)神經(jīng)移植效果的評(píng)價(jià)至關(guān)重要。本文就許旺細(xì)胞比較常見的特異性標(biāo)記物進(jìn)行綜述,以期為許旺細(xì)胞在周圍神經(jīng)損傷及組織工程方面的應(yīng)用提供幫助。
許旺細(xì)胞 周圍神經(jīng)損傷 特異性標(biāo)志物
19世紀(jì)中期,細(xì)胞學(xué)說共同創(chuàng)立者之一的Theodore Schwann發(fā)現(xiàn)了一種起源于神經(jīng)嵴細(xì)胞,在外周神經(jīng)系統(tǒng)包繞軸突的特定細(xì)胞,即現(xiàn)在眾所周知的許旺細(xì)胞(Schwann cell)。雖然神經(jīng)元是構(gòu)成神經(jīng)系統(tǒng)的基礎(chǔ),但是膠質(zhì)細(xì)胞,如許旺細(xì)胞對(duì)于神經(jīng)元的功能以及存活是必不可少的。許旺細(xì)胞能夠參與形成髓鞘包繞軸突,定向?qū)б窠?jīng)元生長,以及消除細(xì)胞碎片。周圍神經(jīng)損傷后,神經(jīng)組織會(huì)發(fā)生瓦勒氏變性,此時(shí)許旺細(xì)胞能夠迅速進(jìn)行有絲分裂,參與損傷修復(fù)。遠(yuǎn)端軸索及髓鞘傷后數(shù)小時(shí)即發(fā)生結(jié)構(gòu)改變,2~3 d逐漸分解成小段或碎片;5~6 d后,吞噬細(xì)胞增生,吞噬清除碎裂溶解的軸索和髓鞘。與此同時(shí),許旺細(xì)胞再生,使近端再生的神經(jīng)纖維可長入許旺細(xì)胞形成的鞘中。在體內(nèi),正常生理情況下最終包繞不同的軸突,以及損傷后修復(fù)過程,即所謂的分化和去分化的過程中,許旺細(xì)胞在不同的時(shí)期由于其所處階段不同(包括:Schwann cell precursor;immature Schwann cells;Pro-myelinating Schwann cells;myelinating Schwann cells;non-myelinating Schwann cells)[1],其表達(dá)的標(biāo)志物是不同的。許旺細(xì)胞作為周圍神經(jīng)的種子細(xì)胞,目前已經(jīng)發(fā)現(xiàn)其特異性標(biāo)志物有很多,通過這些特定時(shí)期的標(biāo)志物來鑒別體內(nèi)許旺細(xì)胞所處的階段,或者對(duì)體外培養(yǎng)的許旺細(xì)胞進(jìn)行鑒定,對(duì)于神經(jīng)移植的效果評(píng)價(jià)以及周圍神經(jīng)的研究至關(guān)重要。
S100蛋白是一種低分子量(9~13 KDa)的多基因家族成員之一的鈣離子結(jié)合蛋白。該家族共包含19個(gè)成員,各自表達(dá)于體內(nèi)多種細(xì)胞中。其中,S100b(之前稱作S100β)大量存在于中樞神經(jīng)系統(tǒng)及周圍神經(jīng)系統(tǒng),包括黑色素細(xì)胞、軟骨細(xì)胞、脂肪細(xì)胞等。S100定位于細(xì)胞質(zhì)和細(xì)胞核,表達(dá)于immature Schwann cells,myelinating Schwann cells,nonmyelinating Schwann cells[2-4]。S100能夠參與各種鈣離子依賴性的細(xì)胞內(nèi)的調(diào)節(jié)過程,例如蛋白磷酸化、細(xì)胞增殖(包括致瘤性轉(zhuǎn)化),以及細(xì)胞分化[5]。
在人類的外周神經(jīng)系統(tǒng)中,S100蛋白主要存在于包括神經(jīng)干中的成熟許旺細(xì)胞,感覺神經(jīng)、交感神經(jīng)和腸神經(jīng)節(jié)中的衛(wèi)星膠質(zhì)細(xì)胞,以及腎上腺髓質(zhì)的支持細(xì)胞等細(xì)胞中[6]。正常神經(jīng)中,S100僅限于許旺細(xì)胞的細(xì)胞質(zhì)內(nèi)和細(xì)胞膜上,在軸突上不表達(dá);損傷神經(jīng)中,S-100表達(dá)顯著減少,是由于許旺細(xì)胞含量的減少,以及這些細(xì)胞中S100蛋白含量的減少。有研究認(rèn)為,軸突對(duì)于許旺細(xì)胞的成熟具有重要的作用,S100蛋白對(duì)于軸突的再生具有刺激和誘導(dǎo)作用[7]。S100蛋白的出現(xiàn)是許旺細(xì)胞的成熟和神經(jīng)再生的表現(xiàn),也是損傷后神經(jīng)功能恢復(fù)過程的基礎(chǔ)[8]。Duobles等[9]的實(shí)驗(yàn)證實(shí),對(duì)于損傷后的周圍神經(jīng),S100蛋白與許旺細(xì)胞的急性反應(yīng)、增殖重建等功能有關(guān),能反映許旺細(xì)胞的功能活化狀態(tài),S100蛋白對(duì)于損傷修復(fù)起到重要作用,這種作用可能是通過旁分泌機(jī)制產(chǎn)生的。
