李炳楠,黃 進
(1. 浙江大學(xué)電氣工程學(xué)院,杭州 310027 2. 浙江省微特電機節(jié)能降耗工程技術(shù)研究中心,杭州 310027)
自上世紀(jì)70年代以來,無軸承電機已有40多年的發(fā)展歷史。它是電磁軸承與交流電機相結(jié)合的產(chǎn)物,它將電磁軸承中產(chǎn)生徑向力的繞組疊壓到電機定子繞組上,使氣隙中產(chǎn)生兩種不同極對數(shù)的旋轉(zhuǎn)磁場,從而使電機轉(zhuǎn)子同時具有旋轉(zhuǎn)和自懸浮支撐的能力[1,2]。與磁軸承系統(tǒng)相比,無軸承電機尺寸小、功率密度高、結(jié)構(gòu)緊湊,能同時實現(xiàn)高轉(zhuǎn)速和大功率,因此無軸承電機具有比電磁軸承更為廣闊的應(yīng)用前景。
目前大多數(shù)的無軸承電機研究都采用雙繞組結(jié)構(gòu)形式,其中一套繞組提供電磁轉(zhuǎn)矩,另一套繞組提供懸浮力[3,4]。而多相單繞組無軸承電機通過特定的控制算法和繞組連接方式,在一套繞組中同時通入轉(zhuǎn)矩電流和懸浮電流,實現(xiàn)電機的穩(wěn)定旋轉(zhuǎn)與平穩(wěn)懸浮[5]。相比于傳統(tǒng)雙繞組電機,其優(yōu)勢主要體現(xiàn)在控制系統(tǒng)結(jié)構(gòu)更加緊湊以及電機加工難度的降低。
然而,相對于雙繞組無軸承電機,單繞組無軸承電機的研究處于起步階段,其研究主要集中在懸浮力產(chǎn)生機理分析和控制上,較少從電機設(shè)計的角度進行細(xì)致分析。其中,文獻(xiàn)[5, 6]分別對感應(yīng)型和永磁型單繞組無軸承電機的懸浮機理和控制方式進行了研究。相對于感應(yīng)型無軸承電機,永磁型無軸承電機除了具有功率密度大、效率高等固有特點外,其控制方式較為方便,轉(zhuǎn)子上不存在電流,無需補償,解耦相對容易,數(shù)學(xué)模型簡單。
本文從轉(zhuǎn)矩特性和懸浮特性優(yōu)化的角度,針對單繞組永磁無軸承電機設(shè)計的特殊性,在文獻(xiàn)[7]的基礎(chǔ)上,對一臺7相單繞組永磁無軸承電機進行電機優(yōu)化設(shè)計與分析。通過電磁場計算,分析轉(zhuǎn)子結(jié)構(gòu)、極弧系數(shù)、氣隙長度和永磁體厚度對無軸承電機轉(zhuǎn)矩特性和懸浮特性的影響,優(yōu)化參數(shù)設(shè)計,并將結(jié)果應(yīng)用于控制系統(tǒng)仿真中,以驗證分析結(jié)果的正確性。
對于永磁型單繞組無軸承電機,轉(zhuǎn)子結(jié)構(gòu)、極弧系數(shù)、氣隙長度和永磁體厚度對電機的轉(zhuǎn)矩特性和懸浮特性具有不同的影響,而這些影響最終都將體現(xiàn)在電機電感上,進而影響電機的轉(zhuǎn)矩、可控懸浮力與單邊磁拉力。所以需要對這幾種參數(shù)變化時電機的轉(zhuǎn)矩特性與懸浮特性進行分析,并對其進行優(yōu)化。
永磁電機按照永磁體在轉(zhuǎn)子上的不同設(shè)置,其轉(zhuǎn)子磁路結(jié)構(gòu)一般可分為三種:表面式、內(nèi)置式和混合式。由于內(nèi)置式和混合式轉(zhuǎn)子磁路結(jié)構(gòu)的氣隙磁密分布基本為方波分布,諧波成分較多。對于多相單繞組無軸承電機,由于多相電機多自由度的特點,諧波磁場會產(chǎn)生反向旋轉(zhuǎn)磁場,故所造成的懸浮力干擾更為明顯,可能導(dǎo)致電機無法正常懸浮,不適于無軸承電機的應(yīng)用,故在永磁型無軸承電機樣機設(shè)計中更多考慮表面式轉(zhuǎn)子結(jié)構(gòu)。
表面式轉(zhuǎn)子結(jié)構(gòu)又分為表貼式和內(nèi)插式。由于永磁體導(dǎo)磁率與空氣基本相同,一般認(rèn)為表貼式轉(zhuǎn)子屬于隱極轉(zhuǎn)子結(jié)構(gòu),而內(nèi)插式轉(zhuǎn)子則屬于凸極轉(zhuǎn)子結(jié)構(gòu)。這兩種結(jié)構(gòu)在產(chǎn)生正弦分布?xì)庀洞琶艿哪芰ι匣鞠嗤珒?nèi)插式應(yīng)用于無軸承電機領(lǐng)域更具優(yōu)勢,包括結(jié)構(gòu)緊湊、懸浮力大、抗去磁能力強等。
