鄒穎穎,張吉翔
(1南昌大學(xué)醫(yī)學(xué)院,2南昌大學(xué)第二附屬醫(yī)院消化內(nèi)科,3江西省分子醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室,江西 南昌 330006)
ATP敏感性鉀通道(ATP-sensitive K+channels,KATP)由SUR1和Kir6.2亞基組成,是葡萄糖刺激胰島β細(xì)胞分泌胰島素的關(guān)鍵部位。新生兒糖尿病iDEND綜合征(intermediate developmental delay,epilepsy,and neonatal diabetes syndrome)是由 KATP通道突變引起的疾病。大多數(shù)KATP突變型新生兒糖尿病患者表現(xiàn)為單純的糖尿病,然而有些新生兒糖尿病患者伴有生長發(fā)育遲緩和肌肉松弛,但無癲癇癥狀,稱為新生兒糖尿病iDEND綜合征。本文綜述了KATP通道突變導(dǎo)致iDEND綜合征的分子機(jī)制、臨床表現(xiàn)和治療方法。
新生兒糖尿病(neonatal diabetes mellitus,NDM)是一種罕見的特殊類型糖尿病,通常指出生后6月齡內(nèi)發(fā)生的糖尿病,可分為暫時(shí)性新生兒糖尿病(transient neonatal diabetes,TNDM)和永久性新生兒糖尿病(permanent neonatal diabetes,PNDM)。2006年 Edghill等[1]研究證明出生后6個(gè)月內(nèi)發(fā)生的新生兒糖尿病病因并非是自身免疫性Ⅰ型糖尿病而是單基因遺傳病。暫時(shí)性新生兒糖尿病約占新生兒糖尿病的50%,其70%的病因是染色體6q24親代印跡表達(dá)異常[2];30%的病因是KCNJ11基因或 ABCC8基因激活突變(activating mutation)[3]。永久性新生兒糖尿病發(fā)病率約1/20萬[4],據(jù)報(bào)道迄今為止至少有13種不同基因突變可以引起永久性新生兒糖尿病,但最主要的病因是編碼KATP通道亞基的KCNJ11或ABCC8基因激活突變[5]。這種KATP通道突變型新生兒糖尿病患者可以表現(xiàn)為單純的糖尿病,或是其它綜合征(DEND或iDEND綜合征)。顯而易見,iDEND綜合征是KATP通道突變型永久性新生兒糖尿病的一種臨床表型。
胰島β細(xì)胞上的KATP通道由內(nèi)向整流型鉀離子通道(Kir6.2)和磺脲類受體 (SUR1)組成,含有4個(gè)Kir6.2亞單位和4個(gè)SUR1亞單位。Kir6.2亞基由KCNJ11基因編碼,形成鉀離子通道;SUR1亞基由ABCC8基因編碼,為調(diào)節(jié)亞基,調(diào)節(jié)Kir6.2亞基的開放或關(guān)閉。正常情況,胰島β細(xì)胞分泌胰島素主要由細(xì)胞外葡萄糖濃度調(diào)節(jié)。當(dāng)葡糖糖濃度升高時(shí),葡萄糖分子通過體內(nèi)葡萄糖轉(zhuǎn)運(yùn)體2(GLUT2)進(jìn)入胰島β細(xì)胞內(nèi)進(jìn)行糖代謝,產(chǎn)生大量ATP,ATP/ADP比值升高,ATP與 KATP通道的 Kir6.2亞基結(jié)合,使KATP通道關(guān)閉,細(xì)胞內(nèi)K+外流減少,細(xì)胞膜去極化,激活電壓依賴性Ca2+通道,Ca2+內(nèi)流及細(xì)胞內(nèi)Ca2+濃度增高,刺激含有胰島素的顆粒外移和胰島素釋放[6],見圖1。KATP通道將細(xì)胞代謝和電活動(dòng)偶聯(lián)在一起,廣泛分布于各種細(xì)胞類型,包括神經(jīng)、肌肉、內(nèi)分泌組織細(xì)胞[7]。2004年KCNJ11基因激活突變?cè)赑NDM患者中首次證實(shí),并且是30%的PNDM病因[8]。隨后,ABCC8基因激活突變?cè)赑NDM患者中也被證實(shí)[9],而2種基因同時(shí)突變是超過40%的PNDM 病因[10]。2005 年 Hattersley等[11]證實(shí)新生兒糖尿病iDEND綜合征患者中存在編碼 KATP通道Kir6.2亞基的KCNJ11基因激活突變。