P75神經(jīng)營養(yǎng)因子受體(P75NTR)為與神經(jīng)營養(yǎng)因子結(jié)合的跨膜I型蛋白,是腫瘤壞死因子(TNF)超家族成員,是已知最早分離出來的神經(jīng)營養(yǎng)因子(Neurotrophins)低親和力受體,主要能夠結(jié)合NGF、BDNF、NT-3和NT-4等神經(jīng)營養(yǎng)因子,在神經(jīng)細(xì)胞的早期發(fā)育過程中豐富表達(dá)。該蛋白能通過不同的信號(hào)轉(zhuǎn)導(dǎo)通路介導(dǎo)神經(jīng)細(xì)胞存活或者凋亡[10]。P75NTR定位于細(xì)胞膜上,表達(dá)于immature Schwann cells和nonmyelinating Schwann cells[11]。
周圍神經(jīng)損傷的再生過程中,軸突的信號(hào)分子,如NRG和神經(jīng)營養(yǎng)因子等,能夠通過許旺細(xì)胞來調(diào)節(jié)髓鞘再生[12-15]。大量研究表明,NGF和BDNF通過介導(dǎo)P75NTR的信號(hào)轉(zhuǎn)導(dǎo),在髓鞘形成的過程中發(fā)揮重要功能[13,16]。P75NTR在未損傷的周圍神經(jīng)中只表達(dá)于immature Schwann cells和nonmyelinating Schwann cells;當(dāng)神經(jīng)損傷后,即在去分化的過程中,原來不表達(dá)P75NTR的myelinating Schwann cells中的P75NTR表達(dá)量迅速升高[17,18]。P75NTR-null小鼠的坐骨神經(jīng)損傷后,髓鞘再生受到抑制,說明P75NTR在體內(nèi)髓鞘再生過程中有著重要的作用[19-20]。此外,由于周圍神經(jīng)損傷引起的軸突信號(hào)缺失,抑制這種信號(hào)缺失可能會(huì)刺激P75NTR在損傷后脫髓鞘過程中的許旺細(xì)胞中表達(dá)提高[21]。
GFAP是一種胞漿內(nèi)的絲狀蛋白,在星形膠質(zhì)細(xì)胞中構(gòu)成細(xì)胞骨架,被公認(rèn)為是星形膠質(zhì)細(xì)胞的最具有特異性的標(biāo)志物。它是中間纖維家族的膠質(zhì)細(xì)胞特異性成員,該家族包括一些細(xì)胞類型特定的絲狀蛋白,有相似的結(jié)構(gòu),具有維持細(xì)胞骨架的功能[22]。在功能上,GFAP對(duì)于星形膠質(zhì)細(xì)胞的運(yùn)動(dòng)性,以及在星形膠質(zhì)細(xì)胞成型過程中,提供細(xì)胞結(jié)構(gòu)的穩(wěn)定性[23]。與星形膠質(zhì)細(xì)胞不同,許旺細(xì)胞需要從較小直徑的軸突中持續(xù)獲得神經(jīng)營養(yǎng)物質(zhì),才能表達(dá)GFAP 24。GFAP在許旺細(xì)胞中于immature Schwann cells和non-myelinating Schwann cells中表達(dá),定位于胞漿內(nèi)[25],在許旺細(xì)胞發(fā)育的相對(duì)晚期出現(xiàn)表達(dá),而在形成髓鞘時(shí)的myelinating Schwann cells中不表達(dá)。產(chǎn)生這種現(xiàn)象的原因是由于相對(duì)于myelinating Schwann cells,non-myelinating Schwann cells與胚胎和新生細(xì)胞的表面蛋白的表達(dá)更加相似[26]。另有文獻(xiàn)報(bào)道,在正常的周圍神經(jīng)的許旺細(xì)胞中檢測不到GFAP27,反而在軸突神經(jīng)病變中許旺細(xì)胞表達(dá)GFAP增高[28],且在軸突神經(jīng)病變過程中GFAP陽性的許旺細(xì)胞的百分比明顯高于脫髓鞘性神經(jīng)疾病[29]。損傷敲除GFAP的小鼠的周圍神經(jīng)后發(fā)現(xiàn),許旺細(xì)胞的增殖受到抑制,同時(shí)神經(jīng)再生的時(shí)間延遲[30]。
一些參與許旺細(xì)胞的生長及分化的轉(zhuǎn)錄因子,如Sox10、Krox20(Egr2)和 Oct6(SCIP)等,對(duì)于許旺細(xì)胞是至關(guān)重要的。這些轉(zhuǎn)錄因子在許旺細(xì)胞中表達(dá),能夠作為許旺細(xì)胞的標(biāo)志物。
Sox10的序列與SRY轉(zhuǎn)錄因子家族同源,是包含HMG(High mobility group)的DNA結(jié)合結(jié)構(gòu)域的轉(zhuǎn)錄因子[31-32],與Oct6有協(xié)同促進(jìn)神經(jīng)膠質(zhì)細(xì)胞發(fā)育及成熟的作用,是參與神經(jīng)嵴細(xì)胞后期形成、許旺細(xì)胞和黑色素細(xì)胞特異性分化,維持神經(jīng)嵴正常發(fā)育的轉(zhuǎn)錄因子,是神經(jīng)嵴細(xì)胞標(biāo)志物[33-34]。在周圍神經(jīng)系統(tǒng)和中樞神經(jīng)系統(tǒng)中,Sox10在新生的神經(jīng)嵴細(xì)胞和隨后發(fā)育的膠質(zhì)細(xì)胞中高度表達(dá)[35-36]。