王秋悅,鄒亞學(xué),唐家明,李素芬*
(河北科技師范學(xué)院1動(dòng)物科技學(xué)院,2生命科技學(xué)院,河北 秦 皇島,066600)
活性氧自由基(Reactive oxygen species,ROS)被認(rèn)為是許多疾病如衰老、動(dòng)脈粥樣硬化和神經(jīng)壞死等的致病因子。另外,ROS通過誘導(dǎo)DNA損傷、誘發(fā)腫瘤形成和刺激細(xì)胞增殖在腫瘤形成中發(fā)揮作用。為預(yù)防ROS誘發(fā)的損傷,細(xì)胞中含有由ROS代謝酶和ROS中和分子組成的抗氧化系統(tǒng)。通過催化超氧離子自由基(O-2)分解為過氧化氫(H2O2)和氧(O2),超氧化物歧化酶(Superoxide dismutase,SOD)為機(jī)體提供了清除正常代謝過程或氧化應(yīng)激中產(chǎn)生的O-2的第一道防線[1]。在真核生物體內(nèi)有3種SOD:存在于線粒體基質(zhì)中的含錳超氧化物歧化酶(Manganese-containing superoxide dismutase,MnSOD,又稱為SOD2)和存在于細(xì)胞漿中或被分泌到細(xì)胞外液中的銅鋅超氧化物歧化酶(Copper-zinc containing superoxide dismutase,CuZnSOD 或SOD1)[2]。由于線粒體是產(chǎn)生 O-2的主要場(chǎng)所,因此MnSOD可能在保護(hù)細(xì)胞免受O-2氧化損傷中發(fā)揮重要作用。MnSOD作為細(xì)胞內(nèi)防止氧化應(yīng)激保護(hù)酶的重要作用已經(jīng)在基因敲除或轉(zhuǎn)基因動(dòng)物模型中得到證實(shí),MnSOD基因敲除小鼠10天內(nèi)即因?yàn)樾募乃溃?]和神經(jīng)萎縮[4]而死亡。相反,轉(zhuǎn)基因小鼠線粒體中高度表達(dá)人MnSOD即可保護(hù)動(dòng)物免受氧化應(yīng)激產(chǎn)生的肺損傷[5]、急性阿霉素誘發(fā)的心肌損傷[6]和局部缺血引起的腦損傷[7]。近年來,對(duì)MnSOD的分子生物學(xué)研究和不同動(dòng)物MnSOD基因和cDNAs的分離,無疑促進(jìn)了MnSOD生理功能的研究。
人們陸續(xù)克隆、測(cè)序和分析了人[8,9]、大鼠[10]、小鼠[11,12]和牛[13]MnSOD 全基因序列,這些動(dòng)物的MnSOD基因序列的結(jié)構(gòu)具有明顯的保守性,均含有5個(gè)外顯子和4個(gè)內(nèi)含子。人、小鼠和牛MnSOD全基因均為單拷貝基因,但大鼠可能有2個(gè)拷貝。所有這4種動(dòng)物的啟動(dòng)子區(qū)結(jié)構(gòu)相近,均具有看家基因的典型特征,即無上游 TATA 或 CAAT 盒子,但富含 GC[14,15]。
Meyrick等[13]比較了牛和大鼠MnSOD基因啟動(dòng)子區(qū),發(fā)現(xiàn)2個(gè)種屬間明顯不同。在人MnSOD基因轉(zhuǎn)錄起始部位的上游,有一長(zhǎng)約400 bp的區(qū)段,G+C含量高達(dá)78%,集中分布著7個(gè)特異蛋白1(Specificity Protein-1, Sp1,5′-GGGCGG-3′) 和3個(gè)激活蛋白-2(Activator Protein-2,AP-2,5′-CCGCGGGCG-3′)轉(zhuǎn)錄因子結(jié)合序列[16]。牛轉(zhuǎn)錄起始位點(diǎn)前190 bp序列與人相似性較高,有8個(gè)Sp1和2個(gè)AP-2結(jié)合位點(diǎn)。與人和牛MnSOD基因啟動(dòng)子區(qū)分別含有7和8個(gè)Sp1結(jié)合序列不同,大鼠MnSOD基因啟動(dòng)子區(qū)只有2個(gè)Sp1結(jié)合序列[10],且含有2個(gè)人和牛MnSOD基因啟動(dòng)子區(qū)沒有的SV40核心序列。很顯然,人MnSOD基因啟動(dòng)子結(jié)構(gòu)與牛的同源性比與大鼠的高,這與大哺乳動(dòng)物如牛、羊、豬和人與小動(dòng)物如小鼠和大鼠MnSOD基因轉(zhuǎn)錄有較大差異的報(bào)道相一致。
郝守峰等[17]對(duì)肉雞心肌細(xì)胞中與MnSOD基因轉(zhuǎn)錄相關(guān)的轉(zhuǎn)錄因子及其結(jié)合序列分析發(fā)現(xiàn),在肉雞心肌細(xì)胞的核蛋白中存有與MnSOD基因轉(zhuǎn)錄調(diào)節(jié)相關(guān)的核轉(zhuǎn)錄因子Sp1和AP-2,且能與MnSOD基因啟動(dòng)子區(qū)特異性結(jié)合位點(diǎn)結(jié)合,其中在-79~-58有1個(gè)與人和大鼠相同的Sp1結(jié)合位點(diǎn)核心序列(5′-GGGGCGGG-3′),在雞MnSOD基因啟動(dòng)子區(qū)中AP-2結(jié)合位點(diǎn)核心序列與現(xiàn)有文獻(xiàn)中報(bào)道的人和大鼠以及一些病毒AP-2結(jié)合位點(diǎn)核心序列不同,分別為位于-34~-14(5′-GGCGCAGGC-3′)和-338~ -319(5′-CCCAAGGTC-3′)。