目前所有被報(bào)道的KCNJ11和ABCC8基因激活突變都是錯(cuò)義突變,除外一例為KCNJ11基因框內(nèi)15個(gè)核苷酸缺失引起的突變[12]。KCNJ11基因突變僅是雜合子突變,為顯性遺傳[13],大約90%的KCNJ11基因激活突變是自發(fā)性突變,在胚胎發(fā)育期間新生成[11,14]。ABCC8基因含有39個(gè)外顯子,編碼1582個(gè)氨基酸蛋白,KCNJ11基因含有1個(gè)單一的外顯子,編碼390個(gè)氨基酸蛋白,2種基因均位于常染色體11p15.1。迄今為止,超過100種不同的KCNJ11和ABCC8基因突變位點(diǎn)在新生兒糖尿病中被證實(shí)[15]。Kir6.2 Val59→Met59(V59M)激活突變是iDEND綜f合征常見原因 (> 50%)[16],其它突變點(diǎn)包括 T239N、R201C、H46L、Y330C、K170N 等[7]。眾多研究表明KCNJ11和(或)ABCC8基因激活突變使KATP通道對(duì)ATP敏感性降低,減弱ATP對(duì)通道正常關(guān)閉的抑制作用,通道處于開放狀態(tài),最終使胰島素釋放減少[17],見圖 2。
Figure 1.Insulin secretion from a normal pancreatic beta cell in a high plasma glucose environment.Glucose enters the cell and is metabolized,causing an increase in ATP.KATPchannel closure is induced via ATP binding.The membrane is depolarized and calcium influx is triggered,resulting in the release of insulin from its storage vesicles.(From:Edqhill EL,F(xiàn)lanaqan SE,Ellard S.Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11[J].Rev Endocr Metab Disord,2010,11(3):193 -198.)圖1 高血糖引起正常胰島β細(xì)胞胰島素分泌的機(jī)制
Figure 2.No insulin secretion from a pancreatic beta cell with a KATPchannel mutation.Activing mutation in KCNJ11 or ABCC8(KATPchannel)results in the failure of ATP to bind to the channel,causing the channel to remain open.The membrane stays hyperpolarized and no insulin is released.(From:Edqhill EL,F(xiàn)lanaqan SE,Ellard S.Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11[J].Rev Endocr Metab Disord,2010,11(3):193 -198.)圖2 KATP通道突變時(shí)葡萄糖引起胰島β細(xì)胞無胰島素分泌的機(jī)制
構(gòu)成Kir6.2亞基的2個(gè)跨膜區(qū)域在細(xì)胞外連接形成閉環(huán)通路,形成K+選擇性通道。Kir6.2亞基突變點(diǎn)主要位于胞內(nèi)區(qū)域,并且包括ATP結(jié)合位點(diǎn)。在體外爪蟾卵中應(yīng)用膜片鉗技術(shù)進(jìn)行新生兒糖尿病KCNJ11基因激活突變機(jī)制研究發(fā)現(xiàn),迄今為止,所有的突變機(jī)制都表明KATP通道對(duì)ATP的敏感性直接或間接性降低而致?。?7]。在Kir6.2亞基中突變熱點(diǎn)是R201H和 V59M。