Sox10表達(dá)于所有階段的許旺細(xì)胞中,定位于核內(nèi)[37]。同時(shí),Sox10也是唯一已知的參與神經(jīng)嵴細(xì)胞向神經(jīng)膠質(zhì)細(xì)胞分化所必須的轉(zhuǎn)錄因子,能通過調(diào)節(jié)ErbB3(編碼NRG1的受體)的表達(dá),從而調(diào)控髓鞘蛋白0(Mpz)的編碼,影響周圍神經(jīng)系統(tǒng)的髓鞘形成[1]。近來發(fā)現(xiàn),Sox10的突變是引起周圍神經(jīng)病變的原因之一[38]。不管是小鼠還是人類,Sox10蛋白缺失或變異后,通常會(huì)導(dǎo)致發(fā)育缺陷和先天性疾病。人類Sox10變異后會(huì)引起神經(jīng)嵴細(xì)胞的功能結(jié)構(gòu)異常[39-41],包括Waardenburg綜合征等神經(jīng)系統(tǒng)疾病。Sox10的過度表達(dá)能夠促使神經(jīng)嵴細(xì)胞在所有的背根神經(jīng)管道中遷移,抑制其分化,并且使這些細(xì)胞停留在未分化階段[42]。有學(xué)者合成了一種名為Sox10-Venus的小鼠,在所有表達(dá)Sox10的組織中均能檢測到Venus綠色熒光標(biāo)記,可以通過該小鼠來實(shí)時(shí)探測Sox10在正常生理過程以及病理過程中的表達(dá),從而應(yīng)用于神經(jīng)嵴細(xì)胞的研究[43]。
Krox20是種鋅指蛋白,是能夠與位于HOXA4啟動(dòng)子的2個(gè)特異性DNA位點(diǎn)結(jié)合的轉(zhuǎn)錄因子。Krox20只表達(dá)于promyelinating Schwann cells 和 myelinating Schwann cells[44-45],定位于細(xì)胞核。Krox20對(duì)于immature Schwann cells轉(zhuǎn)變?yōu)閙yelinating Schwann cells的過程至關(guān)重要;同時(shí),它也能抑制細(xì)胞死亡與增殖[4]。Krox20與Sox10相互作用使myelinating Schwann cells中的MPZ水平升高。Krox20敲除的promyelinating Schwann cells雖然能夠以正常形成有髓鞘纖維的方式,以1:1(許旺細(xì)胞:軸突)的比例與軸突相結(jié)合,但是這些許旺細(xì)胞并沒有正常的功能,不能最終包繞軸突,同時(shí)也不能激活髓鞘特異性基因(如MPZ的產(chǎn)生[46]。由此可見,Krox20對(duì)于myelinating Schwann cells的終末分化是不可缺少的。
Oct6是POU轉(zhuǎn)錄因子的家族成員之一,POU結(jié)構(gòu)域是一種DNA結(jié)合結(jié)構(gòu)域,它能夠識(shí)別和結(jié)合一個(gè)共有的八聚體基序(ATGCAAAT)[47],使Oct6參與早起胚胎形成和神經(jīng)形成。Oct6定位于核內(nèi),在許旺細(xì)胞中表達(dá)在immature Schwann cells,pro-myelinating Schwann cells 和 myelinating cells[48]。 在胚胎發(fā)育過程中,Oct6的基因表達(dá)最早出現(xiàn)在immature Schwann cells,在pro-myelinating Schwann cells和出生后1周的早期myelinating Schwann cells中到達(dá)峰值,隨后其表達(dá)逐漸下調(diào)[49-50]。Oct6通過調(diào)節(jié)一系列下游基因,包括Krox20等,參與調(diào)節(jié)髓鞘形成和髓鞘相關(guān)基因的表達(dá)(包括MPZ,MBP 等)的過程[51-52]。
在周圍神經(jīng)系統(tǒng)中,當(dāng)許旺細(xì)胞與軸突發(fā)生接觸,髓鞘形成便開始發(fā)生,許旺細(xì)胞的細(xì)胞質(zhì)扁平狀延伸,呈螺旋狀包繞軸突,最終形成髓鞘。因此,髓鞘相關(guān)蛋白能作為許旺細(xì)胞的標(biāo)志物。這些標(biāo)志物包括MBP、MPZ、PMP22和MAG等,通常只表達(dá)在myelinating Schwann cells中。