對(duì)人和鼠MnSOD基因啟動(dòng)子區(qū)的分析發(fā)現(xiàn),除多個(gè)Sp1和AP-2結(jié)合位點(diǎn)外,還含有核因子-卡巴B(Nuclear Factor-κB,NF-κB)和激活蛋白-1(Activator Protein-1,AP-1)等轉(zhuǎn)錄因子結(jié)合序列,可能在 Mn-SOD 基因表達(dá)調(diào)節(jié)中發(fā)揮著重要的作用[10,16,18]。Zhang[19]從人白細(xì)胞基因組文庫中得到 1個(gè) MnSOD基因組DNA序列,其5′-端上游序列中又發(fā)現(xiàn)了一些重要的調(diào)節(jié)元件,如1個(gè)急性期反應(yīng)序列(Acute response element,ARE)、2 個(gè)與早期生長(zhǎng)因子 1 基因(Early growth response 1,Egr-1)調(diào)節(jié)序列(5′-GCGGGGGCG-3′)相近的序列(5′-GCGGGGCG-3′)等。MnSOD 基因結(jié)構(gòu)中存在與 Egr-1 基因類同的調(diào)節(jié)序列,是其具有輻射誘導(dǎo)特性的有力證據(jù)。
盡管MnSOD在許多組織和細(xì)胞中的高水平表達(dá),其表達(dá)仍受到多種細(xì)胞內(nèi)和環(huán)境因素的誘導(dǎo),表明MnSOD是一個(gè)應(yīng)激反應(yīng)型基因[20]。上調(diào)MnSOD轉(zhuǎn)錄的因素有細(xì)胞因子如白細(xì)胞因子1(Interleukin-1,IL-1)[21~23],腫瘤壞死因子-α(TNF-α)[22,24]、細(xì)菌脂多糖(Lipopolysaccharide,LPS)[21]和干擾素-γ(Interferon-γ,IFN-γ)[25]。細(xì)胞因子誘導(dǎo)的增強(qiáng)子元件位于小鼠[26]、大鼠和人[27]MnSOD 基因第 2 個(gè)內(nèi)含子的236 bp區(qū),結(jié)合位點(diǎn)包括NF-κB,CCAAT增強(qiáng)子結(jié)合蛋白(CCAAT enhancer binding proteins,C/EBP)和核因子-1(Nulear factor-1,NF-1)。蛋白激酶 C(Protein kinase C,PKC)刺激因子十四烷酰法波(醇)醋酸酯(12-O-tetradecanoylphorbol-13-acetate,TPA)通過 CREB-1/ATF-1 類轉(zhuǎn)錄因子誘導(dǎo) MnSOD 基因轉(zhuǎn)錄,但與NF-κB或AP-1無關(guān)[18]。一些抗腫瘤藥物如長(zhǎng)春滅瘟堿(vinblastin)、紫杉酚(taxol)和長(zhǎng)春新堿(vincristine)也是通過PKC誘導(dǎo)MnSOD基因轉(zhuǎn)錄[28]。血小板衍生的生長(zhǎng)因子通過轉(zhuǎn)錄因子Egr-1 誘導(dǎo) NIH3T3 細(xì)胞 MnSOD 基因轉(zhuǎn)錄[29]。
基因啟動(dòng)子區(qū)DNA順式結(jié)合元件與其相應(yīng)DNA結(jié)合蛋白即轉(zhuǎn)錄因子的互作是調(diào)節(jié)轉(zhuǎn)錄的關(guān)鍵。MnSOD基因啟動(dòng)子區(qū)轉(zhuǎn)錄起始部位上游集中分布的核轉(zhuǎn)錄因子Sp1和AP-2強(qiáng)烈提示,Sp1和AP-2轉(zhuǎn)錄因子在MnSOD基因的轉(zhuǎn)錄調(diào)節(jié)中有重要作用。Sp1是一組具有3個(gè)鋅指結(jié)構(gòu)、與富含GC序列DNA結(jié)合的蛋白家族[30,31]。Sp1在哺乳動(dòng)物組織中廣泛表達(dá),以不同的親和力與特異序列結(jié)合,參與許多基因的轉(zhuǎn)錄調(diào)節(jié)[32~35]。由于重疊排列的Sp1結(jié)合位點(diǎn)可以替代TATA或CAAT盒子在起始轉(zhuǎn)錄中的作用而直接啟動(dòng)基因的轉(zhuǎn)錄[36],因此,在啟動(dòng)子區(qū)無TATA或CAAT盒子的基因即所謂的看家基因如二氫葉酸還原酶[37]、胸苷酸合成酶[38]和腺嘌呤脫氨酶[39]等,以及一些非看家基因如胰島素樣生長(zhǎng)因子結(jié)合蛋白-2[40]、雄激素受體[41]表皮生長(zhǎng)因子受體[42]和紅細(xì)胞內(nèi)特異酶基因如丙酮酸激酶[43]轉(zhuǎn)錄調(diào)節(jié)中起著非常重要的作用。