SUR1亞基有3個(gè)跨膜區(qū)(TMD0~TMD2)和2個(gè)核苷酸結(jié)合區(qū)(NBD1和NBD2)。當(dāng)Mg-ADP與 NBD結(jié)合時(shí),KATP通道開放,細(xì)胞膜超極化,胰島素釋放被抑制[18]。突變所導(dǎo)致的新生兒糖尿病病因可以是增加Mg-ADP介導(dǎo)的KATP通道開放或是SUR1自身亞基的突變。而SUR1亞基的突變位點(diǎn)貫穿于整個(gè)蛋白質(zhì)。電生理學(xué)膜片鉗技術(shù)研究證實(shí)SUR1激活突變對(duì)KATP通道電流的影響小于因Kir6.2激活突變而導(dǎo)致的相同NDM表型。這也許可以解釋為什么新生兒糖尿病iDEND綜合征患者由KCNJ11基因激活突變所致[19]。只有胰島β細(xì)胞KATP通道選擇性突變的小鼠表現(xiàn)為嚴(yán)重糖尿病但無神經(jīng)系統(tǒng)癥狀[20]。KATP通道分布廣泛,所以對(duì)于患兒的肌張力降低是源于肌肉還是神經(jīng)組織的KATP通道突變并不確定。近來應(yīng)用cre-lox技術(shù)產(chǎn)生了Kir6.2激活突變的小鼠模型,主要是在胰島β細(xì)胞、肌肉和神經(jīng)組織細(xì)胞中的基因KCNJ11 V59M激活突變所誘導(dǎo)的iDEND綜合征小鼠模型。實(shí)驗(yàn)結(jié)果證明運(yùn)動(dòng)功能缺陷是神經(jīng)系統(tǒng)KATP通道功能損傷的結(jié)果,而不是肌肉組織中的KATP通道功能損傷所致[16]。Shimomura 等[21]研究發(fā)現(xiàn)基因KCNJ11 T293N突變引起iDEND綜合征患者中,KATP通道對(duì)ATP敏感性顯著下降,增加了KATP通道的固有開放頻率,導(dǎo)致靜息狀態(tài)下更多的KATP通道開放,間接抑制了ATP依賴的通道關(guān)閉,全細(xì)胞膜電流增加,細(xì)胞膜超極化,抑制細(xì)胞膜的電生理活動(dòng)、鈣離子內(nèi)流、胰島素分泌。同時(shí)證實(shí)伴有神經(jīng)學(xué)癥狀的iDEND患者,全細(xì)胞KATP通道靜息電流大量增加。Ashcroft[7]曾用實(shí)驗(yàn)證明由KATP通道突變導(dǎo)致的新生兒糖尿病的表型與KATP通道對(duì)ATP敏感性降低的程度有關(guān)?;蛲蛔円鸬腒ATP通道對(duì)ATP敏感性降低的程度,DEND綜合征最強(qiáng),iDEND綜合征稍弱,而單純的新生兒糖尿病最弱。
KATP通道突變型新生兒糖尿病患者典型癥狀是糖尿病和出生時(shí)低體重(平均2.58 kg),因胎兒宮內(nèi)和新生兒產(chǎn)后胰島素分泌減少所致,并且1/3患兒伴有嚴(yán)重的酮癥酸中毒[22]。多數(shù)KATP通道突變型新生兒糖尿病患兒表現(xiàn)為單純的糖尿病,但至少有10名患者(1名為 ABCC8突變,9名為 KCNJ11突變)已被報(bào)道有嚴(yán)重的生長發(fā)育遲緩、癲癇和新生兒糖尿病表現(xiàn)——稱為 DEND(developmental delay,epilepsy and neonatal diabetes)綜合征[8]。而另一種更多見的KATP通道突變型新生兒糖尿病伴輕微的生長發(fā)育遲緩和(或)肌肉乏力,而無癲癇的表現(xiàn)——稱為iDEND綜合征。肌張力降低在四肢的遠(yuǎn)端更為明顯,這或許是患兒獨(dú)自行走時(shí)步態(tài)失衡的部分原因[11,16]。這些患者的運(yùn)動(dòng)和語言能力發(fā)育通常比正常嬰兒延遲1~5年[11]。
