任 祎 馬挺軍 崔 林
(山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院1,太谷 030801)
(北京農(nóng)學(xué)院食品科學(xué)學(xué)院2,北京 102206)
(山西省農(nóng)科院農(nóng)作物品種資源研究所3,太原 030031)
燕麥生物堿及其潛在的保健作用
任 祎1馬挺軍2崔 林3
(山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院1,太谷 030801)
(北京農(nóng)學(xué)院食品科學(xué)學(xué)院2,北京 102206)
(山西省農(nóng)科院農(nóng)作物品種資源研究所3,太原 030031)
燕麥(Avena sativa L.)是一種公認(rèn)的有益心臟健康的食品,其保健功能除歸因于高含量的β-葡聚糖外,還因其富含多種功能成分,如植酸、維生素E、黃酮類和超過(guò)20種的燕麥生物堿等。燕麥生物堿是燕麥特有的酚酸類衍生物,具有多種生物活性,對(duì)人類和動(dòng)物健康非常有益。最新研究表明,燕麥生物堿兼有抗炎、抗增殖和止癢等生物活性,對(duì)于冠心病、結(jié)腸癌和皮膚瘙癢等疾病的防治起到重要的作用。本文對(duì)燕麥生物堿的結(jié)構(gòu)分布、保健作用及其生物合成作了系統(tǒng)的闡述,對(duì)于開(kāi)發(fā)燕麥新產(chǎn)品、提高燕麥產(chǎn)品附加值具有重要意義。
燕麥生物堿 生物合成 保健作用
流行病學(xué)證據(jù)表明,攝入較多的全谷物食品可降低患冠心病、糖尿病和癌癥的風(fēng)險(xiǎn)[1-3],而燕麥(Avena sativa L.)是目前唯一的全谷物進(jìn)食、有益健康的食品,Kelly[4]在其最新的文獻(xiàn)綜述中也指出全谷物進(jìn)食中只有燕麥對(duì)冠心病的預(yù)防作用被臨床試驗(yàn)所證實(shí),而其他谷物的作用有待進(jìn)一步驗(yàn)證。燕麥的這種保健功能除歸因于高含量的β-葡聚糖外,還歸因于它含有多種抗氧化物,其中一類獨(dú)特的含氮酚酸類衍生物,由加拿大科學(xué)家Collins首次鑒定并命名為 Avenanthramides[5-6],因其在谷類作物中唯一存在于燕麥中,所以譯為燕麥生物堿,簡(jiǎn)稱燕麥堿。最新研究表明,燕麥生物堿不僅具有很強(qiáng)的體外和體內(nèi)抗氧化作用,還具有抗炎、抗增殖和止癢等多種生物活性,對(duì)于冠心病、結(jié)腸癌和皮膚瘙癢癥的防治起到重要的作用[7-8],近年來(lái)引起國(guó)內(nèi)外學(xué)者的極大興趣。
從燕麥麩皮和籽粒中分離出來(lái)的不同形式的燕麥生物堿超過(guò)20多種,其中主要的三種是A、B和C,即 Bp、Bf和 Bc[5,9],分別是 Bratt等[10]從燕麥提取物中分離出的2p、2f和2c,燕麥生物堿的結(jié)構(gòu)與臨床抗組胺及抗炎藥物曲尼司特(Tranilast)的結(jié)構(gòu)非常相似(見(jiàn)圖1)。
圖1 主要的三種燕麥堿的結(jié)構(gòu)
燕麥生物堿是一種植物次生代謝產(chǎn)物,在葉片,小穗等組織中都有存在,但主要是以相對(duì)高的含量存在于籽粒中(300 mg/kg),尤其是籽粒的外層部分(麩皮和次級(jí)糊粉層)[9-12]。不同品種燕麥生物堿含量差異很大[13],且對(duì)冠銹病高抗的品種,含量相對(duì)較高[14,15]。這一研究結(jié)果可指導(dǎo)育種者考慮利用生長(zhǎng)過(guò)程中的冠銹病脅迫來(lái)選育具有高燕麥堿含量的品種。通過(guò)對(duì)我國(guó)裸燕麥種質(zhì)資源抗氧化特性做過(guò)初步評(píng)價(jià),發(fā)現(xiàn)我國(guó)裸燕麥種質(zhì)生物堿含量的變異幅度和變異系數(shù)遠(yuǎn)大于國(guó)外引進(jìn)種質(zhì),而在國(guó)內(nèi)種質(zhì)中,地方種的變異幅度和變異系數(shù)大于選育品種[16],這些廣泛的變異,可為進(jìn)一步的高生物堿燕麥品質(zhì)育種提供物質(zhì)基礎(chǔ)。其次,燕麥堿含量受環(huán)境因素的影響也很大,并非所有對(duì)冠銹病具有高抗的品種生物堿含量都高,不同年份、地點(diǎn)、栽培條件以及施氮水平等都會(huì)影響籽粒中燕麥堿的含量[15]。
2.1 抗氧化性能