MBP在周圍神經(jīng)系統(tǒng)和中樞神經(jīng)系統(tǒng)中都有表達(dá)。中樞性MBP由少突膠質(zhì)細(xì)胞合成和分泌,在腦白質(zhì)中含量最高;周圍性MBP由許旺細(xì)胞合成和分泌,存在于周圍神經(jīng)髓鞘中。MBP位于髓鞘脂漿膜面,髓鞘螺旋化致密部,是一種表達(dá)于成熟晚期myelinating Schwann cells的髓鞘蛋白[53]。它能與髓鞘脂質(zhì)結(jié)合,維持髓鞘結(jié)構(gòu)和功能的穩(wěn)定,在神經(jīng)纖維中起絕緣和快速傳導(dǎo)作用,并在髓鞘形成過程中具有啟動(dòng)作用。其水平變化可反映腦白質(zhì)少突膠質(zhì)細(xì)胞髓鞘損傷的嚴(yán)重程度,是中樞神經(jīng)系統(tǒng)損害和急性脫髓鞘的客觀生化指標(biāo)[54]。各種原因?qū)е碌乃枨势茐木稍斐蒑BP在血清或腦脊液中濃度增高。因此,血清和腦脊液MBP的測定在一定程度上反映了中樞神經(jīng)系統(tǒng)有無實(shí)質(zhì)性損害,特別是有無髓鞘脫失,其含量的高低反映了損害范圍的嚴(yán)重程度[55],并可以根據(jù)其水平估計(jì)預(yù)后。有研究認(rèn)為,MBP是惟一以mRNA形式轉(zhuǎn)運(yùn)通過許旺細(xì)胞的胞質(zhì),在胞膜螺旋化插入處翻譯并表達(dá)的髓鞘蛋白分子[56]。少突細(xì)胞和許旺細(xì)胞能通過使用不同的調(diào)控元件來調(diào)節(jié)轉(zhuǎn)錄MBP,Taveggia等[57]發(fā)現(xiàn),MBP基因上游的一個(gè)9 Kb的增強(qiáng)子(MBPSCE1)能夠在轉(zhuǎn)基因小鼠的許旺細(xì)胞中激活另外一個(gè)髓鞘基因Mpz,從而證明該增強(qiáng)子可以通過不同的機(jī)制來激活許旺細(xì)胞和少突膠質(zhì)細(xì)胞。
MPZ是周圍神經(jīng)髓鞘的主要蛋白,是一種高度保守的跨膜糖蛋白,參與構(gòu)成超過50%的髓鞘多肽成分[58]。MPZ定位于細(xì)胞膜,表達(dá)在myelinating Schwann cells[59-60]。研究發(fā)現(xiàn),許旺細(xì)胞通過MPZ蛋白的表達(dá),使細(xì)胞與細(xì)胞之間發(fā)生粘附,從而使許旺細(xì)胞緊密包裹髓鞘,有利于髓鞘形成。這種緊密包裹不僅與MPZ相關(guān),而且也與MAG有關(guān),該機(jī)制可能是首先需要MPZ與MAG漿膜之間的相互作用,同時(shí)可能需要一些其他的表面分子參與神經(jīng)元-膠質(zhì)細(xì)胞的相互作用[61]。MPZ缺陷能夠引起多種周圍神經(jīng)系統(tǒng)疾病,包括腓骨肌萎縮癥(CMT)、先天性髓鞘形成不足性神經(jīng)病和Roussy-Levy綜合征等[62-64]。
PMP22是表達(dá)在成熟周圍神經(jīng)髓鞘結(jié)構(gòu)域致密部的一種微量跨膜結(jié)構(gòu)蛋白,是成熟的成髓鞘許旺細(xì)胞的標(biāo)志蛋白之一,其表達(dá)早于MBP[53]。PMP22通常主要表達(dá)在成熟髓鞘結(jié)構(gòu)域的致密部,參與了髓鞘化過程的調(diào)控,影響Schwann細(xì)胞胞膜的螺旋化、髓鞘的厚度及穩(wěn)定性[65],并參與調(diào)控Schwann細(xì)胞的增殖和凋亡[66]。在發(fā)育過程中,PMP22被認(rèn)為存在雙重表達(dá)模式:一種是作為出現(xiàn)在髓鞘化過程末期的髓鞘特異蛋白,另一種是作為non-myelinating Schwann cells的胞膜蛋白。這兩種方式的并存提示PMP22在周圍神經(jīng)中的狀態(tài)和功能不是單一的[67]。在正常myelinating Schwann cell中,大部分PMP22由于泛素化而被蛋白酶體迅速降解[68],僅有小部分可達(dá)到許旺細(xì)胞的胞膜并表達(dá)[69]。另外,Gabriel等[70]用PMP22免疫鼠誘發(fā)了實(shí)驗(yàn)性自身免疫神經(jīng)炎(EAN),提示該蛋白應(yīng)為潛在的自身抗原。
目前得到證實(shí)的一種能介導(dǎo)神經(jīng)元和神經(jīng)膠質(zhì)相互作用,并參與形成致密髓鞘的分子就是MAG。MAG是中樞神經(jīng)系統(tǒng)和周圍神經(jīng)系統(tǒng)中的一種髓鞘成分,分別占髓鞘蛋白的1%和0.1%。它是一種跨膜糖蛋白,表達(dá)于myelinating Schwann cells。MAG是免疫球蛋白超家族成員之一,該家族的眾多成員都能促進(jìn)CNS或PNS的神經(jīng)元突起生長。免疫組化研究結(jié)果表明,MAG定位于少突細(xì)胞和許旺細(xì)胞的表面,在軸突形成髓鞘的起始階段就可檢測到。在髓鞘化的軸突中,它定位于髓鞘膜的最里層,直接和軸突相接觸。MAG在髓鞘和軸突界面的特殊定位以及它在發(fā)育中的早期表達(dá),提示該分子可能介導(dǎo)了軸突與膠質(zhì)細(xì)胞間的早期相互作用,參與髓鞘化的啟動(dòng)及髓鞘化軸突與膠質(zhì)突起之間穩(wěn)定連接的維持[71]。Shwab等(1993年)最早發(fā)現(xiàn)在中樞神經(jīng)系統(tǒng)中有潛在的生長抑制活動(dòng),并指出這種抑制與髓鞘有關(guān),而MAG即是首先被鑒定出的具有軸突再生抑制作用的髓鞘蛋白。Wong等[72]在視神經(jīng)受損后用激光急性選擇性地滅活MAG分子,發(fā)現(xiàn)有大量的視網(wǎng)膜軸突再生,并通過了含有CNS髓鞘的損傷部位,推斷MAG是髓鞘來源的神經(jīng)抑制分子的主要成分。據(jù)報(bào)道,出生4 d以上的DRG神經(jīng)元與表達(dá)MAG的細(xì)胞共培養(yǎng)時(shí),突起延長減少約50%,而與小于4 d的神經(jīng)元共培養(yǎng)時(shí)反而促進(jìn)突起的生長[73]。因此,MAG的功能具有雙重性。