由于MnSOD啟動(dòng)子區(qū)無TATA或CAAT盒子,因此Sp1在MnSOD轉(zhuǎn)錄調(diào)節(jié)中的作用更加重要。已經(jīng)發(fā)現(xiàn),Sp1是人MnSOD基因基礎(chǔ)性轉(zhuǎn)錄必需的正調(diào)節(jié)轉(zhuǎn)錄因子[20,44],其調(diào)節(jié)基因轉(zhuǎn)錄的機(jī)制可能包括以下幾個(gè)方面:(1)招募基本轉(zhuǎn)錄裝置蛋白。Sp1可直接與轉(zhuǎn)錄起始復(fù)合物中的一些蛋白相互作用,從而通過招募基本轉(zhuǎn)錄裝置或促進(jìn)其裝配而激活基因轉(zhuǎn)錄。Sp1可通過谷氨酸富集區(qū)或C末端結(jié)構(gòu)域與轉(zhuǎn)錄起始復(fù)合物中的TFIID復(fù)合物相互作用[45]。TFIID復(fù)合物由多亞基組成,Sp1可與其中的TBP(TATA-box binding protein)和至少1種果蠅[dTAF(Ⅱ)110]和2種人TAFs(TBP associated factors)相互作用[hTAF(Ⅱ)130和hTAF(Ⅱ)55]。TAFs非基本轉(zhuǎn)錄所必需,但卻是介導(dǎo)多種轉(zhuǎn)錄因子及增強(qiáng)子轉(zhuǎn)錄激活作用的必需因子。除TAFs外,Sp1的轉(zhuǎn)錄激活作用還需要CRSp/Med復(fù)合物(cofactor required for Sp1/mediator)。CRSp可介導(dǎo)多種增強(qiáng)子結(jié)合因子和核心轉(zhuǎn)錄裝置之間的相互作用,該復(fù)合物亞基間的重組可能是實(shí)現(xiàn)轉(zhuǎn)錄激活作用基因特異性的機(jī)制[46]。(2)改變?nèi)旧|(zhì)修飾和染色體結(jié)構(gòu)。在啟動(dòng)子處,Sp1可同時(shí)招募組蛋白乙酰化酶和去乙?;竵韺?shí)現(xiàn)對(duì)該處組蛋白的乙?;癄顟B(tài)的快速動(dòng)態(tài)調(diào)節(jié),從而激活或抑制基因的表達(dá)[47,48]。Sp1可能與染色質(zhì)重塑復(fù)合體SWI/SNF家族的成員相互作用,從而通過改變?nèi)旧|(zhì)的可接近性來調(diào)節(jié)基因的轉(zhuǎn)錄[49]。Sp1還被發(fā)現(xiàn)具有邊界活性,能結(jié)合于人β球蛋白基因座[50],從而阻滯異染色質(zhì)結(jié)構(gòu)的擴(kuò)布,維持基因的轉(zhuǎn)錄活性狀態(tài)。(3)引發(fā)DNA loop的形成。對(duì)于含有多拷貝Sp1結(jié)合位點(diǎn)的調(diào)節(jié)序列,Sp1可通過D結(jié)構(gòu)域形成多聚體而拉近相離甚遠(yuǎn)的DNA序列,使DNA形成環(huán)形,協(xié)同激活靶基因的表達(dá)[51]。Sp1首先形成4聚體,其后多個(gè)4聚體聚集于DNA結(jié)合位點(diǎn)。這種高度組織的多聚體起到了濃集蛋白質(zhì)相互作用位點(diǎn)的作用,從而提高了局部轉(zhuǎn)錄因子的濃度。
轉(zhuǎn)錄因子Sp1調(diào)節(jié)基因轉(zhuǎn)錄的基本前提是其DNA結(jié)合活性。Sp1 DNA結(jié)合活性的降低即意味著轉(zhuǎn)錄起始能力的喪失。Sp1 DNA結(jié)合活性提高可能有以下幾個(gè)原因:首先,Sp1基因表達(dá)量提高。小鼠胚胎發(fā)育過程中胸腺、肺、肝和脾臟等器官Sp1 mRNA表達(dá)量增加[52]。TPA激活人肝癌細(xì)胞HepG2中MnSOD基因轉(zhuǎn)錄提高時(shí)Sp1蛋白表達(dá)量也提高[53]。其次,與其他轉(zhuǎn)錄因子的互作。所有受Sp1調(diào)節(jié)的啟動(dòng)子中均含有AP-2結(jié)合位點(diǎn),AP-2通過與Sp1競(jìng)爭(zhēng)結(jié)合位點(diǎn)抑制轉(zhuǎn)錄[54]。另外,轉(zhuǎn)錄后修飾、糖基化、磷酸化或形成多聚體都會(huì)改變Sp1的DNA結(jié)合活性[55]。細(xì)胞內(nèi)的氧化還原狀態(tài)也影響Sp1的DNA結(jié)合活性。由于半胱氨酸殘基廣泛存在于許多轉(zhuǎn)錄因子的DNA結(jié)合區(qū),其氧化還原狀態(tài)直接影響轉(zhuǎn)錄因子的DNA結(jié)合活性,因此轉(zhuǎn)錄因子的DNA結(jié)合活性及其轉(zhuǎn)錄調(diào)節(jié)活性對(duì)細(xì)胞內(nèi)的氧化還原狀態(tài)敏感。體外研究發(fā)現(xiàn),大鼠肝臟中Sp1的DNA結(jié)合區(qū)隨年齡增長(zhǎng)逐漸被氧化,從而發(fā)生不可逆性的DNA結(jié)合活性降低[56]。衰老和氧化劑可引起Sp1蛋白DNA結(jié)合區(qū)半胱氨酸殘基氧化,從而降低Sp1的DNA結(jié)合活性;相反,還原劑如谷胱甘肽和硫氧還蛋白則可恢復(fù)Sp1的DNA結(jié)合活性[57,58]。Li等[59]發(fā)現(xiàn),飼糧錳能提高肉雞心肌細(xì)胞中Sp1的DNA結(jié)合活性,推測(cè)錳可能通過MnSOD影響細(xì)胞內(nèi)的氧化還原狀態(tài),從而調(diào)節(jié)Sp1的DNA結(jié)合活性。
