王 永,周赤華,姚培毅,遲振卿
(1.中國地質(zhì)科學(xué)院地質(zhì)研究所,北京 100037;2.內(nèi)蒙古赤峰地質(zhì)礦產(chǎn)勘查開發(fā)院,內(nèi)蒙古赤峰 024005)
內(nèi)蒙古中部必魯圖晚更新世晚期環(huán)境演變的沉積記錄
王 永1,周赤華2,姚培毅1,遲振卿1
(1.中國地質(zhì)科學(xué)院地質(zhì)研究所,北京 100037;2.內(nèi)蒙古赤峰地質(zhì)礦產(chǎn)勘查開發(fā)院,內(nèi)蒙古赤峰 024005)
以內(nèi)蒙古中部必魯圖厚度250 cm的淺井湖泊剖面為研究對(duì)象,根據(jù)取得的6個(gè)光釋光法測(cè)年數(shù)據(jù),建立晚更新世晚期56.8 ka以來的年代序列,對(duì)湖泊沉積特征、粒度組成、Rb與Sr含量(質(zhì)量分?jǐn)?shù))之比、氧化物含量及其比值等地球化學(xué)特征進(jìn)行分析,并通過綜合研究各指標(biāo)的氣候環(huán)境指示意義,重建該地區(qū)晚更新世晚期以來的氣候環(huán)境演變過程。結(jié)果表明:該地區(qū)晚更新世晚期以來氣候環(huán)境變化可以分為5個(gè)階段。第1階段,56.8~49.5 ka,沉積物有機(jī)質(zhì)較豐富,化學(xué)風(fēng)化作用較強(qiáng),以溫干偏濕氣候?yàn)橹?;?階段,49.5~41.3 ka,化學(xué)風(fēng)化較弱,水熱條件較差,氣候冷干偏濕;第3階段,41.3~20.8 ka,氣候轉(zhuǎn)為暖濕,化學(xué)風(fēng)化作用最強(qiáng),為升溫高降水期,末次冰期間冰段,間有小的冷濕、溫干波動(dòng);第4階段,20.8~8.2 ka,各項(xiàng)地球化學(xué)指標(biāo)均發(fā)生突變,砂楔發(fā)育,氣候惡化,持續(xù)干冷,期間存在末次冰期最盛期;第5階段,8.2~0 ka,氣候以溫干為主,晚期氣候向涼干轉(zhuǎn)變趨勢(shì)明顯。
古氣候;環(huán)境變遷;晚更新世;地球化學(xué);末次冰期;湖泊;必魯圖;內(nèi)蒙古
內(nèi)蒙古中部地區(qū)地處中國北方季風(fēng)邊緣區(qū),屬生態(tài)環(huán)境敏感帶,該地區(qū)湖泊沉積可以真實(shí)地記錄區(qū)域氣候環(huán)境的變化過程[1-3]。近年來,湖泊沉積記錄的古氣候變化研究已在相鄰地區(qū)廣泛開展[4-9],不同學(xué)者通過對(duì)地處季風(fēng)邊緣帶的內(nèi)蒙古達(dá)里湖[8]、岱海[4,7,9]、調(diào)角海子及河北省張北縣安固里[5]等湖泊沉積物的研究,恢復(fù)了各地全新世以來的環(huán)境演變與氣候變化過程,對(duì)全新世的氣候變遷有了較系統(tǒng)的認(rèn)識(shí)[6,10-13]。總體而言,對(duì)中國北方季風(fēng)邊緣區(qū)湖泊沉積的古氣候研究主要集中在全新世以來。
關(guān)于該地區(qū)環(huán)境演變研究,前人從地貌及沉積特征分析了晚更新世以來湖泊盆地的發(fā)育過程[14],由于沒有連續(xù)的沉積剖面,系統(tǒng)的環(huán)境演變研究還沒有開展。而該地區(qū)氣候環(huán)境演變的研究對(duì)于正確認(rèn)識(shí)東亞季風(fēng)的演變規(guī)律具有重要意義。同時(shí),不同時(shí)間尺度的氣候變化機(jī)制以及古氣候演化的區(qū)域差異性研究一直是過去全球變化研究中的熱點(diǎn)科學(xué)問題。筆者通過對(duì)內(nèi)蒙古中部必魯圖湖泊沉積物的粒度組成、微量元素、氧化物含量及其比值等環(huán)境指標(biāo)的綜合分析,揭示了該地區(qū)晚更新世晚期以來湖泊的環(huán)境演變過程,探討了本區(qū)晚更新世晚期以來的氣候環(huán)境演化特征,為中國季風(fēng)邊緣區(qū)第四紀(jì)以來氣候環(huán)境演化過程的重建提供基礎(chǔ)資料。
