劉貽燦,王安東
(1.中國科學(xué)院 殼幔物質(zhì)與環(huán)境重點(diǎn)實(shí)驗(yàn)室,安徽 合肥 230026;2.中國科學(xué)技術(shù)大學(xué) 地球和空間科學(xué)學(xué)院,安徽 合肥 230026)
大陸地殼的形成一般歸結(jié)為2個(gè)典型的板塊構(gòu)造位置,即活動(dòng)大陸邊緣和板內(nèi)[1]。其中,板內(nèi)的大陸生長與地幔柱的巖漿板底墊托作用或巖漿底侵作用(magmatic underplating)有關(guān),而板緣的大陸生長則主要通過俯沖增生和弧-陸碰撞來實(shí)現(xiàn)的。而且,會(huì)聚大陸邊緣通常被認(rèn)為是下地殼增生(包括幔源巖漿板底墊托作用和俯沖增生)的主要場(chǎng)所[2]。然而,很少有實(shí)例是來自活動(dòng)大陸邊緣的下地殼包體[2-3]。
麻粒巖包體和麻粒巖地體(尤其是高壓麻粒巖)通常被認(rèn)為是透視下地殼的窗口[2]。高壓麻粒巖通常被認(rèn)為代表高級(jí)的變基性巖,并以單斜輝石+斜長石+石榴子石+石英等礦物組合為主要特征[4-6],至于其他次要礦物如角閃石和藍(lán)晶石等是否出現(xiàn),取決于水活度和全巖成分[7]。高壓麻粒巖不同于榴輝巖的是其礦物組合中含有斜長石和(或)貧硬玉分子的單斜輝石,而中壓麻粒巖不同于高壓麻粒巖的主要特征是其礦物組合中含有斜方輝石,但是高壓麻粒巖在峰期之后減壓過程中可能會(huì)形成以后成合晶冠狀體形式存在的斜方輝石[7]。高壓麻粒巖出露相當(dāng)廣泛,從古元古代(如華北恒山雜巖[8])到新生代(如喜馬拉雅山脈)的諸多大陸碰撞造山帶中均有報(bào)道。前人研究結(jié)果顯示,當(dāng)變質(zhì)溫度超過800℃時(shí),變質(zhì)壓力可能超過1.4GPa[5],這意味著加厚地殼(或俯沖地殼)的下部經(jīng)歷了高溫作用。另外,高壓麻粒巖有時(shí)也與中溫榴輝巖共生,如華力西造山帶[9]。在特定地帶鑒定出高壓麻粒巖有助于對(duì)涉及大陸碰撞及相關(guān)過程中下地殼演化的認(rèn)識(shí),而對(duì)高壓麻粒巖相變質(zhì)作用的巖石學(xué)觀察和年代學(xué)測(cè)定對(duì)理解變質(zhì)作用和下地殼演化之間的關(guān)系至關(guān)重要。但是,獲得精確的高壓麻粒巖相變質(zhì)作用的時(shí)代往往比較困難。這種困難主要來自于后期多階段變質(zhì)作用疊加以及相關(guān)過程導(dǎo)致的礦物間同位素體系(尤其是Sm-Nd和Rb-Sr)的重置或不平衡,因此影響了對(duì)巖石的形成過程和構(gòu)造背景的認(rèn)識(shí)。
在過去的20年里,眾多研究者對(duì)華北克拉通前寒武紀(jì)變質(zhì)基底和下地殼包體巖石開展了大量的巖石學(xué)、構(gòu)造地質(zhì)學(xué)、地球化學(xué)和地質(zhì)年代學(xué)研究,并在其形成和演化上獲得了若干重要進(jìn)展,進(jìn)一步將華北克拉通變質(zhì)基底劃分為東部陸塊、西部陸塊及分割東部和西部陸塊的中部造山帶[10-11]。目前就東、西部陸塊沿中部造山帶在大約1.85Ga完成克拉通拼合已經(jīng)達(dá)成共識(shí)[10-17]。拼合完成之后,在1.6~1.85Ga期間,克拉通內(nèi)部和邊緣經(jīng)歷了一系列的拉張和裂谷事件,形成了伴隨有鎂鐵質(zhì)巖漿群侵位的拗拉槽和邊緣裂谷盆地,發(fā)育有斜長巖-輝長巖-紋長二長巖-環(huán)斑花崗巖套和A型花崗巖,以及超鉀火山巖的噴發(fā)[17-22]。值得注意的是,目前已報(bào)道的古元古代高壓麻粒巖相變質(zhì)作用主要來自于中部造山帶[8,10-13,23],而東部陸塊僅在膠東和信陽地區(qū)見有零星報(bào)道[24]。此外,對(duì)華北克拉通古元古代高壓麻粒巖相變質(zhì)作用的構(gòu)造背景還存在2種不同的解釋:一種觀點(diǎn)認(rèn)為這些高壓麻粒巖形成于東、西部陸塊拼合的碰撞 -造山環(huán)境中[8,11-14];另一種觀點(diǎn)則認(rèn)為它們是古元古代地幔柱活動(dòng)的產(chǎn)物[18-20,24]。存在爭(zhēng)議的一個(gè)重要原因是對(duì)高壓麻粒巖相變質(zhì)作用缺少直接的巖石學(xué)和年代學(xué)觀察,尤其是在華北克拉通東南緣或東部陸塊的南部。目前,在所研究的區(qū)域,僅見高壓麻粒巖相變質(zhì)作用的巖石學(xué)證據(jù)和模糊的(晚)古元古代年齡的分開報(bào)道。最近,Xu等在徐州—宿州地區(qū)發(fā)現(xiàn)了榴輝巖(類)捕虜體,認(rèn)為它們是華北克拉通鎂鐵質(zhì)下地殼在大約220Ma時(shí)構(gòu)造加厚形成的[25-27]。