細(xì)胞內(nèi)的氧化還原狀態(tài)也影響AP-2的DNA結(jié)合活性。AP-2蛋白多肽鏈中有7個(gè)半胱氨酸殘基,其中6個(gè)半胱氨酸殘基位于DNA結(jié)合區(qū)和二聚體化功能區(qū),2個(gè)半胱氨酸殘基位Cys222和Cys243正好位于DNA結(jié)合區(qū)[60]。AP-2是另一類與DNA特異序列結(jié)合的蛋白,其結(jié)合序列也富含GC,并以結(jié)合位點(diǎn)依賴方式刺激基因的選擇性表達(dá)[61,62],在細(xì)胞發(fā)育、胚胎分化和腫瘤形成中發(fā)揮重要調(diào)節(jié)作用[63,64]。AP-2家族包括 AP-2α,AP-2β和AP-2γ[65]。雖然3種蛋白 N-末端轉(zhuǎn)錄激活區(qū)結(jié)構(gòu)不同,但DNA 結(jié)合 區(qū)卻高度保守。盡管AP-2在腫瘤基因erbB-2[66],erbB-3[67]和細(xì)胞循環(huán)調(diào)節(jié)基因p21WAF1[68]轉(zhuǎn)錄調(diào)節(jié)中起激活劑作用,但也發(fā)現(xiàn)它對(duì)幾個(gè)基因如星狀細(xì)胞Ⅰ型膠原[69]、K3角蛋白[70]、乙酰膽堿酯酶[54]和C/EBP[71]的轉(zhuǎn)錄起抑制作用。SV40轉(zhuǎn)染成纖維細(xì)胞中高濃度的AP-2蛋白明顯抑制MnSOD基因的表達(dá),同樣WI38成纖維細(xì)胞轉(zhuǎn)染SV40后MnSODmRNA和蛋白水平明顯降低[72,73],表明AP-2在MnSOD基因轉(zhuǎn)錄調(diào)節(jié)中起負(fù)調(diào)節(jié)作用。關(guān)于AP-2調(diào)節(jié)基因轉(zhuǎn)錄的機(jī)制,在前幾個(gè)基因的轉(zhuǎn)錄抑制中,AP-2均是通過取代與AP-2結(jié)合位點(diǎn)臨近或重疊的正調(diào)節(jié)轉(zhuǎn)錄因子或與其競(jìng)爭(zhēng)結(jié)合位點(diǎn)而發(fā)揮其抑制作用,且AP-2蛋白與啟動(dòng)子區(qū)DNA的特異性結(jié)合是其發(fā)揮抑制作用的必要條件[74]。在MnSOD基因中,由于AP-2與DNA的結(jié)合能力比Sp1強(qiáng),因此,AP-2可能與正調(diào)節(jié)轉(zhuǎn)錄因子Sp1互作或競(jìng)爭(zhēng)結(jié)合位點(diǎn),從而有效抑制MnSOD基因的轉(zhuǎn)錄[36,74]。也有報(bào)道,Sp1與AP-2的比值決定基因的轉(zhuǎn)錄[70,75]。硒處理降低原代培養(yǎng)肝細(xì)胞中AP-2的DNA結(jié)合活性,對(duì)SP1的DNA結(jié)合活性無影響,因此啟動(dòng)子區(qū)Sp1與AP-2的比值升高,MnSOD轉(zhuǎn)錄上調(diào)。另外,AP-2在穩(wěn)定染色體高級(jí)結(jié)構(gòu)中也可能發(fā)揮作用。已經(jīng)發(fā)現(xiàn),MnSOD轉(zhuǎn)錄激活時(shí)染色體結(jié)構(gòu)發(fā)生了變化[76]。
NF-κB和AP-1是已知的直接受細(xì)胞內(nèi)ROS激活的轉(zhuǎn)錄因子[77],同時(shí)這2個(gè)轉(zhuǎn)錄因子也是多種信號(hào)傳導(dǎo)途徑的下游作用因子[78],是MnSOD基因轉(zhuǎn)錄調(diào)節(jié)的正調(diào)節(jié)因子。NF-κB在核質(zhì)中與抑制因子IkB結(jié)合而無激活活性,一旦IκB被磷酸化激活后(可能是受PKC激活)即降解,NF-κB與IκB分開而進(jìn)入核內(nèi),并與其結(jié)合序列結(jié)合后激活基因轉(zhuǎn)錄。許多因素如細(xì)胞因子TNF-α和IL-1α[79],細(xì)菌脂多糖LPS[21],離子輻射和產(chǎn)生高氧的試劑如H2O2和二酰胺[80]均可引起IκB蛋白降解和NF-κB的激活??寡趸瘎┮种茙缀跛写碳ひ蛩匾鸬腘F-κB激活,但是抗氧化劑如巰基還原劑對(duì)激活的NF-κB與DNA的結(jié)合活性卻有相反的作用,還原性巰基如DTT,半胱氨酸和還原型硫氧還蛋白能夠使NF-κB DNA結(jié)合區(qū)半胱氨酸殘基保持還原狀態(tài),從而提高激活的NF-κB DNA結(jié)合活性。
氧化應(yīng)激、離子輻射和生長(zhǎng)因子通過誘導(dǎo)AP-1組分c-fos和c-jun的表達(dá)激活核轉(zhuǎn)錄因子AP-1,從而誘導(dǎo)人和果蠅MnSOD的表達(dá)[81]。AP-1蛋白中DNA結(jié)合區(qū)保守性半胱氨酸保持還原狀態(tài)仍是其DNA結(jié)合活性所必需的[82]。
多種信號(hào)傳導(dǎo)途徑參與MnSOD基因表達(dá)的調(diào)節(jié)[27]。對(duì)ROS敏感的絲裂原激活蛋白激酶(mitogen-activated protein kinases,MAPKs)對(duì)細(xì)胞內(nèi)外刺激如紫外線[83]、ROS[84]及病毒[85]等產(chǎn)生應(yīng)答,并通過直接磷酸化特定的核轉(zhuǎn)錄因子從而影響其DNA結(jié)合活性,或與其它蛋白相互作用間接影響轉(zhuǎn)錄因子的轉(zhuǎn)錄活性,調(diào)節(jié)基因轉(zhuǎn)錄表達(dá)。MAPKs是一組刺激誘導(dǎo)型絲氨酸/蘇氨酸蛋白激酶,主要包括細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinases,ERK)、c-Jun 氨基末端激酶(c-Jun amino-terminal kinases,JNK)和p38MAPK[86,87]。