必魯圖湖泊位于內(nèi)蒙古中部錫林郭勒盟蘇尼特左旗南部(圖1),為一封閉性湖泊,湖面海拔約962 m。根據(jù)蘇尼特左旗1971~2000年的氣象數(shù)據(jù),該地區(qū)全年降水量為150~200 mm,主要集中在夏季(5~9月)。冬季(1月)平均氣溫-18.7℃,夏季(7月)平均氣溫22℃,年平均氣溫為3.1℃。必魯圖湖泊流域內(nèi)沒有大的河流輸入,僅在西南部有季節(jié)性小河補(bǔ)給,湖水供應(yīng)主要靠大氣降水,目前已干涸,成為季節(jié)性湖泊。
圖1 必魯圖湖泊位置Fig.1 Location Map of Lake in Bilutu
據(jù)內(nèi)蒙古蘇尼特左旗1∶200 000地質(zhì)圖,必魯圖湖泊南部為白堊紀(jì)灰綠色粉砂質(zhì)黏土巖,其北側(cè)為晚古生代花崗巖,西側(cè)有石炭紀(jì)火山碎屑巖、中基性火山熔巖夾安山質(zhì)凝灰?guī)r,東南側(cè)則為第三紀(jì)碎屑巖,主要是泥巖、粉砂巖和細(xì)砂巖。湖泊沉積物主要來源于周圍巖石風(fēng)化剝蝕后近距離搬運(yùn)的產(chǎn)物。
在必魯圖湖泊西南部(地理位置:43°24′19.9″N,113°45′43.8″E)采用人工方式挖掘250 cm深的淺井,以5 cm間隔連續(xù)采集樣品。整個(gè)淺井剖面由灰黃色粉細(xì)砂、灰綠色粉砂質(zhì)黏土組成,其沉積特征自上而下可分為:0~13 cm,褐黃色粉砂質(zhì)黏土;13~22 cm,灰綠色黏土質(zhì)粉細(xì)砂,含細(xì)礫;22~59 cm,灰色黏土質(zhì)粉砂,夾薄層粉砂質(zhì)黏土;59~63 cm,灰白色鈣質(zhì)砂土,含細(xì)礫石,質(zhì)硬;63~92 cm,灰黃色細(xì)砂,分選磨圓較好,夾灰色含細(xì)礫砂;92~185 cm,灰黃色黏土,夾薄層黏土質(zhì)粉砂、細(xì)砂;185~250 cm,灰綠色黏土夾粉砂質(zhì)黏土。年齡與深度的對(duì)應(yīng)關(guān)系見圖2。
剖面年代用光釋光法(OSL)進(jìn)行測(cè)量(表1),由中國地震局地質(zhì)研究所新年代學(xué)實(shí)驗(yàn)室用細(xì)顆粒紅外光釋光法進(jìn)行測(cè)定。根據(jù)6個(gè)OSL年齡數(shù)據(jù),內(nèi)插獲得各巖性界線的年代。沉積物粒度分析使用Mastersize 2000激光粒度儀在中國科學(xué)院南京地理與湖泊研究所進(jìn)行,按照Udden-Wentworth標(biāo)準(zhǔn)對(duì)沉積物進(jìn)行粒級(jí)(D)劃分[15],將沉積物主要分為中粗砂(D>125μm)、細(xì)砂(62.5~125μm)、粉砂(3.9~62.5μm)和黏土(D<3.9μm),為了表現(xiàn)更細(xì)粒組分的變化,將黏土又細(xì)分出小于2.0μm的粒級(jí)。常量及微量元素分析采用X-熒光光譜儀、等離子質(zhì)譜儀在國家地質(zhì)實(shí)驗(yàn)測(cè)試中心完成。
表1 必魯圖湖泊沉積物OSL測(cè)年結(jié)果Tab.1 OSL Dating Results of Lake Sediment in Bilutu
圖2 必魯圖湖泊沉積年齡與深度的對(duì)應(yīng)關(guān)系Fig.2 Relationship Between Age and Depth for Lake Sedimentary in Bilutu
3.1 粒度組成
湖泊沉積物的粒度分布特征與流域內(nèi)降水量、湖面高度及采樣位置等密切相關(guān),是沉積物搬運(yùn)距離及沉積環(huán)境的直接反映,因而是恢復(fù)湖泊古環(huán)境演變的有效手段之一[8,16-18]。研究表明,由于沉積物粒度大小受湖水物理能量的控制,因而能夠反映水動(dòng)力搬運(yùn)條件強(qiáng)弱的變化[7],進(jìn)而代表了湖泊水位的高低。同時(shí),不同時(shí)間尺度、不同類型湖泊沉積物粒度指示的環(huán)境意義不同[18],湖泊沉積物粒度組成在環(huán)境解釋上存在多解性。因此,利用粒度指標(biāo)重建湖泊沉積記錄的古氣候古環(huán)境演變過程,需要與其他指標(biāo)相結(jié)合進(jìn)行綜合分析[8,17-18]。