關(guān)于華北克拉通的形成與演化,雖然受到廣泛關(guān)注并日益引起國內(nèi)外研究者的興趣,但是大部分研究都集中于華北克拉通內(nèi)部、北部和東、西陸塊結(jié)合帶或中部造山帶,而東南緣下地殼的形成與演化研究則顯得較薄弱。華北克拉通東南緣出露的變質(zhì)基底(五河變質(zhì)雜巖)和下地殼包體巖石無疑為這一研究提供了極好的天然實(shí)驗(yàn)室。最近的研究結(jié)果顯示,五河變質(zhì)雜巖中的變基性巖經(jīng)歷了1.80~1.90 Ga的高壓麻粒巖相變質(zhì)作用[28-29]。徐州—宿州一帶中生代侵入體中包體的巖石學(xué)、年代學(xué)和巖石地球化學(xué)研究也表明,這些包體大部分形成于2.4~2.5Ga并經(jīng)過大約1.8Ga高壓麻粒巖相變質(zhì)作用[25-29]。但是,有關(guān)研究區(qū)下地殼巖石的成因、形成與演化仍是亟待解決的重要科學(xué)問題。
為了更好地了解華北克拉通東南緣前寒武紀(jì)地殼(尤其是下地殼)的形成和演化過程,筆者根據(jù)近年來對(duì)蚌埠地區(qū)出露的前寒武紀(jì)變質(zhì)基底和宿州附近夾溝中生代閃長斑巖中捕虜體的研究成果和進(jìn)展,結(jié)合研究區(qū)已發(fā)表的相關(guān)資料,總結(jié)了華北克拉通東南緣前寒武紀(jì)幕式地殼生長和多期變質(zhì)作用與改造的巖石學(xué)和年代學(xué)證據(jù)。
華北克拉通是世界上最古老的克拉通之一,保留有大于3.6Ga的古老地殼物質(zhì)殘留[30]。地理位置上,華北克拉通西接祁連造山帶,北鄰天山—內(nèi)蒙—大興安嶺造山帶;在南端,秦嶺—大別—蘇魯造山帶把華北克拉通和揚(yáng)子克拉通分開(圖1[26])?;谀甏鷮W(xué)、巖石組合、構(gòu)造演化和P-T-t軌跡的不同,將華北克拉通劃分為東部陸塊、西部陸塊及夾于其中的中部造山帶[8,10,19,31]。筆者研究的蚌埠和徐州—宿州地區(qū)位于華北克拉通東部陸塊的東南緣,距蘇魯造山帶西端的郯—廬斷裂帶以西約100km,距大別造山帶北端約300km(圖1)。區(qū)內(nèi)變形的新元古代和古生代蓋層,以及晚太古代到古元古代的變質(zhì)基底侵入有大量小的中生代侵入體(如夾溝、班井和利國巖體;圖1)。這些中生代侵入體主要由閃長質(zhì)和二長閃長質(zhì)斑巖組成。研究區(qū)的前寒武紀(jì)變質(zhì)基底主要出露在蚌埠地區(qū)(常稱為“五河變質(zhì)雜巖”或“五河群”[32]),并且被中生代含石榴子石花崗巖所侵入[圖2(a)];而中生代侵入體中含有大量下地殼或幔 源 包 體 或 捕 虜 體[25-26,29,33-34][圖 2(b)]的 徐州—宿州地區(qū)則無變質(zhì)基底出露。近期研究表明,變質(zhì)基底出露區(qū)(荊山、懷遠(yuǎn)和鳳陽等地)發(fā)育的含石榴子石花崗巖主要是由華南三疊紀(jì)俯沖陸殼巖石在159Ma左右發(fā)生部分熔融形成的[35-36]。
圖1 秦嶺—大別—蘇魯碰撞帶及華北克拉通東南緣相鄰地區(qū)地質(zhì)簡(jiǎn)圖Fig.1 Simplified Geological Map of Qinling-Dabie-Sulu Collision Zone and Adjacent Parts of the Southeastern North China Craton
圖2 華北克拉通東南緣變質(zhì)基底和中生代閃長斑巖中下地殼包體的野外照片F(xiàn)ig.2 Photographs Showing the Field Occurrence of Metamorphosed Basement Rocks and Lower-crustal Xenoliths in the Mesozoic Dioritic Porphyry in the Southeastern Margin of North China Craton
研究區(qū)變質(zhì)基底的巖石類型主要有(含石榴)斜長角閃巖、榴閃巖、石榴麻粒巖和片麻巖等;下地殼包體的巖石類型主要有(含石榴)斜長角閃巖、榴閃巖、石榴角閃石巖、石榴麻粒巖、含石榴角閃斜長片麻巖和花崗片麻巖等。此外,包體中還有含尖晶石石榴單斜輝石巖、含金云母單斜輝石巖和含尖晶石二輝石巖等形成于古生代((393±7)Ma)的幔源巖石,指示北秦嶺向東延伸到華北克拉通東南緣(至少到安徽宿州地區(qū))以及在華北克拉通與揚(yáng)子克拉通之間存在一個(gè)已消失的新元古代洋殼[33]。