富含燕麥生物堿的提取物以及合成的燕麥生物堿都表現(xiàn)很強(qiáng)的抗氧化活性[10,17-18]。其中 Bc 的活性最高,而B(niǎo)p含量最高,往往占總燕麥堿的三分之一[17]。燕麥生物堿是構(gòu)成燕麥抗氧化物的主要成分,其活性是其他酚類抗氧化成分(如香蘭素和咖啡酸)的10~30倍[13,19]。富含燕麥生物堿的燕麥提取物,可增加骨骼肌、肝臟和腎臟的超氧化物歧化酶(SOD)的活性,增強(qiáng)心臟和骨骼肌谷胱甘肽過(guò)氧化酶活性,降低由運(yùn)動(dòng)誘導(dǎo)的氧化應(yīng)激系統(tǒng)(ROS)的損傷[20,21]。早期,中國(guó)農(nóng)業(yè)科學(xué)院的研究人員開(kāi)展富含燕麥生物堿提取物(ARE)對(duì)衰老小鼠抗氧化和降血脂作用的研究,發(fā)現(xiàn)ARE不僅可增強(qiáng)肝組織抗氧化酶活性,減少丙二醛(MDA)含量,降低血總膽固醇和低密度膽固醇水平[22],還可上調(diào)肝組織 SOD酶,谷胱甘肽酶以及脂蛋白脂酶基因的表達(dá)水平[23]。
2.2 抗炎作用
燕麥生物堿可以通過(guò)與細(xì)胞因子的相互作用和信號(hào)通路介導(dǎo)炎癥細(xì)胞反應(yīng)。燕麥生物堿通過(guò)抑制血管內(nèi)皮細(xì)胞黏附分子-1(ICAM-1)、血管細(xì)胞黏附因子-1(VCAM-1)和E-selectin的表達(dá),從而抑制單核細(xì)胞黏附分子作用,降低人主動(dòng)脈內(nèi)皮細(xì)胞(HAEC)的產(chǎn)物——炎性細(xì)胞因子白介素IL-6、IL -8,和單核細(xì)胞趨化蛋白 -1(MCP -1)[24],產(chǎn)生的炎性細(xì)胞因子,趨化因子和黏附分子的內(nèi)皮細(xì)胞已被證明是通過(guò)核轉(zhuǎn)錄因子NF-kB受氧化還原敏感的信號(hào)轉(zhuǎn)導(dǎo)[25-26]。Guo 等[27]的一系列研究結(jié)果也表明,燕麥堿可抑制內(nèi)皮細(xì)胞炎性細(xì)胞因子的表達(dá),其作用機(jī)理是通過(guò)抑制IKK和抑制蛋白(IkB)的磷酸化以及降低內(nèi)皮細(xì)胞的IkB的活性而實(shí)現(xiàn)的。最近研究表明,一種合成的燕麥生物堿的類似物(DHAv),可以通過(guò)抑制核基因NF-kB的表達(dá),進(jìn)而保護(hù)胰腺B細(xì)胞受到損傷[28]。
2.4 抗增殖作用
藥物曲尼司特(Tranilast)具有抗血管平滑肌細(xì)胞(VSMCs)增殖的作用,在臨床上可防止經(jīng)皮冠狀動(dòng)脈腔內(nèi)成形術(shù)后的再狹窄[29-33]。像曲尼司特一樣,燕麥生物堿也可抑制血管平滑肌細(xì)胞的增殖[34],防止引發(fā)動(dòng)脈粥樣硬化和血管成形術(shù)后的再狹窄[35-36]。Nie 等[37]研究表明,燕麥堿抑制血管平滑肌細(xì)胞增殖的分子機(jī)制是通過(guò)調(diào)節(jié)細(xì)胞周期調(diào)節(jié)蛋白 p53、p21cip1、p27kip1、D1 和 pRb,抑制細(xì)胞周期從G1期向S期的過(guò)渡而實(shí)現(xiàn)的。最近,美國(guó)Turfs大學(xué)營(yíng)養(yǎng)和衰老研究小組發(fā)現(xiàn)富含燕麥堿的燕麥提取物,以及合成的燕麥生物堿Bc及Bc-甲酯,均對(duì)結(jié)腸癌、前列腺癌和乳腺癌細(xì)胞的生長(zhǎng)有抑制作用,但對(duì)結(jié)腸癌細(xì)胞增殖的抑制作用更明顯[38]。這一新的發(fā)現(xiàn),為進(jìn)一步揭示富含高纖維和高生物堿的燕麥降低患結(jié)腸癌風(fēng)險(xiǎn)的分子機(jī)制提供了理論基礎(chǔ)。
2.5 血管舒張作用
燕麥堿對(duì)心血管系統(tǒng)的另一個(gè)潛在的生物學(xué)效應(yīng)是依賴于一氧化氮(NO)的舒張血管功能。Nie等[34]報(bào)道,燕麥生物堿可增加血管內(nèi)皮細(xì)胞與血管平滑肌細(xì)胞NO合成酶的表達(dá)水平,釋放出大量的NO,從而舒張血管,促進(jìn)血液循環(huán)。這一研究對(duì)于早期人類進(jìn)食燕麥和燕麥片后可引起血管擴(kuò)張和血壓降低的現(xiàn)象做出了正確的解釋。
2.6 止癢作用
國(guó)外,燕麥片長(zhǎng)期以來(lái)被用于治療曬傷、濕疹和醫(yī)治牛皮癬等皮膚損傷,含燕麥生物堿的膠狀提取物經(jīng)證實(shí)有抗組胺和抗炎活性[39]。Sur等[40]報(bào)道表明,低濃度的燕麥生物堿(10-6mg/mL)可抑制角質(zhì)形成細(xì)胞中NF-kB的活化,減少炎性細(xì)胞因子IL-8的釋放。此外,局部施用(1~3)×10-3mg/mL的燕麥生物堿,可緩解接觸性過(guò)敏皮炎和神經(jīng)性炎癥小鼠的癥狀。這些研究表明燕麥生物堿是燕麥用于抗炎和止癢的有效成分,其機(jī)理是通過(guò)抑制組胺信號(hào)轉(zhuǎn)導(dǎo)來(lái)實(shí)現(xiàn)的。DHAvn(二羥基-燕麥生物堿),一種合成的燕麥生物堿衍生物,現(xiàn)已被開(kāi)發(fā)為藥物,用于治療與組胺有關(guān)的一些皮膚疾病,如瘙癢、紅斑及水皰等[41]。