盡管每組MAPK通路都有許多各自獨(dú)特的特性,但每組通路都由依次順序激活的3個(gè)激酶即MAPK,MAPK激酶(MAPK kinase,MAPKK)和MAPK激酶(MAPKK kinase,MAPKKK)所組成[88,89]。ERKs主要對(duì)各種生長(zhǎng)刺激發(fā)生反應(yīng),與細(xì)胞增殖和分化有關(guān)[90],而 JNKs和p38MAP激酶主要參與細(xì)胞應(yīng)激反應(yīng),如代謝、炎癥、氧應(yīng)激等[91,92]。肝炎病毒復(fù)制期引起的氧化應(yīng)激通過p38MAPK和JNK通路激活A(yù)P-1,增加MnSOD基因表達(dá)[93]。生理劑量的花生四烯酸通過H2O2激活p38MAPK途徑,誘導(dǎo)HepG2細(xì)胞中MnSOD轉(zhuǎn)錄[84]。
綜上所述,由于MnSOD廣泛參與細(xì)胞的生長(zhǎng)、分化、增殖和腫瘤的形成,在保護(hù)細(xì)胞免受氧化應(yīng)激、炎癥反應(yīng)、離子輻射和神經(jīng)毒作用方面發(fā)揮重要作用,進(jìn)一步研究MnSOD基因表達(dá)的特點(diǎn),無論對(duì)預(yù)防細(xì)胞和組織生理性或病理性氧化損傷都具有重要意義。
[1]FRIDOVICH I.Superoxide radical and superoxide dismutase[J].Annu Rev Biochem,1995,64:97-112.
[2]WEISIGER R A,F(xiàn)RIDOVICH I.Mitochondrial superoxide dismutase:Site of synthesis and intra-mitochondrial localisation[J].J Biol Chem,1973,248:4 793-4 796.
[3]LI Y,HUANG T T,CARLSON E J,et al.Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase[J].Nature Genet,1995,11:376-381.
[4]LEBOVITZ R M,H ZHANG,H VOGEL,et al.Neurodegeneration,myocardial injury,and perinatal death in mitochondria superoxide dismutase-deficient mice[J].Med Sci,1996,93:9 782-9 787.
[5]WISPE J R,WARNER B B,Clark J C,et al.Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury[J].J Biol Chem,1992,267:23 937-23 941.
[6]YEN H C,OBERLEY T D,VICHITBANDHA S,et al.The protective role of manganese superoxide dismutase agains t adriamycin-induced acute cardiac toxicity in transgenic mice[J].J Clin Inves,1996,98:1 253-1 260.
[7]KELLER J N,KINDY M S,HOLTSBERG F W,et al.Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury:suppression of peroxynitrite production,lipid peroxidation,and mitochondrial dysfunction[J].J Neurosci,1998,18:687-697.
[8]CHURCH S L,GRANT J W,RIDNOUR L A,et al.Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells[J].Med Sci,1993,90:3 113-3 117.
[9]WAN X S,DEVALARAJA M N,ST CLAIR D K.Molecular structure and organization of the human manganese superoxide dismutase gene[J].DNA Cell Biol,1994,13:1 127-1 136.
[10]HO Y S,HOWARD A J,CRAPO J D.Molecular structure of a functional rat gene for manganese-containing superoxide dismutase[J].Am J Respir Cell Mol Biol,1991,4:278-286.
[11]DISILVESTRE D,KLEEBERGER S R,JOHNS J,et al.Structure and DNA sequence of the mouse MnSOD gene[J].Mamm Genome,1995,6:281-284.