研究區(qū)前寒武紀(jì)變質(zhì)基底巖石(五河變質(zhì)雜巖),主要出露于“蚌埠隆起”區(qū)(如荊山、懷遠(yuǎn)和鳳陽等地),巖石類型主要有含石榴斜長角閃巖、榴閃巖、石榴麻粒巖和片麻巖等。石榴斜長角閃巖呈構(gòu)造巖塊或條帶狀 產(chǎn)于不 純的大理巖中[29,34-36],兩者 之間呈構(gòu)造接觸關(guān)系,反映了它們?cè)瓗r的不同以及可能具有不同的演化歷史,它們的原巖分別為巖漿巖和沉積巖。石榴斜長角閃巖(如樣品07FY01)主要由石榴子石、斜長石和角閃石以及少量單斜輝石、榍石和微量金紅石等礦物組成(圖3(a)、(c)[29])。石榴子石在成分上是均一的,為鐵鋁榴石-鎂鋁榴石-鈣鋁榴石固溶體,錳含量較低。斜長石有3種產(chǎn)出形式:以包裹體形式產(chǎn)于石榴子石中;以后成合晶形式與綠角閃石共生;以基質(zhì)形式產(chǎn)出。富鈦的棕色角閃石通常以包裹體形式產(chǎn)于斜長石[圖3(b)[29]]或基質(zhì)中,TiO2含量(質(zhì)量分?jǐn)?shù),后文同)高達(dá)3.82%;而產(chǎn)于基質(zhì)中或與斜長石共生產(chǎn)于后成合晶中[圖3(c)]的綠色角閃石幾乎不含Ti。基質(zhì)中殘留的單斜輝石為透輝石。榴閃巖[圖3(d)、(e)]主要由石榴子石、角閃石、斜長石和石英等組成,石榴子石在成分上相對(duì)均一,類似于樣品07FY01的石榴子石組成;角閃石有2期,分別為早期的棕色高鈦角閃石和晚期的綠色低鈦角閃石,這些特征暗示榴閃巖樣品也經(jīng)歷了類似的高壓麻粒巖相變質(zhì)作用及后期變質(zhì)作用疊加。石榴麻粒巖的主要礦物組合為石榴子石+單斜輝石+斜長石+角閃石[圖3(f)],這種礦物組合指示其經(jīng)歷了高壓麻粒巖相變質(zhì)作用[4-6]。
圖3 華北克拉通變質(zhì)基底巖石的顯微照片F(xiàn)ig.3 Photomicrographs of the Metamorphosed Basement Rocks from the Southeastern Margin of North China Craton
研究區(qū)下地殼包體的巖石類型很豐富,如(含石榴)斜長角閃巖、榴閃巖、石榴角閃石巖、石榴麻粒巖、含石榴角閃斜長片麻巖和花崗片麻巖等(圖4[29,33])。其 中,石 榴 斜 長 角 閃 巖 (如 樣 品07JG12)主要組成礦物為石榴子石、斜長石、角閃石、金紅石、石英以及少量單斜輝石[圖4(b)、(d)、(e)]。石榴子石晶體在尺度上為毫米級(jí)別,成分相對(duì)均一,為鐵鋁榴石-鎂鋁榴石-鈣鋁榴石固溶體。斜長石有3種產(chǎn)出形式:以包裹體形式產(chǎn)于石榴子石中;以后成合晶形式與單斜輝石和(或)角閃石共生;以基質(zhì)形式產(chǎn)出。大部分金紅石已退變?yōu)殁佽F礦,單斜輝石被以角閃石+斜長石組成的后成合晶結(jié)構(gòu)所替代[圖4(d)、(e)]。有時(shí)可見裂隙中鉀長石等礦物的分布[圖4(b)],可能指示晚期的溶體交代作用結(jié)果。
圖4 華北克拉通下地殼包體的顯微照片F(xiàn)ig.4 Photomicrographs of the Lower-crustal Xenoliths from the Southeastern Margin of North China Craton
石榴麻粒巖(如樣品07JG14、08JG15)主要組成礦物為石榴子石、斜長石、角閃石、單斜輝石、石英、金紅石、榍石和少量綠泥石[圖4(a)、(f)~(h)]。單斜輝石為透輝石,有2種產(chǎn)出形式:與金紅石和石英共生,以包裹體的形式產(chǎn)出于石榴子石和榍石中;以殘晶形式與斜長石和角閃石共生產(chǎn)于后成合晶中。透輝石局部被綠泥石所交代[圖4(f)]。含有金紅石和角閃石針狀出溶體的單斜輝石有時(shí)含有角閃石退變邊[圖4(g)]。石榴子石的典型特征是含有定向的針狀金紅石出溶體[圖4(g)],成分上類似于樣品07JG12的石榴子石。長石主要以基質(zhì)或后成合晶形式存在[圖4(f)]。基質(zhì)中的金紅石部分被鈦鐵礦所替代。
含石榴角閃斜長片麻巖(如樣品07JG32)[圖4(c)]主要礦物組合為石榴子石+斜長石+角閃石+金紅石,金紅石部分退變?yōu)殁佽F礦,石榴子石被斜長石+角閃石后成合晶所環(huán)繞。此外,石榴角閃石巖的主要組成礦物為石榴子石、角閃石、金紅石[圖4(i)]:石榴子石有2期,包括具有針狀金紅石出溶體的早期石榴子石和晚期深色石榴子石;角閃石也有2期,分別為早期的褐色富鐵、高鈦角閃石和晚期的綠色低鈦角閃石。
不同樣品中的角閃石是按照Leake等的分類方案[37]來命名的。棕褐色、富TiO2角閃石為韭閃石和鐵質(zhì)韭閃石,而綠色、低TiO2的角閃石為鎂質(zhì)-綠鈉閃石和淺閃石[圖3(b)、(e),圖4(i)]。表明這2類角閃石分別形成于不同的變質(zhì)條件下,如麻粒巖相和角閃巖相條件下,因?yàn)榍叭搜芯恳炎C明角閃石中Ti含量隨變質(zhì)程度的增加而升高[6,38]。這種差別也得到了巖相學(xué)證據(jù)的支持:綠角閃石產(chǎn)出于后成合晶中,而棕褐色角閃石以包裹體形式產(chǎn)出。有些樣品中含有較多的富鈦角閃石,可能反映了它們不同的原巖成分。根據(jù)電子探針成分分析,不同類型的角閃石可能形成于不同的變質(zhì)條件下(圖5[39]),`這進(jìn)一步證明本區(qū)下地殼巖石經(jīng)歷了多期變質(zhì)疊加與改造過程。