燕麥生物堿是通過(guò)苯丙氨酸途徑和酪氨酸途徑合成的,PAL、4CL和HHT是其合成途徑中關(guān)鍵的酶[42-43]。PAL(苯丙氨酸解氨酶,phenylalanine ammonia-lyase)可催化苯丙氨酸轉(zhuǎn)化為肉桂酸,促進(jìn)黃酮、花色素、生物堿等次生代謝物的生成,在燕麥堿生物合成中,PAL是處于合成途徑上游的關(guān)鍵酶,燕麥PAL基因(AsPAL)已被克?。?4],但PAL對(duì)燕麥生物堿合成的作用少有報(bào)道。4CL(對(duì)-香豆酸:輔酶A連接酶,4-coumarate:CoA ligase)也是苯丙烷類代謝途徑的限速酶之一,在合成燕麥生物堿途徑中催化對(duì)香豆酸得到燕麥生物堿前體物質(zhì)——對(duì)香豆酰輔酶A,燕麥4CL基因還未被克隆。HHT(羥基-肉桂酰輔酶A:羥基氨基苯甲酸鹽N-羥基-肉桂酰轉(zhuǎn)移酶)是催化縮合氨基苯甲酸和羥基-肉桂酸輔酶A酯生成燕麥堿最后一步反應(yīng)所需要的酶,國(guó)外對(duì)燕麥HHT酶的研究比較多,如Matsukawa等[45]在燕麥種子的胚和胚乳中都檢測(cè)到了這種酶的活性,Bryngelsson等[46]對(duì)干種子和浸泡種子中此酶的活性進(jìn)行比較,發(fā)現(xiàn)浸泡10 h的種子和處于萌發(fā)階段的種子,該酶的活性和燕麥生物堿的含量均有提高。各種生物和非生物逆境可誘導(dǎo)燕麥生物堿含量增加,如利用寡聚-N-乙酰殼糖-低聚寡糖、維多利長(zhǎng)蠕孢毒素C、重金屬離子和鈣離子載體A23187處理葉片,可誘導(dǎo)HHT酶的活性,提高葉片中燕麥堿的水平[43,45]。Peterson 等[47]曾對(duì)大田不同地區(qū)和不同品種燕麥葉子和小穗中生物堿含量做了檢測(cè)分析,發(fā)現(xiàn)HHT酶活性和燕麥堿含量之間存在一定的關(guān)系,但沒(méi)有顯著相關(guān)性。美國(guó)農(nóng)業(yè)部谷物研究中心化學(xué)家Wise等[48]多年來(lái)致力于各類型燕麥堿化學(xué)合成和生物合成的研究,建立了燕麥細(xì)胞懸浮培養(yǎng)法,為研究其合成途徑提供了細(xì)胞培養(yǎng)平臺(tái)。前人研究結(jié)果表明,影響燕麥生物堿合成的因素很多,有關(guān)機(jī)制還不是很清楚,研究有待進(jìn)一步深入。
綜上所述,國(guó)外對(duì)于燕麥的營(yíng)養(yǎng)成分和功能特性開(kāi)展了長(zhǎng)期持續(xù)的研究,但對(duì)于我國(guó)特有的裸燕麥資源,國(guó)內(nèi)外的研究還不夠系統(tǒng)深入,研究人員曾經(jīng)對(duì)我國(guó)裸燕麥種質(zhì)資源抗氧化性做過(guò)初步評(píng)價(jià),但未考慮環(huán)境因素對(duì)抗氧化物組成的影響作用[16]。燕麥生物堿雖然具有較強(qiáng)的有益健康的作用,但其含量在燕麥籽粒中甚微,隨著經(jīng)濟(jì)發(fā)展和人民生活水平的提高,人們對(duì)燕麥的營(yíng)養(yǎng)價(jià)值和醫(yī)療保健作用也越來(lái)越重視,對(duì)燕麥產(chǎn)品的期望也愈來(lái)愈高。依據(jù)新形勢(shì)下市場(chǎng)對(duì)燕麥產(chǎn)品、燕麥品種的新要求,今后一個(gè)時(shí)期內(nèi)燕麥育種工作的重點(diǎn)內(nèi)容應(yīng)該放在高功效成分的品種選育上,即面向食品、醫(yī)藥和化工企業(yè)的發(fā)展需要,篩選專用型的品種,對(duì)其進(jìn)行深加工和利用。因此,利用我國(guó)裸燕麥種質(zhì)資源優(yōu)勢(shì),加大對(duì)裸燕麥生物堿的基礎(chǔ)研究,分析生物和非生物因素對(duì)其生物合成的影響,探索其生物合成誘導(dǎo)機(jī)制,通過(guò)基因工程技術(shù)改良燕麥品質(zhì)、增加此種次生代謝產(chǎn)物的積累,對(duì)于提高燕麥產(chǎn)品的附加值和拓展燕麥生物堿的工業(yè)應(yīng)用具有重要的意義。
[1]Fardet A,Rock E,Remesy C.Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo?[J].Journal of Cereal Science,2008,48:258 - 276
[2]Anderson J W.Whole grains protect against atherosclerotic cardiovascular disease[J].Proceeding of the Nutriton Society,2003,62:135 - 142
[3]Truswell A S.Cereal grains and coronary heart disease[J].European Journal of Clinical Nutrition,2002,56:1 -14