[12]JONES P L,KUCERA G,GORDON H,et al.Cloning and characterization of the murine manganous superoxide dismutaseencoding gene[J].Gene,1995,153:155-161.
[13]MEYRICK B,MAGNUSON M A.Identification and functional characterization of the bovine manganous superoxide dismutase promoter[J].Am J Respir Cell Mol Biol,1994,10:113-121.
[14]DYNAN W S.Promoters for housekeeping genes[J].TIG,1986,2:196-197.
[15]JONES N C,J RIGBY P W,ZIFF E B.Trans-acting protein factors and the regulation of eukaryotic transcription:lessons from studies on DNA tumor viruses[J].Genes Dev,1988,2:267-281.
[16]WAN X S,DEVALARAJA M N,ST CLAIR D K.Molecular structure and organization of the human manganese superoxide dismutase gene[J].DNA Cell Biol,1994,13:1 127-1 136.
[17]郝守峰,呂林,李素芬,等.錳對(duì)肉雞心肌細(xì)胞MnSOD基因轉(zhuǎn)錄調(diào)節(jié)機(jī)制的研究[J].營(yíng)養(yǎng)學(xué)報(bào),2010,32(1):47-51.
[18]KIM H P,ROE J H,CHOCK P B,et al.Transcriptional activation of the human manganese superoxide dismutase gene mediated by tetradecanoylphorbol acetate[J].J Biol Chem,1999,74:37 455-37 460.
[19]ZHANG J,HAGOPIAN-DONALDSON S,SERBEDZIJA G,et al.Neural tube,skeletal and body wall defects in mice lacking transcription factor AP-2[J].Nature,1996,381:238-41.
[20]ST CLAIR D.Manganese Superoxide Dismutase:Genetic Variation and Regulation[J].J Nutr,2004,134:3190S-3191S.
[21]VISNER G A,DOUGALL W C,WILSON J M,et al.Regulation of manganese superoxide dismutase by lipopolysaccharide,interleukin-1,and tumor necrosis factor[J].J Biol Chem,1990,265:2 856-2 864.
[22]VISNER G A,CHESROWN S E,MONNIER J,et al.Regulation of manganese superoxide dismutase:IL-1 and TNF induction in pulmonary artery and microvascular endothelial cells[J].Biochem Biophys Res Commun,1992,188:453-462.
[23]DOUGALL W C,NICK H S.Manganese superoxide dismutase:a hepatic acute phase protein regulated by interleukin-6 and glucocorticoids[J].Endocrinol,1991,129:2 376-2 384.
[24]WONG G H W,ELWELL J H.Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor[J].Cell,1989,58:923-931.
[25]HARRIS C A,DERBIN K S,HUNTE-MCDONOUGH B,et al.Manganese superoxide dismutase is induced by IFN-gamma in multiple cell types.Synergistic induction by IFN-gamma and tumor necrosis factor or IL-1[J].J Immunol,1991,147:149-154.
[26]JONES P L,PING D,BOSS J M.Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-kappaB[J].Mol Cell Biol,1997,17:6 970-6 981.
[27]ROGERS R J,CHESROWN S E,KUO S,et al.Cytokine-inducible enhancer with promoter activity in both the rat and human manganese-superoxide dismutase genes[J].Biochem J,2000,347:233-242.
[28]DAS K C,GUO X L,WHITE C W.Protein kinase C delta-dependent induction of manganese superoxide dismutase gene expression by microtubule-active anticancer drugs[J].J Biol Chem,1998,273:34 639-34 645.
[29]MAEHARA K,OH-HASHI K,ISOBE K I.Early growth-respon-sive-1-dependent manganese superoxide dismutase gene transcription mediated by platelet-derived growth factor[J].FASEB J,2001,15:2 025-2 026.
[30]BERG J M.Sp1 and the subfamily of zinc finger proteins with guanine-rich binding sites[J].Proc Natl Acad Sci,1992,89:11 109-11 110.
[31]SETO E,LEWIS B,SHENK T.Interaction between transcription factors Sp1 and YY1[J].Nature,1993,365:462-464.
[32]KIM S,ONWUTA U S,LEE Y I,et al.The retinoblastoma gene product regulates Sp1-mediated transcription[J].Mol Cell Biol,1992,12:2 455-2 463.
[33]KINGSLEY C,A WINOTO.Cloning of GT box-binding proteins:a novel Sp1 multigene family regulating T-cell receptor gene expression[J].Mol Cell Biol,1992,12:4 251-4 261.
[34]KRIWACHI R W,SCHULTZ S C,A STEITZ T,et al.Sequence-specificc recognition of DNA by zinc-finger peptides derived from the transcription factor Sp1[J].Med Sci,1992,89:9 759-9 763.
[35]GILL G,PASCAL E,TSENG Z H,et al.A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation[J].Med Sci,1994,91:192-196.
[36]YEH C C,WAN X S,ST CLAIR D K.Transcription regulation of 5′proximal promoter of the human manganese superoxide dismutase gene[J].DNA Cell Biol,1998,17:921-930.
[37]SWICK A G,BLAKE M C,KAHN J W,et al.Functional analysis of GC element binding and transcription in the hamster dihydrofo-late reductase gene promoter[J].Nucleic Acids Res,1989,17:9 291-9 304.
[38]DENG T,DAWEL L,JEHN C,et al.Structure of the gene for mouse thymidylate synthase.Locations of introns and multi-ple transcriptional start sites[J].Biol Chem,1986,261:16 000-16 005.