必魯圖剖面的粒度組成以黏土和粉砂為主,其中黏土的平均含量為45.7%,粉砂為44.0%;砂僅為11.3%,中值粒徑(Mz)與粗顆粒組分(D>125μm)變化趨勢(shì)一致。根據(jù)不同粒級(jí)的含量變化,整個(gè)剖面自下而上可以分為3段(圖3):80~250 cm,粉砂與黏土含量高值段,含量平均大于95%,在105~115 cm深度黏土及粉砂含量急劇降低,僅為3.6%,而中粗砂含量明顯增加,該段下部186~227 cm深度粒級(jí)小于2.0μm的顆粒相對(duì)較低;59~80 cm,砂粒含量高值段,而粉砂和黏土含量為低值;0~59 cm,粉砂含量最高值段,黏土含量也較高,砂粒含量為低值段,其中16~30 cm深度黏土及粉砂含量顯著降低,細(xì)砂含量也較低,而中粗砂含量明顯增加。
3.2 地球化學(xué)特征
內(nèi)陸封閉湖泊沉積物的地球化學(xué)特征(如w(Rb)/w(Sr))記錄了流域經(jīng)歷受到古氣溫、降水變化制約的化學(xué)風(fēng)化過程[9,19]。同時(shí)地球化學(xué)元素的遷移和積聚受到氣候環(huán)境變化的影響[20-25],因而沉積物地球化學(xué)特征可以揭示沉積時(shí)期的氣候環(huán)境演化過程[26-28]。
湖泊沉積物中,地球化學(xué)元素的遷移、聚集等變化主要受到氣候環(huán)境因素的制約。因此,地球化學(xué)元素指標(biāo)在反映氣候環(huán)境演化過程中有著重要意義[20-21,23-26,29-31]。干旱半干旱氣候條件下,降水量減少,生物地球化學(xué)作用和沉積作用相應(yīng)減弱,各種元素在湖泊中的含量也相對(duì)降低,但不同性質(zhì)的元素分布規(guī)律不一致?;瘜W(xué)風(fēng)化受濕度和氣溫控制,在干旱條件下,化學(xué)風(fēng)化弱,以機(jī)械搬運(yùn)為主,惰性組分相對(duì)富集,如Fe、Al、Ti、Ni、Co、Cr等元素含量呈現(xiàn)低值,而Na、K、Ba、Sr等元素出現(xiàn)高值,表明氣候相對(duì)干旱;反之,則氣候相對(duì)潮濕。氣溫高時(shí),生物光合作用強(qiáng),CO2被吸收,因而導(dǎo)致CaCO3沉淀,同時(shí)溫度高時(shí),蒸發(fā)作用相對(duì)強(qiáng)烈,也可導(dǎo)致CaCO3沉淀[25],因此CaO、MgO含量等可以反映氣溫的高低變化。元素C含量可以間接反映沉積時(shí)期生物量及濕度的變化,因而在一定程度上反映氣候的變化。
圖3 必魯圖湖泊沉積物粒度組成Fig.3 Grain Size Composition of Lake Sediment in Bilutu
湖泊沉積物元素地球化學(xué)特征及其比值,已成為反映古氣候波動(dòng)的有效指標(biāo)[32-33]。沉積物中(w(CaO)+w(K2O)+w(Na2O))/w(Al2O3)反映了活動(dòng)組分與惰性組分之間的關(guān)系[32],比值越高,進(jìn)入湖泊的活動(dòng)組分越多,物源區(qū)的風(fēng)化作用越強(qiáng),水熱條件好;反之,風(fēng)化作用減弱,水熱條件越差。Sr的化學(xué)性質(zhì)與Ca相似,化學(xué)風(fēng)化作用中極易淋失,Rb與K相似,很容易富集在風(fēng)化產(chǎn)物中,而Zr卻很穩(wěn)定。因此,w(Zr)/w(Rb)、w(Rb)/w(Sr)常用來表示沉積物粗細(xì)顆粒相對(duì)含量及化學(xué)風(fēng)化的強(qiáng)弱。Sr含量低,w(Rb)/w(Sr)、w(Zr)/w(Rb)高,說明化學(xué)風(fēng)化作用較弱;w(Rb)/w(Sr)低,指示較強(qiáng)的化學(xué)風(fēng)化作用[9,19,33]。