圖5 華北克拉通東南緣下地殼巖石中不同類型角閃石鋁的六次配位-四次配位圖解Fig.5 AIVI-AIIV Diagram for Different Types of Amphiboles from the Precambrian Lower-crustal Rocks in the Southeastern Margin of North China Craton
綜上所述,無論是變質(zhì)基底還是下地殼包體巖石,它們大多數(shù)(除下地殼上部的巖石以外)都含有石榴子石、單斜輝石、金紅石、斜長石和石英等峰期礦物組合,指示形成于高壓(大約1.1GPa)麻粒巖相條件下[40]。另外,這些樣品缺少諸如藍(lán)晶石和硅線石之類的富鋁礦物相,表明其原巖為巖漿巖而非沉積巖成因[41]?;谏鲜鲲@微結(jié)構(gòu)觀察和礦物之間的關(guān)系,至少可以區(qū)分出峰期高壓麻粒巖相(石榴子石+斜長石+單斜輝石+石英+金紅石±富鈦角閃石)變質(zhì)礦物組合,以及后期角閃巖相(斜長石+綠角閃石+鈦鐵礦+榍石)和綠片巖相(綠泥石+方解石+磁鐵礦)等退變質(zhì)礦物組合。因此,研究區(qū)前寒武紀(jì)變質(zhì)基底巖石以及大多數(shù)下地殼包體巖石所經(jīng)歷的最高變質(zhì)條件為高壓麻粒巖相。礦物組合與初步的溫壓計(jì)算結(jié)果表明,高壓麻粒巖相變質(zhì)階段溫度和壓力分別為800℃~860℃和1.0~1.2GPa[29]。但是,由于緩慢冷卻,尤其是可能經(jīng)歷了緩慢折返作用的巖石(如樣品07FY01),而導(dǎo)致礦物的Fe-Mg交換或重置[42],所計(jì)算的溫度有可能代表高壓麻粒巖相變質(zhì)階段的最小估計(jì)值[43]。
由于受到后期多階段變質(zhì)作用疊加的影響,Sm-Nd和Rb-Sr同位素體系發(fā)生了重置和(或)礦物之間的同位素不平衡,往往難以準(zhǔn)確測(cè)定不同變質(zhì)階段的時(shí)代,而鋯石無疑是理想的定年礦物。鋯石是一種難熔礦物,具有很低的Pb擴(kuò)散速率[44],因而高級(jí)變質(zhì)巖中鋯石常常能保留多期次的巖漿作用和變質(zhì)作用記錄[45-49]。因此,鋯石的原位 U-Pb定年是獲得經(jīng)歷過復(fù)雜演化過程和多期變質(zhì)作用巖石可靠時(shí)代的有效方法。但是,由于物理化學(xué)條件變化和每期變質(zhì)時(shí)間長短的不同,導(dǎo)致早期的鋯石結(jié)構(gòu)發(fā)生改變和(或)新的鋯石生長,從而造成高級(jí)變質(zhì)巖中的鋯石結(jié)構(gòu)顯示較大的變化性和復(fù)雜性[50]。鋯石中的變質(zhì)礦物包裹體能把年代學(xué)結(jié)果和變質(zhì)作用直接聯(lián)系起來,而對(duì)于那些反映巖石復(fù)雜的巖漿和變質(zhì)作用歷史的環(huán)帶鋯石所表現(xiàn)出的諸如不規(guī)則邊界、不同的核-幔-邊區(qū)域之類的復(fù)雜結(jié)構(gòu)可以通過陰極發(fā)光(CL)圖像揭示出來[51-52]。此外,鋯石的Lu-Hf同位素體系優(yōu)于其U-Pb體系,通常能抵抗后期蝕變和改造作用的影響[44,53-54],能保存近于初始的Hf同位素比值,并可以用來示蹤巖石成因和源區(qū)研究[55-56]。因此,單顆粒鋯石 U-Pb和 Lu-Hf同位素的聯(lián)合分析數(shù)據(jù)已被證明能提供有關(guān)巖漿和變質(zhì)事件以及巖石成因和殼-幔演化的可靠詳細(xì)信息[53-55,57-65]。正如前 文 所 述,華 北 克 拉 通 是 一 個(gè) 古老的克拉通并經(jīng)歷了復(fù)雜的演化過程,為此,筆者根據(jù)最新研究成果以及已發(fā)表的有關(guān)華北克拉通東南緣變質(zhì)基底和下地殼包體的鋯石U-Pb年代學(xué)和Lu-Hf同位素?cái)?shù)據(jù),探討了研究區(qū)前寒武紀(jì)下地殼的形成和演化過程。
圖6 華北克拉通東南緣不同類型下地殼包體巖石中代表性鋯石的陰極發(fā)光和背散射圖像Fig.6 Cathodoluminescene(CL)Images and Back Scattered Electron Image of Representative Zircons from Different Types of Lower-crustal Xenoliths in the Southeastern Margin of North China Craton