[39]VALERIO D,DUYVESTEYN M G C,DEKKER B M M,et al.Characterization and expression of a gene with a remarkable promoter[J].EMBO J,1985,4:437-443.
[40]BOISCLAIR Y R,BROWN A L,CASOLA S,et al.Three clustered Sp1 sites are required for efficient transcription of the TATA-less promoter of the gene for insulin-like growth factor-binding protein-2 from the rat[J].J Biol Chem,1993,268:24 892-24 901.
[41]FABER P W,J ROOIJ H C,SCHIPPER H J,et al.Two different,overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter[J].J Biol Chem,1993,268:9 296-9 301.
[42]XU J,THOMPSON K L,SHEPHARD L B,et al.T3 receptor suppression of Sp-1-dependent transcription from the epidermal growth factor receptor promoter via overlapping DNA-binding sites[J].J Biol Chem,1993,268:16 065-16 073.
[43]MAX-AUDIT I,ELEOUET J,ROMEO P.Transcriptional regulation of the pyruvate kinase erythroid-specific promoter[J].J Biol Chem,1993,268:5 431-5 437.
[44]XU Y,PORNTADAVITY S,ST CLAIR D K.Transcriptional regulation of the human manganese superoxide dismutase gene:the role of specificity protein 1(Sp1)and activating protein-2(AP-2)[J].Biochem J,2002,362:401-412.
[45]EMILI A,GREENBLATT J,INGLES C J.Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein[J].Mol Cell Biol,1994,14:1 582-1 593.
[46]TAATJES D J,TJIAN R.Structure and function of CRSp P Med2,a promoter-selective transcriptional coactivator complex[J].Mol Cell,2004,14:675-683.
[47]JANG S I,STEINERT P M.Loricrin expression in cultured human keratinocytesis controlled by a complex interplay between transcription factors of the Sp1,CREB,AP1,and AP2 families[J].J Biol Chem,2002,277:42 268-42 279.
[48]SUN J M,SPENCER V A,LI L,et al.Estrogen regulation of trefoil factor 1 expression by estrogen receptor alpha and Sp proteins[J].Exp Cell Res,2005,302:96-107.
[49]LU F,ZHOU J,WIEDMER A,et al.Chromatin remodeling of the Kaposi sarcoma-associated herpes virus ORF50 promoter correlates with reactivation from latency[J].J Virol,2003,77:11 425-11 435.
[50]ISHII K,LAEMMLI U K.Structural and dynamic functions establish chromatin domains[J].Mol Cell,2003,11:237-248.
[51]NAKATSUKASA T,SHIRAISHI Y,NEGI S,et al.Site-specific DNA cleavage by artificial zinc finger-type nuclease with cerium binding peptide[J].Biochem Biophys Res Commun,2005,330:247-252.
[52]SAFFER J D,JACKSON S P,ANNARELLA M B.Developmental expression of Spl in the mouse[J].Mol Cell Biol,1991,4:2 189-2 199.
[53]PORNTADAVITY S,XU Y,KININGHAM K,et al.TPA-activated transcription of the human MnSOD gene:role of transcription factors Sp-1 and Egr-1[J].DNA Cell Biol,2001,20:473-481.
[54]GETMAN D K,MUTERO A,INOUE K,et al.Transcription factor repression and activation of the human acetylcholinesterase gene[J].J Biol Chem,1995,270:23 511-23 519.
[55]DHARMAVARAM R M,LIU G,MOWERS S D,et al.Detection and characterization of Sp1 binding activity in human chondrocytes and its alterations during chondrocyte dedifferentiation[J].J Biol Chem,1997,272:26 918-26 925.
[56]AMMENDOLA R,MESURACA M,RUSSO T,et al.The DNA-binding efficiency of Sp1 is affected by redox changes[J].Eur J Biochem,1994,225:483-489.
[57]KNOEPFEL L,STEINKUHLER C,CARRI M T,et al.Role of zinc-coordination and of the glutathione redox couple in the redox susceptibility of human transcription factor Sp1[J].Biochem Biophys Res Commun,1994,201:871-877.
[58]MIAO K,J POTTER J,ANANIA F A,et al.Effect of acetaldehyde on Sp1 binding and activation of the mouse alpha 2 collagen promoter[J].Arch Biochem Biophys,1997,341:140-152.
[59]LI S F,LU L,HAO S F,et al.Dietary manganese modulates expression of the manganese-containing superoxide dismutase gene in chickens[J].J Nutr,2011,141:189-194.
[60]BUETTNER R,KANNAN P,IMHOF A,et al.An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2[J].Mol Cell Biol,1993,13:4 174-4 185.
[61]MITCHELL P J,WANG C,JIANR T.Positive and negative regulation of transcription in vitro:enhancer-binding protein AP-2 is inhibited by SV40 T antigene[J].Cell,1987,50:847-861.
[62]WANG D,SHIN T H,KUDLOW J E.Transcription factor AP-2 controls transcription of the human transforming growth factor-α gene[J].J Biol Chem,1997,272:14 244-14 250.
[63]KANNAN P,BUETTNER R,CHIAO P J,et al.N-ras oncogene causes AP-2 transcriptional self-interference,which leads to transformation[J].Genes Dev,1994,8:1 258-1 269.
[64]SCHORLE H,MEIER P,BUCHERT M,et al.Transcription factor AP-2 essential for cranial closure and craniofacial development[J].Nature,1996,381:235-238.