必魯圖剖面中SiO2含量與K2O、Na2O含量變化趨勢(shì)一致,而與CaO、Mg O、MnO含量反相關(guān)。SiO2含量變化較大,為24.0%~75.3%,平均為38.1%;Al2O3含量為7.41%~14.92%,平均為9.9%;CaO為2.82%~19.65%,平均為13.2%;MgO為1.65%~12.01%,平均為8.6%;Fe2O3為1.10%~4.66%,平均為3.0%;K2O為1.77%~2.93%,平均為2.3%;Na2O為1.59%~2.97%,平均為1.9%;TiO2為0.32%~0.57%,平均為0.4%。微量元素Rb、Zr含量變化趨勢(shì)一致,而Sr、V、Ni、Pb、Cr等含量變化趨勢(shì)一致。
整個(gè)剖面地球化學(xué)元素的含量可以分為5段(圖4、5):219~250 cm,SiO2、Al2O3、TiO2含量與K2O、Na2O含量為最低值段,SiO2含量平均僅為19.2%,CaO、MgO、MnO含量為高值段,CaO含量平均15.9%,Zr、V、Sr、Ni、Rb含量為低值段,而Zn、Co、Cu含量為較高值段;175~219 cm,SiO2、Al2O3、TiO2含量與K2O、Na2O含量以及Rb、Cr、Cu、Zn含量為高值段,而CaO、MgO、Mn O含量以及Sr、Pb、Cr含量為低值段;92~175 cm,CaO、MgO含量均為最高值段,平均分別為16.3%和11.2%,MnO、FeO含量以及Sr、Zn、Co含量也較高;63~92 cm,SiO2含量與K2O、Na2O含量以及Rb、Zr含量顯著增加,其中SiO2含量達(dá)到剖面的最高值,平均為61.8%,而CaO、MgO、MnO含量以及Sr、Cd、Cr含量達(dá)到剖面最低值;0~63 cm,SiO2、MnO、K2O含量較高,且有逐漸增加趨勢(shì),TiO2、Al2O3含量以及V、Co、Ni、Pb含量均達(dá)到剖面最高值。
3.3 必魯圖晚更新世晚期的環(huán)境演變
根據(jù)地球化學(xué)指標(biāo)的變化,結(jié)合沉積物巖性特征、粒度組成,將必魯圖晚更新世晚期以來的氣候環(huán)境演化大致劃分為5個(gè)階段(圖6)。
圖4 必魯圖湖泊沉積物氧化物含量Fig.4 Oxide Contents of Lake Sediment in Bilutu
圖5 必魯圖湖泊沉積物微量元素特征Fig.5 Trace Element Composition of Lake Sediment in Bilutu
圖6 必魯圖晚更新世以來環(huán)境演變Fig.6 Environmental Evolution Since Late Pleistocene in Bilutu
第1階段,56.8~49.5 ka(219~250 cm深處):溫干氣候期,該段為灰綠色粉砂質(zhì)黏土,粒度較細(xì),為淺湖相沉積環(huán)境,C含量高,指示有機(jī)質(zhì)較豐富;CaO含量較大,反映較高的溫度;較低的w(Rb)/w(Sr)說明該期化學(xué)風(fēng)化較強(qiáng),為溫干偏濕氣候。
第2階段,49.5~41.3 ka(175~219 cm深處):冷干氣候期,該段巖性為灰綠色粉砂、黃色細(xì)砂,粒度較粗,表明氣候環(huán)境發(fā)生變化;CaO、MgO含量及C含量為相對(duì)低值區(qū),(w(CaO)+w(K2O)+w(Na2O))/w(Al2O3)基本保持低值,反映湖區(qū)水熱條件差;w(Rb)、w(Rb)/w(Sr)相對(duì)較高,反映化學(xué)風(fēng)化較弱,代表了冷干的氣候環(huán)境,指示溫度降低,表明該地區(qū)進(jìn)入冷期。這一冷期可能是Hinrich5事件[34](約50 ka開始的短暫氣候寒冷時(shí)期)在該地區(qū)的反映。
第3階段,41.3~20.8 ka(92~175 cm深處):暖濕氣候期,該段為灰綠色黏土層,粒度細(xì),反映較深水沉積環(huán)境,指示偏濕氣候;w(Rb)、w(Rb)/w(Sr)為最低值段,而C、CaO、MgO含量為最高值段,Al2O3、TiO2、Fe2O3含量為較低值段,指示該期氣溫偏高,化學(xué)風(fēng)化最強(qiáng),為高溫大降水期,時(shí)間上與末次冰期間冰段一致,半干旱—半濕潤環(huán)境。30.3 ka(120 cm深處)開始有一短暫干冷期。