根據(jù)鋯石陰 極發(fā)光 圖像(圖 6[29,33-34])可以看出,研究區(qū)前寒武紀(jì)下地殼包體巖石經(jīng)歷了復(fù)雜的巖漿-熱事件和多期變質(zhì)作用,大多數(shù)鋯石顯示核-幔-邊結(jié)構(gòu),包括典型的巖漿鋯石核和具有石榴子石+單斜輝石+金紅石+斜長石等高壓麻粒巖相礦物組合的1.8~1.9Ga變質(zhì)鋯石[29,33]以及具有高的 Ti溫度(大于800℃)的2.48~2.49Ga麻粒巖相變質(zhì)鋯石[34]。鋯石 U-Pb年齡結(jié)果統(tǒng)計(jì)(圖7)顯示,研究區(qū)經(jīng)歷了2.5~2.6、2.1Ga的巖漿-熱事件以及2.5~2.6、2.1、1.8~1.9Ga以及390、176Ma的變質(zhì)事件。其中,形成于2.5~2.6Ga的下地殼巖石包括2類:一類是經(jīng)歷了2.1Ga和(或)1.8~1.9Ga高壓麻粒巖相變質(zhì)作用以及390、176Ma的變質(zhì)改造,而且可能是因?yàn)檫@類巖石位于下地殼下部,在2.1Ga時(shí)靠近俯沖帶,因而遭受大洋俯沖與變質(zhì)作用的強(qiáng)烈影響而造成Pb同位素均一化,形成了具有與約2.1Ga島弧巖石一致的高放射成因Pb同位素組成;另一類巖石則形成于2.55~2.64Ga,可能因處于下地殼上部而僅遭受了2.48~2.49Ga麻粒巖相變質(zhì)作用,但沒有2.1Ga和(或)1.8~1.9Ga變質(zhì)疊加的巖石學(xué)和年代學(xué)記錄,表現(xiàn)為典型的前寒武紀(jì)下地殼巖石特點(diǎn)的低放射成因Pb同位素組成[34]。此外,強(qiáng)烈的約1.8Ga高壓麻粒巖相變質(zhì)作用可能是由于幔源巖漿底侵于下地殼底部而導(dǎo)致大規(guī)模地殼加熱和增厚引起的,這也與該時(shí)期華北克拉通存在廣泛的拉張、裂谷作用以及相關(guān)的鎂鐵質(zhì)巖漿侵位等相吻合[18,20-21,29]。
鋯石的 Hf同位素分析(圖8[33])指示,研究區(qū)前寒武紀(jì)下地殼經(jīng)歷了2.5Ga和2.1Ga的巖漿-熱事件。鑒于這2期鋯石的εHf(t)中有一部分樣品為明顯的正值(如5~12),反映它們的原巖來自于新生地殼,結(jié)合其原巖性質(zhì)和地球化學(xué)特點(diǎn),指示它們的巖石成因與2期俯沖增生事件有關(guān)[33]。此外,2.7~2.8Ga的繼承鋯石 U-Pb年齡(圖7)和鋯石Hf模式年齡[33-34]暗示研究區(qū)可能還存在更老的地殼物質(zhì)或更早的地殼生長時(shí)期,這尚需進(jìn)一步的研究。
(1)華北克拉通東南緣前寒武紀(jì)下地殼的巖石組成復(fù)雜,反映一個(gè)不同形成時(shí)代和不同成因并經(jīng)過多期不同程度變質(zhì)作用與改造的形成、演化過程。
圖7 華北克拉通東南緣前寒武紀(jì)下地殼巖石的鋯石U-Pb年齡累計(jì)曲線Fig.7 Accumulative Curves of Zircon U-Pb Ages for the Precambrian Lower-crustal Rocks in the Southeastern Margin of North China Craton
圖8 華北克拉通東南緣前寒武紀(jì)下地殼巖石的鋯石U-Pb年齡和εHf(t)值的關(guān)系Fig.8 Relationship Between U-Pb Ages andεHf(t)for the Igneous Core and Metamorphic Rim of Zircons as Identified by the SHRIMP U-Pb Dating for the Precambrian Lower-crustal Rocks from the Southeastern Margin of North China Craton
(2)華北克拉通東南緣在前寒武紀(jì)發(fā)生過幕式地殼生長,至少包括2.5~2.6Ga和2.1Ga這2期俯沖增生和約1.8Ga的垂向增生過程。由Hf模式年齡和繼承鋯石限定的2.7~2.8Ga可能代表另一期地殼生長時(shí)間。
(3)華北克拉通東南緣前寒武紀(jì)下地殼巖石至少經(jīng)歷過2.5~2.6、2.1、1.8~1.9Ga以及390、176Ma等多期構(gòu)造-熱事件和不同程度的變質(zhì)交代與改造,造成巖石中某些元素和同位素特征發(fā)生變異。
(4)華北克拉通東南緣前寒武紀(jì)下地殼巖石顯示2類Pb同位素組成:一是具有典型前寒武紀(jì)下地殼巖石特點(diǎn)的低放射成因Pb同位素組成;另一類是因?yàn)?.1Ga大洋俯沖與變質(zhì)作用的強(qiáng)烈影響而造成靠近俯沖帶的下地殼巖石發(fā)生Pb同位素均一化并形成高放射成因Pb同位素組成。
本研究一直得到李曙光院士的指導(dǎo)和幫助,鋯石U-Pb定年分析得到北京離子探針中心劉敦一先生和宋彪先生等的指導(dǎo)和幫助,鋯石Hf同位素分析和礦物電子探針分析分別得到中國科學(xué)院地質(zhì)與地球物理研究所楊進(jìn)輝研究員和楊岳衡博士以及中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所陳振宇博士等的支持和幫助,在此一并表示感謝!