GAP43是一種特異性的與神經(jīng)細(xì)胞發(fā)育相關(guān)的酸性膜磷脂蛋白,被認(rèn)為是神經(jīng)元發(fā)育和再生的一個(gè)內(nèi)在決定因子,定位在細(xì)胞膜,表達(dá)于immature Schwann cells和nonmyelinating Schwann cells[6]。GAP43通過加速生長錐基底部胞漿膜的擴(kuò)張而促進(jìn)軸突的延生,是神經(jīng)元再生和可塑性的分子標(biāo)志物。體外培養(yǎng)脊髓神經(jīng)元的結(jié)果表明,GAP43的表達(dá)與神經(jīng)元軸突生長一致。在發(fā)育成熟的中樞神經(jīng)系統(tǒng)中,成熟神經(jīng)元軸突的生長和突觸的可塑性處于抑制狀態(tài)。當(dāng)軸突受到損傷后,軸突的延長和重建可被重新誘導(dǎo),誘導(dǎo)與神經(jīng)軸突向外生長依賴于有關(guān)蛋白的合成,GAP43就是表達(dá)明顯的蛋白之一。GAP43的表達(dá)是評(píng)估軸突損傷和再生反應(yīng)的重要指標(biāo)[74]。GAP43的表達(dá)產(chǎn)物主要位于軸突生長錐質(zhì)膜面,通過加速生長錐基部胞漿膜的擴(kuò)張而促進(jìn)軸突生長[75]。許旺細(xì)胞對(duì)軸突遠(yuǎn)端的修復(fù)作用就是啟動(dòng)許旺細(xì)胞合成GAP43,增強(qiáng)GAP43的表達(dá),加速生長錐形成。GAP43還可促進(jìn)神經(jīng)在肌肉神經(jīng)接頭處的生長[76]。一般認(rèn)為,成年動(dòng)物的周圍神經(jīng)系統(tǒng)中GAP43表達(dá)水平很低,但是當(dāng)其周圍神經(jīng)損傷后其表達(dá)明顯增高[77]。GAP43高表達(dá)是神經(jīng)再生的典型特征,在軸突重建過程中,新生發(fā)芽末梢中GAP43含量非常高。只要突觸重建進(jìn)行,即使無軸突延伸,GAP43的表達(dá)也會(huì)在高水平進(jìn)行。而一旦重建完成,GAP43及其mRNA含量便驟然下降,甚至消失[78]。
雖然周圍神經(jīng)損傷在整形外科仍屬難點(diǎn),但是目前在組織工程人工神經(jīng)構(gòu)建和神經(jīng)移植等方面都有了較快的發(fā)展。以往的研究注重以許旺細(xì)胞為支持的神經(jīng)元細(xì)胞,而忽視了許旺細(xì)胞在神經(jīng)元內(nèi)的穩(wěn)態(tài)與神經(jīng)病變中的關(guān)鍵作用。許旺細(xì)胞作為周圍神經(jīng)的種子細(xì)胞,正在日益得到重視,對(duì)于許旺細(xì)胞及其特異性標(biāo)記物的發(fā)現(xiàn)及深入研究,讓人們對(duì)周圍神經(jīng)損傷的治療有了更開闊的視野。今后的周圍神經(jīng)損傷的治療肯定會(huì)擺脫以往的單一模式,以更加精細(xì)準(zhǔn)確的手術(shù),與人工神經(jīng)構(gòu)建移植相結(jié)合,這將是今后周圍神經(jīng)損傷修復(fù)的發(fā)展方向。
[1]Jessen KR,Mirsky R.The origin and development of glial cells in peripheral nerves[J].Nat Rev Neurosci,2005,6(9):671-682.
[2]Conrad AH,Albrecht M,Pettit-Scott M,et al.Embryonic corneal Schwann cells express some Schwann cell marker mRNAs,but no mature Schwann cell marker proteins[J].Invest Ophthalmol Vis Sci,2009,50(9):4173-4184.
[3]Finzsch M,Schreiner S,Kichko T,et al.Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage[J].J Cell Biol,2010,189(4):701-712.
[4]Bhatheja K,Field J.Schwann cells:origins and role in axonal maintenance and regeneration[J].Int J Biochem Cell Biol,2006,38(12):1995-1999.
[5]Donato R.Functional roles of S100 proteins,calcium-binding proteins of the EF-hand type[J].Biochim Biophys Acta,1999,1450(3):191-231.
