周 偉
(淮陰師范學(xué)院數(shù)學(xué)科學(xué)學(xué)院,中國(guó) 淮安 223300)
定義1設(shè)∑P表示形如
且在E=z:0 設(shè)函數(shù)φp(a,c;z)為 (x)0=1,(x)k=x(x+1)(x+2)…(x+k-1) ,k∈N, 這里(x)k為Pochhammer記號(hào).它可以表示成超幾何函數(shù)[9-10] 定義2設(shè)f∈∑p,定義關(guān)于∑p的線性算子Lp(a,c)如下 Lp(a,c)f(z)=φp(a,c;z)f(z). 可證明線性算子Lp(a,c)滿足 (1) z(Lp(a,c)f(z))′=aLp(a+1,c)f(z)-(a+p)Lp(a,c)f(z). 定義3若f∈∑p且滿足 其中z∈E,-1≤B (2) 假定a>0,c>0且0≤B<1. (3) 其中 (4) 當(dāng) (5) 時(shí),結(jié)論是精確的. 從而有 (6) 考慮z取實(shí)值.取z=r(0≤r<1).則當(dāng)r=0時(shí),(6)式的分母是正的,從而對(duì)于所有的r(0 從而(3)式成立. 反之,由(3)式可得: 由定理1可得下面精確的系數(shù)估計(jì). 當(dāng)f(z)為(5)式時(shí),等號(hào)成立. (7) 其中Ck=kΓk+p(a)[k(1+B)+p(A-B)],k=p,p+1,…;p∈N,且Γm(a)由(4)式給出. (8) 由(5)式給出的f(z)為(7),(8)式的極值函數(shù). 從而可得(7),(8)式成立.定理得證. (1)f在圓盤z (9) 其中 (10) 且Γm(a)由(4)式給出. (2)f在圓盤z (11) 其中 (12) 且Γm(a)由(4)式給出.由(5)式給出的f(z)為這些結(jié)論的極值函數(shù). 證(1)由定義(2)式可得 (13) 則 從而可得(9)式成立. 由(13)式可得:z (2) 由(2)式得 (14) 則 由(14)式可得:z 參考文獻(xiàn): [1] SRIVASTAVA H M, PATEL J. Some subclasses of multivalent functions involving a certain linear operator[J].J Math Anal Appl, 2005,310(1):209-228. [2] LIU J L, SRIVASTAVA H M. Subclasses of meromorphically multivalent functions associated with a certain linear operator[J].Math Comput Modelling, 2004,39(1):35-44. [3] LIU J L. SRIVASTAVA H M. Classes of meromorphically multivalent functions associated with the generalized hypergeometeic function[J].Math Comput Modelling, 2004,39(1):21-34. [4] SRIVASTAVA H M, HOSSEN H M, AOUF M K. A unified presentation of some classes of meromorphically multivalent functions[J]. Comput Math Applic, 1999,38(11-12):63-70. [5] LIU J L, SRIVASTAVA H M. A linear operator and associated families of meromorphically multivalent functions [J]. J Math Anal Appl, 2001,259(2):566-581. [6] YANG D G. On meromorphic starlike multivalent functions[J].Chin Quart J Math, 1993,8(3):88-93. [7] 李書海.關(guān)于β級(jí)預(yù)星像函數(shù)的一個(gè)子類[J].陜西師范大學(xué)學(xué)報(bào):自然科學(xué)版, 1999,51(S1):49-52. [8] SRIVASTAVA H M, MISHRA A K. Applications of fractional calculus to parabolic starlike and uniformly convex functions[J]. Comput Math Appl, 2000,39(3-4):57-69. [9] DZIOK J, SRIVASTAVA H M. Classes of analytic functions associated with the generalized hypergeometric function[J]. Appl Math Comput, 1999,103(1):1-13. [10] DZIOK J, SRIVASTAVA H M. Certain subclasses of analytic associated with the generalized hypergeometric function[J].Integral Transfom Spec Funct, 2003,14(1):7-18.2 主要結(jié)論