[1] RUDNICK R L.Making Continental Crust[J].Nature,1995,378:571-578.
[2] WEBER M B I,TARNEY J,KEMPTON P D,et al.Crustal Make-up of the Northern Andes:Evidence Based on Deep Crustal Xenolith Suites,Mercaderes,SW Colombia[J].Tectonophysics,2002,345(1/2/3/4):49-82.
[3] KEMPTON P D,DOWNES H,EMBEY-ISZTIN A.Mafic Granulite Xenoliths in Neogene Alkali Basalts from the Western Pannonian Basin:Insight into the Lower Crust of a Collapsed Orogen[J].Journal of Petrology,1997,38(7):941-970.
[4] YARDLEY B W D.An Introduction to Metamorphic Petrology[M].London:Longman Scientific and Technical,1989.
[5] O'BRIEN P J,R?TZLER J.High-pressure Granulites:Formation,Recovery of Peak Conditions,and Implications for Tectonics[J].Journal of Metamorphic Geology,2003,21(1):3-20.
[6] PATTISON D R M.Petrogenetic Significance of Orthopyroxene-free Garnet+ Clinopyroxene+ Plagioclase± Quartz-bearing Metabasites with Respect to the Amphibolite and Granulite Facies[J].Journal of Metamorphic Geology,2003,21(1):21-34.
[7] INDARES A D.Metamorphic Textures andP-TEvolution of High-PGranulites from the Lelukuau Terrane,NE Grenville Province[J].Journal of Metamorphic Geology,2003,21(1):35-48.
[8] ZHAO G,WILDE S A,CAWOOD P A,et al.Archean Blocks and Their Boundaries in the North China Craton:Lithological,Geochemical,Structural,andP-TPath Constraints and Tectonic Evolution[J].Precambrian Research,2001,107(1/2):45-73.
[9] CARSWELL D A,O'BRIEN P J.Thermobarometry and Geotectonic Significance of High-pressure Granulites:Examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria[J].Journal of Petrology,1993,34(3):427-459.
[10] ZHAO G C,CAWOOD P A,WILDE S A,et al.Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Palaeoproterozoic Tectonic Evolution[J].Precambrian Research,2000,103(1/2):55-88.
[11] ZHAO G C,WILDE S A,CAWOOD P A,et al.Archean Blocks and Their Boundaries in the North China Craton:Lithological,Geochemical,Structural,andP-TPath Constraints and Tectonic Evolution[J].Precambrian Research,2001,107(1/2):45-73.
[12] GUO J H,O'BRIEN P J,ZHAI M G.High-pressure Granulites in the Sanggan Area,North China Craton:Metamorphic Evolution,P-TPaths and Geotectonic Significance[J].Journal of Metamorphic Geology,2002,20(8):741-756.
[13] GUO J H,SUN M,CHEN F K,et al.Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-pressure Granulites in the Sanggan Area,North China Craton:Timing of Paleoproterozoic Continental Collision[J].Journal of Asian Earth Sciences,2005,24(5):629-642.
[14] WILDE S A,ZHAO G C,SUN M.Development of the North China Craton During the Late Archaean and Its Final Amalgamation at 1.8Ga:Some Speculations on Its Position Within a Global Palaeoproterozoic Supercontinent[J].Gondwana Research,2002,5(1):85-94.
[15] KR?NER A,WILDE S A,LI J H,et al.Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China[J].Journal of Asian Earth Sciences,2005,24(5):577-595.
[16] WILDE S A,ZHAO G C.Archean to Paleoproterozoic Evolution of the North China Craton[J].Journal of Asian Earth Sciences,2005,24(5):519-522.
[17] HOU G T,LIU Y L,LI J H.Evidence for~1.8Ga Extension of the Eastern Block of the North China Craton from SHRIMP U-Pb Dating of Mafic Dyke Swarms in Shandong Province[J].Journal of Asian Earth Sciences,2006,27(4):392-401.
[18] ZHAI M G,BIAN A G,ZHAO T P.The Amalgamation of the Supercontinent of North China Craton at the End of the Neo-archaean,and Its Breakup During the Late Palaeoproterozoic and Meso-proterozoic[J].Science in China:Series D,2000,43(S):219-232.
[19] ZHAI M G,LIU W J.Palaeoproterozoic Tectonic History of the North China Craton:A Review[J].Precambrian Research,2003,122(1/2/3/4):183-199.
[20] PENG P,ZHAI M G,ZHANG H F,et al.Geochronological Constraints on the Paleoproterozic Evolution of the North China Craton:SHRIMP Zircon Ages of Different Types of Mafic Dikes[J].International Geology Review,2005,47(5):492-508.
[21] HOU G T,LI J H,YANG M H,et al.Geochemical Constraints on the Tectonic Environment of the Late Palaeoproterozoic Mafic Dyke Swarms in the North China Craton[J].Gondwana Research,2008,13(1):103-116.
[22] LU S N,ZHAO G C,WANG H C,et al.Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton:A Review[J].Precambrian Research,2008,160(1/2):77-93.