第4階段,20.8~8.2 ka(63~92 cm深處):干冷氣候期,該段沉積物以灰黃色中細(xì)砂為主,粒度最粗,分選很好,具有風(fēng)成砂的特征。從沉積特征及巖性組合看,該階段湖泊沉積存在缺失,直至上部鈣質(zhì)層發(fā)育時(shí)期,湖水開始有短暫的擴(kuò)張,總體處于湖濱環(huán)境,風(fēng)成砂發(fā)育。該期CaO、MgO、C含量為最低值段;w(Rb)、w(Rb)/w(Sr)、w(SiO2)為最高值段,反映該期化學(xué)風(fēng)化最弱。該階段各項(xiàng)地球化學(xué)指標(biāo)均發(fā)生突變,為持續(xù)的干冷期,表明該地區(qū)進(jìn)入冰期,時(shí)代上與末次冰期最盛期[35-36]一致。
第5階段,8.2~0 ka(0~63 cm深處):暖干氣候期,該段以中細(xì)粒砂為主,夾礫石,粒度粗;CaO、MgO、C含量均有逐漸降低趨勢(shì),而SiO2、Al2O3含量較高,w(Rb)、w(Rb)/w(Sr)等趨向于升高,指示濕度降低;2.4 ka(15 cm深處)開始,w(Rb)/w(Sr)增高顯著,而C、CaO含量降低明顯,反映當(dāng)時(shí)干旱程度加劇,氣溫下降;(w(CaO)+w(K2O)+w(Na2O))/w(Al2O3)持續(xù)降低,指示了湖區(qū)風(fēng)化作用較弱,水熱條件差。各指標(biāo)反映該期總體為溫干的氣候環(huán)境,晚期有向涼干轉(zhuǎn)變的趨勢(shì)。
(1)內(nèi)蒙古必魯圖湖泊沉積物氧化物含量及Rb與Sr含量之比等地球化學(xué)指標(biāo)的變化表明,由于氣候環(huán)境條件的改變使得湖泊流域水熱條件發(fā)生變化,明顯影響著沉積物的風(fēng)化程度。冰期氣候干冷,以物理風(fēng)化為主,化學(xué)風(fēng)化弱,而間冰期氣候暖濕,以化學(xué)風(fēng)化為主,物理風(fēng)化比較弱。湖泊沉積物的地球化學(xué)特征真實(shí)記錄了該地區(qū)晚更新世晚期以來的氣候環(huán)境演變歷史。
(2)晚更新世(約56.8 ka)以來,內(nèi)蒙古中部地區(qū)的氣候環(huán)境變化經(jīng)歷了5個(gè)主要階段。第2階段和第4階段的冷期分別與全球氣候變化的冷期相對(duì)應(yīng),特別是第4階段氣候環(huán)境的突變可以與末次冰期最盛期進(jìn)行對(duì)比,這說明內(nèi)蒙古中部地區(qū)末次冰期以來的氣候變化與全球及中國其他地區(qū)具有較好的一致性,區(qū)域性氣候變化受全球氣候變化的影響。
References:
[1] 徐 袁,錢維宏.東亞季風(fēng)邊緣活動(dòng)帶研究綜述[J].地理學(xué)報(bào),2003,58(增):138-146.
XU Yuan,QIAN Wei-h(huán)ong.Research on East Asian Summer Monsoon:a Review[J].Acta Geographica Sinica,2003,58(S):138-146.
[2] 曹建廷,沈 吉,王蘇民,等.內(nèi)蒙古岱海地區(qū)小冰期氣候演化特征的地球化學(xué)記錄[J].地球化學(xué),2001,30(3):231-235.
CAO Jian-ting,SHEN Ji,WANG Su-min,et al.Geochemical Record for the Characteristics of Climate Change During the Little Ice Age in Daihai Lake,Nei Mongol[J].Geochimica,2001,30(3):231-235.
[3] 烏云格日勒,劉清泗.岱海湖心沉積物分析及其600年來環(huán)境演變[J].地理學(xué)報(bào),1998,53(增):76-82.
WUYUNGERILE,LIU Qing-si.Sediment Analysis of the Central Drilling Section in Daihai Lake and Its Environmental Evolution for the Past 600 Years[J].Acta Geographica Sinica,1998,53(S):76-82.