[6]Yu WM,Yu H,Chen ZL,et al.Disruption of laminin in the peripheral nervous system impedes nonmyelinating Schwann cell development and impairs nociceptive sensory function[J].Glia,2009,57(8):850-859.
[7]Spreca A,Rambotti MG,Rende M,et al.Immunocytochemical localization of S-100b protein in degenerating and regenerating rat sciatic nerves[J].J Histochem Cytochem,1989,37(4):441-446.
[8]張殿英,姜保國,傅忠國,等.周圍神經(jīng)損傷后S-100蛋白的分布和變化研究[J].中國矯形外科雜志,2002,9(4):348-349.
[9]Duobles T,Lima Tde S,Levy Bde F,et al.S100beta and fibroblast growth factor-2 are present in cultured Schwann cells and may exert paracrine actions on the peripheral nerve injury[J].Acta Cir Bras,2008,23(6):555-560.
[10]Soilu-Hanninen M,Ekert P,Bucci T,et al.Nerve growth factor signaling through p75 induces apoptosis in Schwann cells via a Bcl-2-independent pathway[J].J Neurosci,1999,19(12):4828-4838.
[11]Jung J,Cai W,Jang SY,et al.Transient lysosomal activation is essential for p75 nerve growth factor receptor expression in myelinated Schwann cells during Wallerian degeneration[J].Anat Cell Biol,2011,44(1):41-49.
[12]Meyer M,Matsuoka I,Wetmore C,et al.Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve:different mechanisms are responsible for the regulation of BDNF and NGF mRNA[J].J Cell Biol,1992,119(1):45-54.
[13]Zhang JY,Luo XG,Xian CJ,et al.Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents[J].Eur J Neurosci,2000,12(12):4171-4180.
[14]Hu X,He W,Diaconu C,et al.Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves[J].FASEB J,2008,22(8):2970-2980.
[15]Zhang L,Ma Z,Smith GM,et al.GDNF-enhanced axonal regeneration and myelination following spinal cord injury is mediated by primary effects on neurons[J].Glia,2009,57(11):1178-1191.
[16]Xiao J,Kilpatrick TJ,Murray SS.The role of neurotrophins in the regulation of myelin development[J].Neurosignals,2009,17(4):265-276.
[17]Heumann R,Korsching S,Bandtlow C,et al.Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transaction[J].J Cell Biol,1987,104(6):1623-1631.
[18]Taniuchi M,Clark HB,Schweitzer JB,et al.Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves:ultrastructural location,suppression by axonal contact,and binding properties[J].J Neurosci,1988,8(2):664-681.
[19]Song XY,Zhou FH,Zhong JH,et al.Knockout of p75(NTR)impairs re-myelination of injured sciatic nerve in mice[J].J Neurochem,2006,96(3):833-842.
[20]Tomita K,Kubo T,Matsuda K,et al.The neurotrophin receptor p75NTR in Schwann cells is implicated in remyelination and motor recovery after peripheral nerve injury[J].Glia,2007,55:1199-208.
[21]Bolin LM,Shooter EM.Neurons regulate Schwann cell genes by diffusible molecules[J].J Cell Biol,1993,123(1):237-243.
[22]Coulombe PA,Wong P.Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds[J].Nat Cell Biol,2004,6(8):699-706.
[23]Eng LF,Ghirnikar RS,Lee YL.Glial fibrillary acidic protein:GFAP-thirty-one years(1969-2000)[J].Neurochem Res,2000,25(9-10):1439-1451.
[24]Mokuno K,Kamholz J,Behrman T,et al.Neuronal modulation of Schwann cell glial fibrillary acidic protein(GFAP)[J].Neurosci Res,1989,23(4):396-405.
[25]Jessen KR,Mirsky R.Nonmyelin-forming Schwann cells coexpress surface proteins and intermediate filaments not found in myelinforming cells:a study of Ran-2,A5E3 antigen and glial fibrillary acidic protein[J].J Neurocytol,1984,13(6):923-934.
[26]Jessen KR,Morgan L,Stewart HJ,et al.Three markers of adult non-myelin-forming Schwann cells,217c(Ran-1),A5E3 and GFAP:development and regulation by neuron-Schwann cell interactions[J].Development,1990,109(1):91-103.
[27]Memoli VA,Brown EF,Gould VE.Glial fibrillary acidic protein(GFAP)immunoreactivity in peripheral nerve sheath tumors[J].Ultrastruct Pathol,1984,7(4):269-275.
[28]Mancardi GL,Cadoni A,Tabaton M,et al.Schwann cell GFAP expression increases in axonal neuropathies[J].J Neurol Sci,1991,102(2):177-183.
[29]Bianchini D,De Martini I,Cadoni A,et al.GFAP expression of human Schwann cells in tissue culture[J].Brain Res,1992,570(1-2):209-217.
[30]Triolo D,Dina G,Lorenzetti I,et al.Loss of glial fibrillary acidic protein(GFAP)impairs Schwann cell proliferation and delays nerve regeneration after damage[J].J Cell Sci,2006,119(Pt 19):3981-3993.
[31]Bowles J,Schepers G,Koopman P.Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators[J].Dev Biol 2000,227(2):239-255.
[32]Wegner M.From head to toes:the multiple facets of Sox proteins[J].Nucleic Acids Res,1999,27(6):1409-1420.