[23] ZHAI M G,GUO J H,YAN Y H,et al.Discovery of High-pressure Basic Granulite Terrain in North China Archaean Craton and Preliminary Study[J].Science in China:Series B,1993,36(11):1402-1408.
[24] ZHENG J P,SUN M,LU F X,et al.Mesozoic Lower Crustal Xenoliths and Their Significance in Lithospheric Evolution Beneath the Sino-Korean Craton[J].Tectonophysics,2003,361(1/2):37-60.
[25] XU W L,WANG D Y,LIU X C,et al.Discovery of Eclogite Inclusions and Its Geological Significance in Early Jurassic Intrusive Complex in Xuzhou-northern Anhui,Eastern China[J].Chinese Science Bulletin,2002,47(14):1212-1216.
[26] XU W L,GAO S,WANG Q H,et al.Mesozoic Crustal Thickening of the Eastern North China Craton:Evidence from Eclogite Xenoliths and Petrologic Implications[J].Geology,2006,34(9):721-724.
[27] XU W L,GAO S,YANG D B,et al.Geochemistry of Eclogite Xenoliths in Mesozoic Adakitic Rocks from Xuzhou-Suzhou Area in Central China and Their Tectonic Implications[J].Lithos,2009,107(3/4):269-280.
[28] GUO S S,LI S G.SHRIMP Zircon U-Pb Ages for the Palaeoproterozoic Metamorphic-magmatic Events in the Southeast Margin of the North China Craton[J].Science in China:Series D,2009,52(8):1039-1045.
[29] LIU Y C,WANG A D,ROLFO F,et al.Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton[J].Journal of Metamorphic Geology,2009,27(2):125-138.
[30] LIU D Y,NUTMAN A P,COMPSTON W,et al.Remnants of≥3 800Ma Crust in Chinese Part of the Sino-Korean Craton[J].Geology,1992,20(4):339-342.
[31] KUSKY T M,LI J H.Paleoproterozoic Tectonic Evolution of the North China Craton[J].Journal of Asian Earth Sciences,2003,22(4):383-397.
[32] WANG A D,LIU Y C,SANTOSH M,et al.Zircon U-Pb Geochronology,Geochemistry and Sr-Nd-Pb Isotopes from the Metamorphic Basement in the Wuhe Complex:Implications for Neoarchean Active Continental Margin Along the Southeastern North China Craton and Constraints on the Petrogenesis of Mesozoic Granitoids[J].Geoscience Frontiers,2012,doi:10.1016/j.qsf.2012.05.001.
[33] LIU Y C,WANG A D,LI S G,et al.Composition and Geochronology of the Deep-seated Xenoliths from the Southeastern Margin of the North China Craton[J].Gondwana Research,2012,doi:10.1016/j.gr.2012.06.009.
[34] WANG A D,LIU Y C,GU X F,et al.Late-Neoarchean Magmatism and Metamorphism at the Southeastern Margin of the North China Craton and Their Tectonic Implications[J].Precambrian Research,2012,220/221:65-79.
[35] 王安東,劉貽燦,古曉鋒,等.蚌埠老山含石榴子石片麻狀花崗巖的鋯石SHRIMP U-Pb年齡及其對(duì)華南俯沖陸殼再循環(huán)的意義[J].礦物巖石,2009,29(2):38-43.WANG An-dong,LIU Yi-can,GU Xiao-feng,et al.Zircon SHRIMP U-Pb Dating for Garnet-bearing Gneissic Granite at Laoshan,Bengbu:Implications for Recycling of the Subducted Continental Crust of the South China Block[J].Journal of Mineralogy and Petrology,2009,29(2):38-43.
[36] YANG D B,XU W L,WANG Q H,et al.Chronology and Geochemistry of Mesozoic Granitoids in the Bengbu Area,Central China:Constraints on the Tectonic Evolution of the Eastern North China Craton[J].Lithos,2010,114(1/2):200-216.
[37] LEAKE B E,WOOLLEY A R,ARPS C E S,et al.Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association,Commission on New Minerals and Mineral Names[J].American Mineralogist,1997,82(9/10):1019-1037.
[38] RAASE P.Al and Ti Contents of Hornblende,Indicators of Pressure and Temperature of Regional Metamorphism[J].Contributions to Mineralogy and Petrology,1974,45(3):231-236.
[39] GROPPO C,LOMBARDO B,ROLFO F,et al.Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range(Eastern Himalayas)[J].Journal of Metamorphic Geology,2007,25(1):51-75.
[40] ROGERS N W.Granulite Xenoliths from Lesotho Kimberlites and the Lower Continental Crust[J].Nature,1977,270:681-684.
[41] DESSAI A G,MARKWICK A,VASELLI O,et al.Granulite and Pyroxenite Xenoliths from the Deccan Trap:Insight into the Nature and Composition of the Lower Lithosphere Beneath Cratonic India[J].Lithos,2004,78(3):263-290.
[42] FROST B R,CHACKO T.The Granulite Uncertainty Principle:Limitations on Thermobarometry in Granulites[J].The Journal of Geology,1989,97(4):435-450.
[43] DAVIS W J,CANIL D,MACKENZIE J M,et al.Petrology and U-Pb Geochronology of Lower Crustal Xenoliths and the Development of a Craton,Slave Province,Canada[J].Lithos,2003,71(2):541-573.
[44] CHERNIAK D J,WATSON E B.Diffusion in Zircon[J].Reviews in Mineralogy and Geochemistry,2003,53(1):113-143.