[4] XIAO J L,XU Q H,NAKAMURA T,et al.Holocene Vegetation Variation in the Daihai Lake Region of North-central China:a Direct Indication of the Asian Monsoon Climatic History[J].Quaternary Science Reviews,2004,23(14/15):1669-1679.
[5] WANG H Y,LIU H Y,ZHU J L,et al.Holocene Environmental Changes as Recorded by Mineral Magnetism of Sediments from Angulinuur Lake,SoutheasternInner Mongolia Plateau,China[J].Palaeogeography,Palaeoclimatology,Palaeoecology 2010,285(1/2):30-49.
[6] ZHAO Y,YU Z C.Vegetation Response to Holocene Climate Change in East Asian Monsoon-margin Region[J].Earth Science Reviews,2012,113(1/2):1-10.
[7] 孫千里,周 杰,肖舉樂.岱海沉積物粒度特征及其古環(huán)境意義[J].海洋地質(zhì)與第四紀(jì)地質(zhì),2001,21(1):93-95.
SUN Qian-li,ZHOU Jie,XIAO Ju-le.Grain-size Characteristics of Lake Daihai Sediments and Its Paleaoenvironment Significance[J].Marine Geology and Quaternary Geology,2001,21(1):93-95.
[8] WANG H Y,LIU H Y,CUI H T,et al.Terminal Pleistocene/Holocene Palaeoenvironmental Changes Revealed by Mineral-magnetism Measurements of Lake Sediments for Dali Nor Area,Southeastern Inner Mongolia Plateau,China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2001,170(1/2):115-132.
[9] 金章東,王蘇民,沈 吉,等.內(nèi)陸湖泊流域的化學(xué)風(fēng)化及氣候變化——以內(nèi)蒙古岱海為例[J].地質(zhì)論評(píng),2001,47(1):42-46.
JIN Zhang-dong,WANG Su-min,SHEN Ji,et al.Chemical Weathering and Paleoclimatic Change in Watershed Recorded in Lake Sediments—a Case Study of the Daihai Lake,Inner Mongolia[J].Geological Review,2001,47(1):42-46.
[10] WANG H Y,LIU H Y,ZHAO F J,et al.Early-and Mid-Holocene Palaeoenvironments as Revealed by Mineral Magnetic,Geochemical and Palynological Data of Sediments from Bai Nuur and Ulan Nuur,Southeastern Inner Mongolia Plateau,China[J].Quaternary International,2012,250(1):100-118.
[11] YIN Y,LIU H Y,HE S Y,et al.Patterns of Local and Regional Grain Size Distribution and Their Application to Holocene Climate Reconstruction in Semi-arid Inner Mongolia,China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2011,307(1/2):168-176.
[12] ZHAI D Y,XIAO J L,ZHOU L,et al.Holocene East Asian Monsoon Variation Inferred from Species Assemblage and Shell Chemistry of the Ostracodes from Hulun Lake,Inner Mongolia[J].Quaternary Research,2011,75(3):512-522.
[13] ZHANG C J,ZHANG W Y,F(xiàn)ENG Z D,et al.Holocene Hydrological and Climatic Change on the Northern Mongolian Plateau Based on Multi-proxy Records from Lake Gun Nuur[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2012,323/324/325(1):75-86.
[14] 李龍吟,田明中,遲振卿,等.內(nèi)蒙古必魯圖湖盆晚更新世以來的地層與環(huán)境演變[J].現(xiàn)代地質(zhì),1995,9(2):184-188.
LI Long-yin,TIAN Ming-zhong,CHI Zhen-qing,et al.Study on Strata and Environmental Evolution of Bilutu Lake Basin Since Late Pleistocene in Inner Mongolia[J].Geoscience,1995,9(2):184-188.
[15] WENTWORTH C K.A Scale of Grade and Class Terms for Clastic Sediments[J].The Jounral of Geology,1922,30(5):377-392.
[16] 孫永傳,李惠生.碎屑巖沉積相和沉積環(huán)境[M].北京:地質(zhì)出版社,1986.
SUN Yong-chuan,LI Hui-sheng.Sedimentary Facies and Depositional Environment of Detrital Rocks[M].Beijing:Geology Publishing House,1986.
[17] 陳敬安,萬國江,唐德貴,等.洱海近代氣候變化的沉積物粒度與同位素記錄[J].自然科學(xué)進(jìn)展,2000,10(3):253-259.
CHEN Jing-an,WAN Guo-jiang,TANG De-gui,et al.Recent Climatic Changes Recorded by Sediment Grain Sizes and Isotopes in Erhai Lake[J].Progress in Natural Science,2000,10(3):253-259.