[33]Crane JF,Trainor PA.Neural crest stem and progenitor cells[J].Annu Rev Cell Dev Biol,2006,22:267-286.
[34]Delfino-Machín M,Chipperfield TR,Rodrigues FS,et al.The proliferating field of neural crest stem cells[J].Dev Dyn,2007,236(12):3242-3254.
[35]Kuhlbrodt K,Schmidt C,Sock E,et al.Functional analysis of Sox10 mutations found in human Waardenburg-Hirschsprung patients[J].J Biol Chem,1998,273(36):23033-23038.
[36]Southard-Smith EM,Kos L,Pavan WJ.Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model[J].Nat Genet,1998,18(1):60-64.
[37]Jagalur NB,Ghazvini M,Mandemakers W,et al.Functional dissection of the Oct6 Schwann cell enhancer reveals an essential role for dimeric Sox10 binding[J].J Neurosci,2011,31(23):8585-8594.
[38]Finzsch M,Schreiner S,Kichko T,et al.Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage[J].J Cell Biol,2010,189(4):701-712.
[39]Inoue K,Khajavi M,Ohyama T,et al.Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations[J].Nat Genet,2004,36(4):361-369.
[40]Inoue K,Tanabe Y,Lupski JR.et al.Myelin deficiencies in both the central and the peripheral nervous systems associated with a Sox10 mutation[J].Ann Neurol,1999,46(3):313-318.
[41]Pingault V,Bondurand N,Kuhlbrodt K,et al.Sox10 mutations in patients with Waardenburg-Hirschsprung disease[J].Nat Genet,1998,18(2):171-173.
[42]McKeown SJ,Lee VM,Bronner-Fraser M,et al.Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation[J].Dev Dyn,2005,233(2):430-444.
[43]Shibata S,Yasuda A,Renault-Mihara F,et al.Sox10-Venus mice:a new tool for real-time labeling of neural crest lineage cells and oligodendrocytes[J].Mol Brain,2010,3:31.
[44]Le N,Nagarajan R,Wang JY,et al.Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination[J].Proc Natl Acad Sci U S A,2005,102(7):2596-2601.
[45]Friedrich RP,Schlierf B,Tamm ER,et al.The class III POU domain protein Brn-1 can fully replace the related Oct-6 during Schwann cell development and myelination[J].Mol Cell Biol,2005,25(5):1821-1829.
[46]Topilko P,Schneider-Maunoury S,Levi G,et al.Krox-20 controls myelination in the peripheral nervous system[J].Nature,1994,371:796-799.
[47]Phillips K,Luisi B.The virtuoso of versatility:POU proteins that flex to fit[J].J Mol Biol,2000,302(5):1023-1039.
[48]Jaegle M,Ghazvini M,Mandemakers W,et al.The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development[J].Genes Dev,2003,17(11):1380-1391.
[49]Scherer SS,Wang DY,Kuhn R,et al.Axons regulate Schwann cell expression of the POU transcription factor SCIP[J].J Neurosci,1994,14(4):1930-1942.
[50]Blanchard AD,Sinanan A,Parmantier E,et al.Oct-6(SCIP/Tst-1)is expressed in Schwann cell precursors,embryonic Schwann cells,and postnatal myelinating Schwann cells:Comparison with Oct-1,Krox-20,and Pax-3[J].J Neurosci Res,1996,46(5):630-640.
[51]Ghislain J,Desmarquet-Trin-Dinh C,Jaegle M,et al.Characterization of cisacting sequences reveals a biphasic,axon-dependent regulation of Krox20 during Schwann cell development[J].Development,2002,129(1):155-166.
[52]Monuki ES,Kuhn R,Lemke G.Repression of the myelin P0 gene by the POU transcription factor SCIP[J].Mech Dev,1993,42(1-2):15-32.
[53]Notterpek L,Snipes GJ,Shooter EM.Temporal expression pattern of peripheral myelin protein 22 during in vivo and in vitro myelination[J].Glia,1999,25(4):358-369.
[54]Wunderlich MT,Wallesch CW,Goertler M.Release of neurobiochemical markers of brain damage is related to the neurovascular status on admission and the site of arterial occlusion in acute ischemic stroke[J].J Neurol Sci,2004,227(1):49-53.
[55]Lamers KJ,Vos P,Verbeek MM,et al.Protein S-100B,neuronspecific enolase(NSE),myelin basic protein(MBP)and glial fibrillary acidic protein fGFA P1in eerebrospinal fluid(CSF)and blood of neurological patients[J].Brain Res Bull,2003,61(3):261-264.
[56]Harauz G,Ladizhansky V,Boggs JM.Structural polymorphism and multifunctionality of myelin basic protein[J].Biochemistry,2009,48(34):8094-8104.
[57]Taveggia C,Pizzagalli A,Fagiani E,et al.Characterization of a Schwann cell enhancer in the myelin basic protein gene[J].Neurochem,2004,91(4):813-824.
[58]Ishaque A,Roomi MW,Szymanska I,et al.The PO glycoprotein of peripheral nerve myelin[J].Can J Biochem,1980,58(10):913-921.
[59]Turner BJ,Ackerley S,Davies KE,et al.Dismutase-competent SOD1 mutant accumulation in myelinating Schwann cells is not detrimental to normal or transgenic ALS model mice[J].Hum Mol Genet,2010,19(5):815-824.