[45] RUBATTO D,WILLIAMS I S,BUICK I S.Zircon and Monazite Response to Prograde Metamorphism in the Reynolds Range,Central Australia[J].Contributions to Mineralogy and Petrology,2001,140(4):458-468.
[46] AYERS J C,DUNKLE S,GAO S,et al.Constraints on Timing of Peak and Retrograde Metamorphism in the Dabie Shan Ultrahigh-pressure Metamorphic Belt,East-central China,Using U-Th-Pb Dating of Zircon and Monazite[J].Chemical Geology,2002,186(3/4):315-331.
[47] M?LLER A,O'BRIEN P J,KENNEDY A,et al.Polyphase Zircon in Ultrahigh-temperature Granulites(Rogaland,SW Norway):Constraints for Pb Diffusion in Zircon[J].Journal of Metamorphic Geology,2002,20(8):727-740.
[48] LIU Y C,LI S G,GU X F,et al.Ultrahigh-pressure Eclogite Transformed from Mafic Granulite in the Dabie Orogen,East-central China[J].Journal of Metamorphic Geology,2007,25(9):975-989.
[49] LIU Y C,GU X F,LI S G,et al.Multistage Metamorphic Events in Granulitized Eclogites from the North Dabie Complex Zone,Central China:Evidence from Zircon U-Pb Age,Trace Element and Mineral Inclusion[J].Lithos,2011,122(1/2):107-121.
[50] CORFU F,HANCHAR J M,HOSKIN P W O,et al.Altas of Zircon Textures[J].Reviews in Mineralogy md Geochemistry,2003,53(1):469-500.
[51] GEBAUER D,SCHERTL H P,BRIX M,et al.35Ma Old Ultrahigh-pressure Metamorphism and Evidence for Very Rapid Exhumation in the Dora Maira Massif,Western Alps[J].Lithos,1997,41(1/2/3):5-24.
[52] HERMANN J,RUBATTO D,KORASKOV A,et al.Multiple Zircon Growth During Fast Exhumation of Diamondiferous,Deeply Subducted Continental Crust(Kokchetav Massif,Kazakhstan)[J].Contributions to Mineralogy and Petrology,2001,141(1):66-82.
[53] AMELIN Y,LEE D C,HALLIDAY A N.Early-middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains[J].Geochimica et Cosmochimica Acta,2000,64(24):4205-4225.
[54] GERDES A,ZEH A.Zircon Formation Versus Zircon Alteration—New Insights from Combined U-Pb and Lu-Hf In-situ LA-ICP-MS Analyses,and Consequences for the Interpretation of Archean Zircon from the Central Zone of the Limpopo Belt[J].Chemical Geology,2009,261(3/4):230-243.
[55] GRIFFIN W L,BELOUSOVA E A,SHEE S R,et al.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-isotope Evidence from Detrital Zircons[J].Precambrian Research,2004,131(3/4):231-282.
[56] WOODHEAD J,HERGT J,SHELLEY M,et al.Zircon Hf-isotope Analysis with an Excimer Laser,Depth Profiling,Ablation of Complex Geometries,and Concomitant Age Estimation[J].Chemical Geology,2004,209(1/2):121-135.
[57] VERVOORT J D,BLICHERT-TOFT J.Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks Through Time[J].Geochimica et Cosmochimica Acta,1999,63(3/4):533-556.
[58] GRIFFIN W L,PEARSON N J,BELOUSOVA E,et al.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites[J].Geochimica et Cosmochimica Acta,2000,64(1):133-147.
[59] ANDERSEN T,GRIFFIN W L,PEARSON N J.Crustal Evolution in the SW Part of the Baltic Shield:the Hf Isotope Evidence[J].Journal of Petrology,2002,43(9):1725-1747.
[60] CONDIE K C,BEYER E,BELOUSOVA E,et al.UPb Isotopic Ages and Hf Isotopic Composition of Single Zircons:The Search for Juvenile Precambrian Continental Crust[J].Precambrian Research,2005,139(1/2):42-100.
[61] IIZUKA T,HIRATA T,KOMIYA T,et al.U-Pb and Lu-Hf Isotope Systematics of Zircons from the Mississippi River Sand:Implications for Reworking and Growth of Continental Crust[J].Geology,2005,33(6):485-488.
[62] HAWKESWORTH C J,KEMP A I S.Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution[J].Chemical Geology,2006,226(3/4):144-162.
[63] WU F Y,YANG Y H,XIE L W,et al.Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology[J].Chemical Geology,2006,234(1/2):105-126.
[64] KEMP A I S,F(xiàn)OSTER G L,SCHERSTEN A,et al.Concurrent Pb-Hf Isotope Analysis of Zircon by Laser Ablation Multi-collector ICP-MS,with Implications for the Crustal Evolution of Greenland and the Himalayas[J].Chemical Geology,2009,261(3/4):244-260.
[65] ZEH A,GERDES A,BARTON J M,et al.Archean Accretion and Crustal Evolution of the Kalahari Craton—The Zircon Age and Hf Isotope Record of Granitic Rocks from Barberton/Swaziland to the Francistown Arc[J].Journal of Petrology,2009,50(5):933-966.
[66] HUANG X L,XU Y G,LIU D Y.Geochronology,Petrology and Geochemistry of the Granulite Xenoliths from Nushan,East China:Implication for a Heterogeneous Lower Crust Beneath the Sino-Korean Craton[J].Geochimica et Cosmochimica Acta,2004,68(1):127-149.
[67] ZHENG J P,GRIFFIN W L,MA Q,et al.Accetion and Reworking Beneath the North China Craton[J].Lithos,2012,149(1):61-78.