鑒別KCNJ11或ABCC8基因激活突變?cè)谂R床治療中很重要,因?yàn)榇蠖鄶?shù)KATP通道突變的患者(>90%)能夠從注射胰島素治療轉(zhuǎn)變?yōu)榭诜请孱愃幬铮?3]。在國外,磺脲類藥物已經(jīng)用于治療新生兒糖尿病和iDEND綜合征[22]。此類藥物通過與 SUR1亞基結(jié)合而關(guān)閉KATP通道來刺激胰島素分泌,能夠改善大多數(shù)iDEND綜合征患者的神經(jīng)病學(xué)癥狀,但并不是對(duì)所有患者都有效[24]。Clark等[16]的結(jié)果顯示運(yùn)動(dòng)功能改善是因磺脲類藥物對(duì)大腦神經(jīng)組織中不適當(dāng)活動(dòng)的KATP通道的關(guān)閉而起作用。目前多數(shù)iDEND綜合征患者用優(yōu)降糖治療,它可以同時(shí)與SUR1和SUR2A相互作用。但藥物在心肌細(xì)胞KATP通道(SUR2A相關(guān))中可引起的心臟毒副作用。而新生兒糖尿病患者需要磺脲類藥物的劑量比2型糖尿病患者更大,且治療時(shí)間更長。由于iDEND綜合征患者運(yùn)動(dòng)功能障礙是由神經(jīng)組織KATP通道突變引起,Clark等[16]建議不需要應(yīng)用肌肉(SUR2A相關(guān))KATP通道抑制劑來改善運(yùn)動(dòng)功能。因此應(yīng)用選擇性SUR1藥物治療iDEND綜合征患者,避免發(fā)生潛在的心臟毒副作用更值得被思考。同時(shí),提高磺脲類藥物治療iDEND患者運(yùn)動(dòng)功能障礙的療效應(yīng)該集中在認(rèn)識(shí)這些藥物是否易通過血腦屏障。
KATP通道Kir6.2亞基的編碼基因KCNJ11激活突變是新生兒糖尿病iDEND綜合征的病因。認(rèn)識(shí)iDEND綜合征的遺傳學(xué)病因?qū)颊吲R床癥狀和治療都有很大意義。所有在出生后6個(gè)月內(nèi)診斷為新生兒糖尿病的患兒都應(yīng)常規(guī)進(jìn)行基因診斷,有利于盡早應(yīng)用磺脲類藥物治療,改善患者癥狀和預(yù)后。
[1]Edghill EL,Dix RJ,F(xiàn)lanaqan SE,et al.HLA genotyping supports a nonautoimmune etiology in patients diagnosed with diabetes under the age of 6 months[J].Diabetes,2006,55(6):1895-1898.
[2]Gardner RJ ,Mackay DJ,Munqall AJ,et al.An imprinted locus associated with transient neonatal diabetes mellitus[J].Hum Mol Genet,2000,9(4):589 -596.
[3]Flanagan SE,Patch AM,Mackay DJ,et al.Mutations in ATP-sensitive K+channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood[J].Diabetes,2007,56(7):1930 -1937.
[4]Slingerland AS,Shields BM,F(xiàn)lanaqan SE,et al.Referral rates for diagnostic testing support an incidence of permanent neonatal diabetes in three European countries of at least 1 in 260000 live births[J].Diabetologia,2009,52(8):1683-1685.
[5]Flechtner I,Vaxillaire M,Cave H,et al.Neonatal diabetes:a disease linked to multiple mechanisms[J].Arch Pediatr,2007,14(11):1356 -1365.
[6]程 樺.糖尿病[M].∥陸再英,鐘南山,謝 毅,等.內(nèi)科學(xué).第7版.北京:人民衛(wèi)生出版社,1984.770-793.
[7]Ashcroft FM.ATP - sensitive K+channels and disease:from molecule to malady[J].Am J Physiol Endocrinol Metab,2007,293(4):E880 - E889.