[60]Liu H,Kim Y,Chattopadhyay S,et al.Matrix metalloproteinase inhibition enhances the rate of nerve regeneration in vivo by promoting dedifferentiation and mitosis of supporting schwann cells[J].J Neuropathol Exp Neurol,2010,69(4):386-395.
[61]D'Urso D,Brophy PJ,Staugaitis SM,et al.Protein zero of peripheral nerve myelin:biosynthesis,membrane insertion,and evidence for homotypic interaction[J].Neuron,1990,4(3):449-460.
[62]Lee YC,Chang MH,Lin KP.Charcot-Marie-Tooth disease[J].Acta Neurol Taiwan,2008,17(3):203-213.
[63]Kochanski A,Drac H,Kabzińska D,et al.A novel MPZ gene mutation in congenital neuropathy with hypomyelination[J].Neurology,2004,62(11):2122-2123.
[64]Auer-Grumbach M,Strasser-Fuchs S,Wagner K,et al.Roussy-Lévy syndrome is a phenotypic variant of Charcot-Marie-Tooth syndrome IA associated with a duplication on chromosome 17p11.2[J].J Neurol Sci,1998,154(1):72-75.
[65]Martini R,Schachner M.Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules[J].Glia,1997,19(4):298-310.
[66]Baechner D,Liehr T,Hameister H,et al.Widespread expression of the peripheral myelin protein-22 gene(PMP22)in neural and non-neural tissues during murine development[J].J Neurosei Res,1995,42(6):733-741.
[67]Chies R,Nobbio L,Edomi P,et al.Alterations in the Arf6-regulated plasma membrane endosomal recycling pathway in cells overexpressing the tetraspan protein Gas3/PMP22[J].J Cell Sci,2003,116(Pt 6):987-999.
[68]Ryan MC,Shooter EM,Notterpek L.Aggresome formation in neuropathy models based on peripheral myelin protein 22 mutations[J].Neurobiol Dis,2002,10(2):109-118.
[69]Pareek S,Notterpek L,Snipes GJ,et al.Neurons promote the translocation of peripheral myelin protein 22 into myelin[J].J Neurosci,1997,17(20):7754-7762.
[70]Gabriel JM,Erne B,Pareyson D,et al.Gene dosage effects in hereditary peripheral neuropathy.Expression of peripheral myelin protein 22 in Charcot-Marie-Tooth disease type 1A and hereditary neuropathy with liability to pressure palsies nerve biopsies[J].Neurology,1997,49(6):1635-1640.
[71]Marcus J,Dupree JL,Popko B.Myelin-associated glycoprotein and myelin galactolipids stabilize developing axo-glial interactions[J].J Cell Biol,2002,156(3):567-577.
[72]Wong EV,David S,Jacob MH,et al.Inactivation of myelin-as sociated glycoprotein enhances optic nerve regeneration[J].J Neurosci,2003,23(8):3112-3117.
[73]Domeniconi M,Filbin MT.Overcoming inhibitors in myelin to promote axonal regeneration[J].J Neurol Sci,2005,233(1-2):43-47.
[74]Kawasaki T,Nishio T,Kawaguchi S,et al.Spatiotemporal distribulion of GAP-43 in the developing rat spinal cord:a histological and quantitative immunofluorescenee study[J].Neurosci Res,2001,39(3):347-358.
[75]Davies SJ,Fitch MT,Memberg SP,et al.Regeneration of adult axon in white mailer tracts of the central nervous system[J].Nature,1997,390(6661):680-683.
[76]Frey D,Laux T,Xu L,et al.Shared and unique roles of GAP23 and GAP43 in actin regulation,neurite outgrowth,and anatomical plasticity[J].J Cell Biol,2000,149(7):1443-1453.
[77]Verhaagen J,Oesteicher AB,Edwards PM,et al.Light-and electron-microscopical study of phosphoprotein B-50 following denervation and reinnervation of the rat soleus muscle[J].J Neurosci,1988,8(5):1759-1766.
[78]許建,李起鴻.生長相關(guān)蛋白-43與周圍神經(jīng)損傷及再生[J].中華創(chuàng)傷雜志,1999,15(5):391-392.
Special Marker of Schwann Cell in Peripheral Nerve
LIU Zhangyin,SHEN Zunli.Department fo Plastic Surgery,Shanghai First People's Hospital of Shanghai Jiaotong University School of Medical,Shanghai 200080,China.
SHEN Zunli(E-mail:zunli_shen@yahoo.com.cn).
Schwann cell;Peripheral nerve injury;Special marker
Q786
B
1673-0364(2012)05-0292-06
10.3969/j.issn.1673-0364.2012.05.014
200080 上海市 上海交通大學(xué)附屬第一人民醫(yī)院整形科。
沈尊理(E-mail:zunli_shen@yahoo.com.cn)。
【Summary】After injury of peripheral nerve,the fibrin both in proximal and distal end will develop Wallerian degeneration.Schwann cell comes from nerve prickle cell and is seed cell of peripheral nerve.The repair of injury of peripheral nerve mainly focus on reconstruction of inner construction of nerve and improve regeneration of nervous fibrin.The evaluation of effects on nerve transfer is more important to recognize transferred Schwann cells by marking special marker.The more common special markers of Schwann cells were reviewed in this paper.Schawann cells transfer may lead to clinical application of peripheral nerve injury.
2012年8月28日;
2012年10月9日)