[4]Kelly S A,Summerbell C D,Brynes A,et al.Whole grain cereals for coronary heart disease[J].Cochrane Database Systematic Reviews,2007,2:CD005051
[5]Collins F W.Oat phenolics:avenanthramides,novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls[J].Journal of Agricultural and Food Chemistry,1989,37(1):60-66
[6]Peterson D M.Oat antioxidants[J].Journal Cereal Science,2001,33:115 -129
[7]Ryan D,Kendall M,Robards K.Bioactivity of oats as it relates to cardiovascular disease[J].Nutrition Research Reviews,2007,20(2):147 -162
[8]Meydani M.Potential health benefits of avenanthramides of oats[J].Nutrition Reviews,2009,67(12):731 - 735
[9]Dimberg L H,Theander O,Lingnert H.Avenanthramides- A group of phenolic antioxidants in oats[J].Cereal Chemistry,1993,70(6):637 -641
[10]Bratt K.Avenanthramides in oats(Avena sativa L.)and structure - antioxidant activity relationships[J].Journal of Agricultural and Food Chemistry,2003,51(3):594 -600
[11]Peterson D M,Hahn M J,Emmons C L.Oat avenanthramides exhibit antioxidant activities in vitro[J].Food Chemistry,2002,79:473 -478
[12]Peterson D M,Emmons C L,Hibbs A H.Phenolic antioxidants and antioxidant activity in pearling fractions of oat groats[J].Journal Cereal Science,2001,33:97 - 103
[13]Emmons C L,Peterson D M.Antioxidant activity and phenolic content of oat as affected by cultivar and location[J].Crop Science,2001,41:1676 -1681
[14]Wise M L,Doehlert D C,McMullen M S.Association of avenanthramide concentration in oat(Avena sativa L.)grain with crown rust incidence and genetic resistance[J].Cereal Chemistry,2008,85(5):639 -641
[15]Dimberg L H,Peterson D M.Phenols in spikelets and leaves of field-grown oats(Avena sativa)with different inherent resistance to crown rust(Puccinia coronate f.sp.avenae)[J].Journal of the Science of Food and Agriculture,2009,89:1815-1824
[16]任祎,平華,任貴興.裸燕麥核心種質(zhì)抗氧化特性研究[J].作物學(xué)報(bào),2010,36(6):988 -994
[17]Peterson D M,Hahn M J,Emmons C L.Oat avenanthramides exhibit antioxidant activities in vitro[J].Food Chemistry,2002,79:473 -478
[18]Chen C Y,Milbury P E,Kwak H K,et al.Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation[J].Journal of Nutrition,2004,134:1459-1466