[18] 陳敬安,萬國江,張 峰,等.不同時(shí)間尺度下的湖泊沉積物環(huán)境記錄——以沉積物粒度為例[J].中國科學(xué):D輯,2003,33(6):563-568.
CHEN Jing-an,WAN Guo-jiang,ZHANG Feng,et al.Environmental Records of Lacustrine Sediments in Different Time Scales—Taking Sediment Grain Size as an Example[J].Science in China:Series D,2003,33(6):563-568.
[19] 金章東,沈 吉,王蘇民,等.早全新世降溫事件的湖泊沉積證據(jù)[J].高校地質(zhì)學(xué)報(bào),2003,9(1):11-18.
JIN Zhang-dong,SHEN Ji,WANG Su-min,et al.Evidence for Early Holocene Cold Event from Lake Sediments[J].Geological Journal of China Universities,2003,9(1):11-18.
[20] 靳鶴齡,蘇志珠,孫 忠.渾善達(dá)克沙地全新世中晚期地層化學(xué)元素特征及其氣候變化[J].中國沙漠,2003,23(4):366-371.
JIN He-ling,SU Zhi-zhu,SUN Zhong.Characters of Chemical Elements in Strata of Middle and Late Holocene in Hunshandake Desert and the Indicating Climatic Changes[J].Journal of Desert Research,2003,23(4):366-371.
[21] 靳鶴齡,李明啟,蘇志珠,等.220 ka BP來薩拉烏蘇河流域地質(zhì)剖面地球化學(xué)特征及其對(duì)全球氣候變化的響應(yīng)[J].冰川凍土,2005,27(6):861-868.JIN He-ling,LI Ming-qi,SU Zhi-zhu,et al.GeochemicalFeatures of a Profile in Salawusu River Valley and Their Response to Global Climate Changes Since 220 ka BP[J].Journal of Glaciology and Geocryology,2005,27(6):861-868.
[22] 蘇志珠,董光榮,李小強(qiáng),等.晚冰期以來毛烏素沙漠環(huán)境特征的湖沼相沉積記錄[J].中國沙漠,1999,19(2):104-109.
SU Zhi-zhu,DONG Guang-rong,LI Xiao-qiang,et al.The Lake-swamp Sediment Records on the Environmental Characteristics of Mu Us Desert Since the Late Glacial Epoch[J].Journal of Desert Research,1999,19(2):104-109.
[23] 王蘇民,吉 磊,羊向東,等.內(nèi)蒙古扎賚諾爾湖泊沉積物中的新仙女木事件記錄[J].科學(xué)通報(bào),1994,39(4):348-351.
WANG Su-min,JI Lei,YANG Xiang-dong,et al.The Record of Younger Dryas Event in Lake Sediments from Jalai Nur,Inner Mongolia[J].Chinese Science Bulletin,1994,39(4):348-351.
[24] GOFF J R,CHAGUE-GOFF C.A Late Holocene Record of Environmental Changes from Coastal Wetlands:Abel Tasman National Park,New Zealand[J].Quaternary International,1999,56(1):39-51.
[25] LANDMANN G,ABU QUDAIR G M,SHAWABKEH K,et al.Geochemistry of the Lisan and Damya Formations in Jordan,and Implications for Palaeoclimate[J].Quaternary International,2002,89(1):45-57.
[26] 譚紅兵,于升松.我國湖泊沉積環(huán)境演變研究中元素地球化學(xué)的應(yīng)用現(xiàn)狀及發(fā)展方向[J].鹽湖研究,1999,7(3):58-65.
TAN Hong-bing,YU Sheng-song.Present Situation and Future Development of Elemental Geochemistry in the Study of Lake Sediments'Evolution[J].Journal of Salt Lake Research,1999,7(3):58-65.
[27] 陳敬安,萬國江,陳振樓,等.洱海沉積物化學(xué)元素與古氣候演化[J].地球化學(xué),1999,28(6):562-570.
CHEN Jing-an,WAN Guo-jiang,CHEN Zhen-lou,et al.Chemical Elements in Sediments of Lake Erhai and Palaeoclimate Evolution[J].Geochimica,1999,28(6):562-570.
[28] 吳艷宏,李世杰,夏威嵐.可可西里茍仁錯(cuò)湖泊沉積物元素地球化學(xué)特征及其環(huán)境意義[J].地球科學(xué)與環(huán)境學(xué)報(bào),2004,26(3):64-68. WU Yan-h(huán)ong,LI Shi-jie,XIA Wei-lan.Element Geochemistry of Lake Sediment from Gourenco Lake,Kekexili,Qinghai-Xizang Plateau and Its Significance for Climate Variation[J].Journal of Earth Sciences and Environment,2004,26(3):64-68.