內(nèi)插式轉(zhuǎn)子的主要特征表現(xiàn)為凸極性,極弧系數(shù)的選取對永磁電機的參數(shù)和性能有較大影響。當(dāng)氣隙恒定時,隨著極弧系數(shù)的減小,空載主磁通和空載反電勢減小,則在相同電流下,轉(zhuǎn)矩減??;另外,隨著極弧系數(shù)的減小,氣隙5、7次諧波磁密含量增大,使得氣隙磁密肩部趨于平順,如圖1所示。
由文獻(xiàn)[7]中的電感公式可以得出,當(dāng)轉(zhuǎn)子極弧度數(shù)2/π≠ζ時,考慮到永磁體極弧系數(shù)則電感公式見式(1)所示。
由式(1)可見,隨著極弧系數(shù)的增大,miL線性減小,而iLθ非線性減小,從而導(dǎo)致交軸電感下降速度較快,而直軸電感下降速度較慢。這說明極弧系數(shù)對直軸電感影響較小,而對交軸電感影響較大,如圖 2所示,其中實線為解析解,虛線為FEM解。
式中:
圖2 不同極弧系數(shù)下電感變化曲線
交直軸電感的變化除了對電機的效率、功角、功率因數(shù)和額定電流等有影響外,在無軸承電機中對可控懸浮力亦會產(chǎn)生影響。通過電磁場計算,相同懸浮電流下(1A),隨著極弧系數(shù)的減小,懸浮力的平均值逐漸增大,但沿圓周位置處的懸浮力波動程度也逐漸增大。如圖3所示,當(dāng)極弧系數(shù)為1時,此時轉(zhuǎn)子結(jié)構(gòu)變?yōu)楸碣N式結(jié)構(gòu),其懸浮力平均值最小,但沿圓周波動程度也最??;當(dāng)極弧系數(shù)減小到0.72時,波動程度劇烈變化。其原因在于,轉(zhuǎn)子等效氣隙減小,而氣隙不均勻程度增大,在實際控制中需要對其進行補償。綜合考慮,樣機極弧系數(shù)取0.89。
圖3 不同極弧系數(shù)下懸浮力與懸浮電流角度的變化曲線
在永磁無軸承電機設(shè)計中,永磁體厚度和氣隙長度的確定是該電機設(shè)計的關(guān)鍵所在。一方面,永磁體需要產(chǎn)生足夠的氣隙磁場以滿足電機轉(zhuǎn)矩要求,因此永磁體不能太?。涣硪环矫?,隨著永磁體厚度的增加,電機的懸浮力就要減小,需要增加懸浮電流來增大懸浮力,從這個角度來講永磁體又不能太厚。
圖4 氣隙長度和永磁體厚度與氣隙磁密分布的關(guān)系
圖5 氣隙長度和永磁體厚度與定子電感的關(guān)系
圖6 氣隙長度和永磁體厚度與懸浮力分布的關(guān)系
另外,氣隙的大小對懸浮力和電機轉(zhuǎn)矩的影響也很大。隨著電機氣隙的增大,懸浮力將顯著減小。一般而言,永磁體的厚度要遠(yuǎn)大于電機氣隙長度,這也是在相同情況下籠型轉(zhuǎn)子要比永磁型轉(zhuǎn)子無軸承電機懸浮力更大的原因。然而,氣隙過小會使起動轉(zhuǎn)矩下降,諧波磁場增大,使得轉(zhuǎn)矩脈動和附加損耗增大。所以永磁體厚度與氣隙長度的選擇應(yīng)兼顧電機的負(fù)載能力與電機的懸浮性能。
圖7 單繞組永磁無軸承電機控制框圖
如圖4(a)所示,隨著氣隙由2.5mm減小到0.5mm,氣隙基波磁密變大,但波形畸變率也變大,各次諧波含量增大。同時,如圖 5(a)、圖 6(a)所示,轉(zhuǎn)矩平面和懸浮平面的交直軸電感均有不同程度的增大,使得電機空載電流與負(fù)載電流減小,反電動勢增大,帶載能力增強,懸浮力增大。
另外,氣隙的減小使得電機各部分磁密增大,當(dāng)電機在懸浮時轉(zhuǎn)軸出現(xiàn)振蕩,或者因外界擾動轉(zhuǎn)子出現(xiàn)偏心時,在相同偏心時,轉(zhuǎn)子受到的單邊磁拉力會相應(yīng)增大,此時需要增大懸浮電流,以增大懸浮力,平衡單邊磁拉力。綜合考慮,樣機的氣隙取1.2mm。
圖4(b)給出了永磁體厚度對氣隙磁密分布的影響,永磁體厚度從1.5mm到4.0mm每隔0.5mm變化時,電機氣隙基波磁密增大。如圖 5(b)、圖 6(b)所示,在相同懸浮電流下,隨著永磁體厚度的增大,氣隙磁密增大,等效氣隙增大,電感減小,可控懸浮力減小。綜合考慮,永磁體厚度取3mm。
文獻(xiàn)[7]中的懸浮力解析表達(dá)式主要針對ζ=π/2的情況,以此為例,對單繞組永磁無軸承電機的實時控制,而當(dāng)電機空載運行時,交軸磁鏈較小,可忽略不計,此時懸浮力公式可化簡為