[19]Peterson D M,Emmons C L,Hibbs A H.Phenolic antioxidants and antioxidant activity in pearling fractions of oat groats[J].Journal of Cereal Science,2001,33:97 -103
[20]Ji L L,Lay D,Chung E,et al.Effect of avenathramides on oxidant generation and antioxidant enzyme activity in exercised rats[J].Nutrition Research,2003,23:1579 -1590
[21]O'Moore K M,Vanlandschoot C M,Dickman J R,et al.Effect of avenanthramides on rat skeletal muscle injury induced by lengthening contraction[J].Medician and Science in Sports and Exercise,2005,37(Suppl):S466
[22]任祎,馬挺軍,牛西午,等.燕麥麩皮提取物的抗氧化與降血脂作用研究[J].中國(guó)糧油學(xué)報(bào),2008,23(6):103-106
[23]Ren Y,Yang X S,Niu X W,et al.Chemical characterization of Avenanthramides-rich extract from oat and its effect on D -galactose induced-oxidative stress in mice[J].Journal of Agricultural and Food Chemistry,2011,59(1):206 -211
[24]Liu L,Zubik L,Collins F W,et al.The antiatherogenic potential of oat phenolic compounds[J].Atherosclerosis,2004,175:39 -49
[25]Collins T.Biology of disease:endothelial nuclear factor-kB and the initiation of the atherosclerotic lesion[J].Lab Invest,1993,68:499 -508
[26]Collins T,Cybulsky M I.NF - kB:pivotal mediator or innocent bystander in atherosclerosis?[J].Journal of Clinical Investigation,2001,107:255 -264
[27]Guo W,Wise M L,Collins F W,et al.Avenanthramides,polyphenols from oats,inhibit IL-1beta-induced NF-kappaB activation in endothelial cells[J].Free Radical Biology and Medicine,2008,44:415 -429
[28]Lv N,Song M Y,Lee Y R,et al.Dihydroavenanthramide protects pancreatic beta-cells from cytokine and streptozotocin toxicity[J].Biochemical and Biophysical Research Communications,2009,387:97 -102
[29]Tanaka K,Honda M,Kuramochi T,et al.Prominent inhibitory effects of Tranilast on migration and proliferation of and collagen synthesis by vascular smooth muscle cells[J].Atherosclerosis,1994,107:179 -185
[30]Tamai H,Katoh O,Suzuki S,et al.Impact of tranilast on restenosis after coronary angioplasty:tranilast restenosis following angioplasty trial(TREAT)[J].American Heart Journal,1999,138:968 -975
[31]Suzawa H,Kikuchi S,Ichikawa K,et al.Inhibitory action of Tranilast,an anti- allergic drug,on the release of cytokines and PGE2 from human monocytes - macrophages[J].Japanese Journal of Pharmacology,1992,60:85 -90