[29] RUSSELL J M,JOHNSON T C.A High-resolution Geochemical Record from Lake Edward,Uganda Congo and the Timing and Causes of Tropical African Drought During the Late Holocene[J].Quaternary Science Reviews,2005,24(12/13):1375-1389.
[30] LI H C,BISCHOFF J L,KU T L,et al.Climate and Hydrology of the Last Interglaciation(MIS 5)in Owens Basin,California:Isotopic and Geochemical Evidence from Core OL-92[J].Quaternary Science Reviews,2004,23(1/2):49-63.
[31] 張小龍,徐柏青,李久樂,等.青藏高原西南部塔若錯(cuò)湖泊沉積物記錄的近300年來氣候環(huán)境變化[J].地球科學(xué)與環(huán)境學(xué)報(bào),2012,34(1):79-90.
ZHANG Xiao-long,XU Bai-qing,LI Jiu-le,et al.Climatic and Environmental Changes over the Past About 300 Years Recorded by Lake Sediments in Taro Co,Southwestern Tibetan Plateau[J].Journal of Earth Sciences and Environment,2012,34(1):79-90.
[32] DINGLE R V,LAVELLE M.Late Cretaceous-Cenozoic Climatic Variations of the Northern Antarctic Peninsula:New Geochemical Evidence and Review[J].Paleogeography,Paleoclimatology,Paleoecology,1998,141(3/4):215-232.
[33] DYPVIK H,HARRIS N B.Geochemical Facies Analysis of Fine-grained Siliciclastics Using Th/U,Zr/Rb and(ZR+Rb)/Sr Ratios[J].Chemical Geology,2001,181(1/2):131-146.
[34] HENRICH H.Origin and Consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean During the Past 130 000 Years[J].Quaternary Research,1988,29(2):142-152.
[35] WILLIAMS G E.History of the Earth's Obliquity[J].Earth Science Reviews,1993,34(1):1-45.
[36] GROOTES P M,STUIVER M,WHITE J W C,et al.Comparison of Oxygen Isotope Records from the GISP2 and GRIP Greenland Ice Cores[J].Nature,1993,366:552-554.
Sedimentary Record of Environmental Evolution Since Late Stage of Late Pleistocene in Bilutu of Central Inner Mongolia
WANG Yong1,ZHOU Chi-h(huán)ua2,YAO Pei-yi1,CHI Zhen-qing1
(1.Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China;2.Inner Mongolia Chifeng Institute of Geology and Mineral Exploration and Development,Chifeng 024005,Inner Mongolia,China)
A lake shallow well section with the depth of 250 cm in Bilutu of central Inner Mongolia was studied.According to the six dating data of optically stimulated luminescence,the chronology for the lake sediment since the late stage of Late Pleistocene(56.8 ka)was established,and geochemical features including sedimentary characteristic,ratio of the contents(mass fractions)of Rb and Sr,content of oxide and the ratio of them were used to reconstruct the paleoenvironmental and climatic changes since the late stage of Late Pleistocene in Bilutu.The results showed that the climatic and environmental changes since the late stage of Late Pleistocene in Bilutu were divided into five stages.The first stage was from 56.8 ka to 49.5 ka,the organic matter in sedimentary deposit was rich,the chemical weathering was strong,the climate was mainly warm-dry-slightly damp;the second stage was from 49.5 ka to 41.3 ka,chemical weathering was weak,hydrothermal condition was poor,the climate was cold-dry-slightly damp;the third stage was from 41.3 ka to 20.8 ka,the climate became warm,the chemical weathering was strongest,the temperature raise and precipitation was high,the stage was interstade of lastglaciation with little fluctuation of cold-wet and warm-dry;the fourth stage was from 20.8 ka to 8.2 ka,all the geochemical indicators changed significantly,sand wedge developed,climate deteriorated,the stage was continually dry-cold,and there was Last Glacial Maximum(LGM);the fifth stage was from 8.2 ka to now,the climate was mainly warm-dry,the climate became to cold-dry in the late of the stage significantly.
paleoclimate;environmental change;Late Pleistocene;geochemistry;last glaciation;lake;Bilutu;Inner Mongolia
P532;P534.63
A
1672-6561(2012)03-0062-08
2012-03-15
中國地質(zhì)調(diào)查局地質(zhì)大調(diào)查項(xiàng)目(1212010611703,1212011087116)
王 永(1968-),男,內(nèi)蒙古四子王人,研究員,理學(xué)博士,E-mail:wangyong@cags.a(chǎn)c.cn。