[65]WILLIAMSON J A,BOSHER J M,SKINNER A,et al.Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors[J].Genomics,1996,35:262-264.
[66]BOSHER J M,TOTTY N F,HSUAN J J,et al.A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma[J].Oncogene,1996,13:1 701-1 707.
[67]SKINNER A,HURST H C.Transcriptional regulation of the c-erbB-3 gene in human breast carcinoma cell lines[J].Oncogene,1993,8:3 393-3 401.
[68]GEE J M,ROBERTSON J F,ELLIS I O,et al.Immuno-h(huán)istochemical analysis reveals a tumour suppressor-like role for the transcription factor AP-2 in invasive breast cancer[J].J Pathol,1999,189:514-520.
[69]CHEN A P,BENO D W A,DAVIS B H.Suppression of stellate cell type I collagen gene expression involves AP-2 transmodulation of nuclear factor-1-dependent gene transcription[J].J Biol Chem,1996,271:25 994-25 998.
[70]CHEN T T,LI W R,CASTRO-MUNOZLEDO F,et al.Regulation of K3 keratin gene transcription by Sp1 and AP-2 indierentiating rabbit corneal epithelial cells[J].Mol Cell Biol,1997,17:3 056-3 064.
[71]JIANG M S,TANG Q Q,MCLENITHAN J,et al.Derepression of the C/EBPα gene during adipogenesis:Identification of AP-2α as a repressor[J].Proc Natl Acad Sci USA,1998,95:3 467-3 471.
[72]SAFFORD S E,OBERLEY T D,URANO M,et al.Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase[J].Cancer Res,1994,54:164 261-164 265.
[73]XU Y,KRISHNAN A,WAN X S,et al.Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells[J].Oncogene,1999,8:93-102.
[74]ZHU C H,HUANG Y,OBERLEY L W,et al.A family of AP-2 proteins down-regulate manganese superoxide dismutase expression[J].J Biol Chem,2001,276:144 007-144 013.
[75]CARMEN T,MARYA M,MARIBELIS R,et al.Loss of activator protein-2α results in overexpression of protease-activated receptor-1 and correlates with the malignant phenotype of human melanoma[J].J Biol Chem,2003,278:46 632-46 642.
[76]KUO S,CHESROWN S E,MELLOTT J K,et al.In vivo architecture of the manganese superoxide dismutase promoter[J].J Biol Chem,1999,274:3 345-3 354.
[77]SEN C K,PACKER L.Antioxidant and redox regulation of gene transcription[J].FASEB J,1996,414:709-720.
[78]QADRI I,IWAHASHI M,CAPASSO J M,et al.Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication:role of JNK,p38MAPK and AP-1[J].Biochem J,2004,378:919-28.
[79]MASUDA A,LONGO D L,KOBAYASHI Y,et al.Induction of mitochondrial manganese superoxide dismutase by interleukin 1[J].FASEB J,1988,2:3 087-3 091.
[80]OBERLEY T D,OBERLEY L W.Antioxidant enzyme levels in cancer[J].Histol Histopathol,1997,12:525-535.
[81]ANGEL P,KARIN M.The role of jun,fos and the AP-1 complex in cell proliferation and transformation[J].Biochem Biophys Acra,1991,1 072:129-157.
[82]ABATE C,PATEL L,RAUSCHER F J,et al.Redox regulation of fos and jun DNA-binding activity in vitro[J].Sci,1990,249:1 157-1 161.
[83]DEVARY Y,GOTTLIEB R A,LAU L F,et al.Rapid and preferential activation of the c-jun gene during the mammalian UV response[J].Mol Cell Biol,1991,11:2 804-2 811.
[84]BIANCHI A,BECUWE P,F(xiàn)RANCK P,et al.Induction of MnSOD gene by arachidonic acid is mediated by reactive oxygen species and p38 mapk signaling pathway in human HepG2 hepatoma cells[J].Free Rad Biol Med,2002,32:1 132-1 142.
[85]GU Y,WU R F,XU Y C,et al.HIV Tat activates c-Jun amino-terminal kinase through an oxidant-dependent mechanism[J].Virol,2001,286:62-71.
[86]CHEN Z,GIBSON T B,ROBINSON F,et al.MAP kinases[J].Chem Rev,2001,101:2 449-2 476.
[87]KYRIAKIS J M,AVRUCH J.Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J].Physiol Rev,2001,81:807-869.
[88]TORRESA M,F(xiàn)ORMANB H J.Redox signaling and the MAP kinase pathways[J].BioFactors,2003,17:287-296.
[89]ROUX P P,BLENIS J.ERK and p38 MAPK-Activated Protein Kinases:a Family of Protein Kinases with diverse biological functions[J].Microbiol Mol Biol Rev,2004,68:320-344.
[90]WADA T,PENNINGER J M.Mitogen-activated protein kinases in apoptosis regulation[J].Oncogene,2004,23:2 838-2 849.
[91]WHITMARSH A J,DAVIS R J.Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways[J].J Mol Med,1996,74:589-607.
[92]PEARSON G,ROBINSON F,BEERS GIBSON T,et al.Mitogen-activated protein(MAP)kinase pathways:regulation and physiological functions[J].Endocrinol Rev,2001,22:153-183.
[93]QADRI I,IWAHASHI M,CAPASSO J M,et al.Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication:role of JNK,p38MAPK and AP-1[J].Biochem J,2004,378:919-928.