[32]Isaji M,Miyata H,Ajisawa Y.Tranilast:a new application in the cardiovascular field as an antiproliferative drug[J].Cardiovascular Drug Reviews,1998,16:288 -299
[33]Azuma H,Banno K,Yoshimura T.Pharmacological properties of N - (3',4'- dimethoxycinnamoyl)anthranilic acid(N - 5'),a new anti- atopic agent[J].British Journal of Pharmacology,1976,58:483 -488
[34]Nie L,Wise M L,Peterson D M,et al.Avenanthramide,a polyphenol from oats,inhibits vascular smooth muscle cell proliferation and enhances nitric oxide production[J].Atherosclerosis,2006,186:260 -266
[35]Libby P.Inflammation in atherosclerosis[J].Nature,2002,420:868-874
[36]Ross R.Atherosclerosis:an inflammatory disease[J].New England Journal of Medicine,1999,340:115 -126
[37]Nie L,Wise M L,Peterson D M,et al.Mechanism by which avenanthramide- c,a polyphenol of oats,blocks cell cycle progression in vascular smooth muscle cells[J].Free Radical Biology and Medicine,2006,41:702 -708
[38]Guo W,Nie L,Wu D,et al.Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro[J].Nutrition Cancer,2010,62(8):1007 -1016
[39]Kurtz E S,Wallo W.Colloidal oatmeal:history,chemistry and clinical properties[J].Journal of Drugs in Dermatology,2007,6:167 -170
[40]Sur R,Nigam A,Grote D,et al.Avenanthramides,polyphenols from oats,exhibit anti- inflammatory and anti- itch activity[J].Archives of Dermatology Research,2008,300:569-574
[41]Heuschkel S,Wohlrab J,Schmaus G,et al.Modulation of dihydroavenanthramide release and skin penetration by 1,2 -alkanediols[J].European Journal of Pharmaceutics and Biopharmaceutics,2008,70:239 -247
[42]Ishihara A,Ohtsu Y,Iwamura H.Biosynthesis of oat avenanthramide phytoalexins[J].Phytochemistry,1999,50:237 -242
[43]Ishihara A,Ohtsu Y,Iwamura H.Induction of biosynthetic enzymes for avenanthramides in elicitor-treated oat leaves[J].Planta,1999,208:512 -518
[44]Chawade A,Sikora P,Brutigam M,et al.Development and characterization of an oat TILLING-population and identification of mutations in lignin and β-glucan biosynthesis genes[J].BMC Plant Biology,2010,10:86