[8]Gloyn AL,Pearson ER,Antcliff JF,et al.Activating mutations in the gene encoding the ATP-sensitive potassiumchannel subunit Kir6.2 and permanent neonatal diabetes[J].N Engl J Med,2004,350(18):1838-1849.
[9]Proks P,Arnold AL,Bruining J,et al.A heterozygous activating mutation in the sulphonylurea receptor SUR1(ABCC8)causes neonatal diabetes[J].Hum Mol Genet,2006,15(11):1793 -1800.
[10]Edghill EL,F(xiàn)lanaqan SE,Patch AM,et al.Insulin mutation screening in 1044 patients with diabetes:mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood[J].Diabetes,2008,57(4):1034 -1042.
[11]Hattersley AT,AshcroftFM.Activatingmutationsin Kir6.2 and neonatal diabetes:new clinical syndromes,new scientific insights,and new therapy[J].Diabetes ,2005 ,54(9):2503-2513.
[12]Craig TJ,Shimomura K,Holl RW,et al.An in -frame deletion in Kir6.2(KCNJ11)causing neonatal diabetes reveals a site of interaction between Kir6.2 and SUR1[J].J Clin Endocrinol Metab,2009,94(7):2551 -2557.
[13]Ellard S,F(xiàn)lanaqan SE,Girard CA,et al.Permanent neonatal diabetes caused by dominant,recessive,or compound heterozygous SUR1 mutationswith oppositefunctional effects[J].Am J Hum Genet,2007,81(2):375 -382.
[14]Flanagan SE,Edqhill EL,Gloyn AL,et al.Mutations in KCNJ11,which encodes Kir6.2,are a common cause of diabetes diagnosed in the first 6 months of life,with the phenotype determined by genotype [J].Diabetologia,2006,49(6):1190 -1197.
[15]Flanagan SE ,Clauin S,Bellanne - Chantelot C,et al.Update of mutations in the genes encoding the pancreatic beta- cell KATPchannel subunits Kir6.2(KCNJ11)and sulfonylurea receptor 1(ABCC8)in diabetes mellitus and hyperinsulinism[J].Hum Mutat,2009,30(2):170 -180.
[16]Clark RH ,McTaqqart JS,Webster R,et al.Muscle dysfunction caused by a KATPchannel mutation in neonatal diabetes is neuronal in origin[J].Science,2010,329(5990):458-461.
[17]Remedi MS,Koster JC.KATPchannelopathies in the pancreas[J].Pflugers Arch,2010,460(2):307 -320.
[18]Zingman LV ,Hodqson DM,Bienenqraeber M,et al.Tandem function of nucleotide binding domains confers competence to sulfonylurea receptor in gating ATP-sensitive K+channels[J].J Biol Chem,2002,277(16):14206 -14210.
[19]Aittoniemi J,F(xiàn)otinou C,Craiq TJ,et al.SUR1:a unique ATP-binding cassette protein that functions as an ion channel regulator[J].Philos Trans R Soc Lond B Biol Sci,2009,364(1514):257 -267.
[20]Girard CA,Wunderlich FT,Shimomura K,et al.Expression of an activating mutation in the gene encoding the KATPchannel subunit Kir6.2 in mouse pancreatic beta cells recapitulates neonatal diabetes[J].J Clin Invest,2009,119(1):80 -90.
[21]Shimomura K,F(xiàn)lanaqan SE,Zadek B,et al.Adjacent mutations in the gating hyperinsulinism[J].EMBO Mol Med,2009,1(3):166 -177.
[22]Pearson ER,F(xiàn)lechtner I,Nj?lstad PR,et al.Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations[J].N Engl J Med,2006,355(5):467-477.
[23]Rafiq M,F(xiàn)lanaqan SE,Patch AM,et al.Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 SUR1 mutations[J].Diabetes Care,2008,31(2):204 -209.
[24]Gribble FM,Reimann F.Sulphonylurea action revisited:the post- cloning era[J].Diabetologia,2003,46(7):875 -891.