圖8 電機空載和帶載過程中轉(zhuǎn)子位移和懸浮電流仿真
圖7給出了包括電磁轉(zhuǎn)矩控制及懸浮力控制在內(nèi)的無軸承電機控制系統(tǒng)框圖。為方便控制,永磁電機大多采用Id=0的控制方式,此時Id1m=If,式(3)可繼續(xù)化簡為
從式(4)可見,忽略q軸磁鏈后,x方向的懸浮力與d軸方向的懸浮力電流mdI2成正比,y方向的懸浮力與q軸方向的懸浮力電流mqI2成正比。但加載后,隨著mqI1的增大,q軸磁鏈逐漸不容忽略,其合力和方向由mdI1與mqI1共同決定,并同單邊磁拉力平衡。
由圖7可得,懸浮平面內(nèi),懸浮電流的大小取決于懸浮所需的可控懸浮力,由式(5)可推導(dǎo)出不考慮q軸磁鏈時的給定懸浮電流為
圖8(a)為樣機空載起動過程中轉(zhuǎn)子位移變化的仿真結(jié)果,設(shè)靜止時初始?xì)庀镀臑棣=ΔY=0.3mm。可以看出,起動時轉(zhuǎn)子轉(zhuǎn)速n在0.6s內(nèi)迅速從靜止升至3000r/min。在Id=0的磁場定向控制下,轉(zhuǎn)子能在0.4s內(nèi)即達(dá)到了穩(wěn)定懸浮狀態(tài),X和Y方向位移穩(wěn)定在0.1mm內(nèi)。在0.7s和1.5s突加負(fù)載時,轉(zhuǎn)子位移和懸浮電流變化很小,電機實現(xiàn)了穩(wěn)定懸浮運行,如圖8(b)、(c)所示。
本文從轉(zhuǎn)矩特性和懸浮特性優(yōu)化的角度,針對單繞組永磁無軸承電機設(shè)計的特殊性,對一臺7相單繞組永磁無軸承電機進行優(yōu)化設(shè)計與分析。通過電磁場計算,分析轉(zhuǎn)子結(jié)構(gòu)、極弧系數(shù)、氣隙長度和永磁體厚度對無軸承電機轉(zhuǎn)矩特性和懸浮特性的影響,優(yōu)化了參數(shù)設(shè)計,并對其控制系統(tǒng)進行了仿真,其仿真結(jié)果驗證了模型的正確性。
[1]P. K. Hermann. A radial active magnetic bearing have a rotating drive. London, Patent No.1 500 809[P]. 9 Feb. 1974.
[2]R. Bosch. Development of a bearingless motor [C].International Conference on Electrical Machines,Pisa, Italy, 1988: 373-375.
[3]鄧智泉, 仇志堅, 王曉琳, 嚴(yán)仰光. 無軸承永磁同步電機的轉(zhuǎn)子磁場定向控制研究[J]. 中國電機工程學(xué)報, 2005(1): 104-108.
[4]年珩, 賀益康. 永磁型無軸承電機控制系統(tǒng)研究[J]. 電力電子技術(shù), 2007(02): 85-87.
[5]J. Huang, M. Kang, J.Q. Yang. Analysis of a new 5-phase bearingless induction motor [J]. Journal of Zhejiang University Science A, 2007(8):1311-1319.
[6]Jiang Haibo, Huang Jin, Kang Min. Principle and realization of a 5-phase PM bearingless motor drive[C]. The 6th International power electronics and motion control conference, Wuhan, China, 2009:1852-1857.
[7]Bingnan Li, Jin Huang, Min Kang, Haibo Jiang.Analysis and simulation of a 7-phase PM bearingless motor[C]. Electrical Machines and Systems (ICEMS), 2011 International Conference.2011.