[45]Matsukawa T,Isobe T,Ishihara A,et al.Occurrence of avenanthramides and hydroxycinnamoyl-CoA:hydroxyanthranilate N-h(huán)ydroxycinnamoyltransferase activity in oat seeds[J].Zeitschrift fur Naturforschung,2000,55:30 -36
[46]Bryngelsson S,Ishihara A,Dimberg L H.Levels of avenanthramidesand activity ofhydroxycinnamoyl-CoA:hydroxyanthranilate hydroxycinnamoyl transterase(HHT)in steeped or germinated oat samples[J].Cereal Chemistry,2003,80(3):356 -360
[47]Peterson D M,Dimberg L H.Avenanthramide concentrations and hydroxycinnamoyl-CoA:hydroxyanthranilate N-h(huán)ydroxycinnamoyl transferase activities in developing oats[J].Journal of Cereal Science,2008,47:101 -108
[48]Wise M L,Sreenath,H K,Skadsen R W,et al.Biosynthesis of avenanthramides on suspension cultures of oat(Avena sativa)[J].Plant cell,Tissue and Organ Culture,2009,97:81-90.
Avenanthramides and their Potential Health Benefits in Oats
Ren Yi1Ma Tingjun2Ren Guixing3
(Shanxi Agriculture University,college of agronomy1,Taigu 030801)
(Beijing University of Agriculture,college of food science2,Beijing 102206)
(Shanxi Academy of Agricultural Sciences,Institute of Crop Germplasm Resources3,Taiyuan 030031)
Oats(Avena sativa L.)are a well- known healthy food benefiting the heart mainly due to their high β - glucan content.In addition,they contain other functional compounds,such as phytic acid,flavonoids,vitamins E,and more than 20 avenanthramides.Avenanthramides are phenolic compounds uniquely produced in oats and have many beneficial properties related to human and animal health.The avenanthramides of oats have also recently been shown to exhibit anti- inflammatory,antiproliferative,and anti- itching activity,which may provide additional protection against coronary heart disease,colon cancer,and skin irritation.In this paper,the structural distribution,biosynthesis and health benefits of avenanthramides were overviewed systematically,which was helpful for developing the new products and increasing the additional value of oats.
avenanthramides,biosynthesis,health benefit
A
1003-0174(2012)01-0124-05
現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-08-A-1-6),山西省回國(guó)留學(xué)人員科研資助項(xiàng)目(2010045)
2011-3-21
任祎,女,1972年出生,副教授,谷物功能成分研究與開(kāi)發(fā)
馬挺軍,男,1972年出生,副教授,碩士生導(dǎo)師,農(nóng)產(chǎn)品加工和利用