徐衛(wèi)剛, 李永奇
老年患者術(shù)后認(rèn)知障礙炎癥機制的研究進展
徐衛(wèi)剛1, 李永奇2*
(1總政機關(guān)門診部, 北京, 100120;2第四軍醫(yī)大學(xué)西京醫(yī)院綜合診療科, 西安, 710032)
術(shù)后認(rèn)知障礙(POCD)是老年患者嚴(yán)重的術(shù)后并發(fā)癥。POCD大大增加了老年患者術(shù)后致殘和致死風(fēng)險,嚴(yán)重降低患者的生活質(zhì)量。但目前POCD具體發(fā)病機制仍不清楚,尚缺乏有效的治療方法。近些年的研究結(jié)果提示術(shù)后炎癥反應(yīng)是POCD發(fā)病的主要機制,本文將從臨床研究和基礎(chǔ)研究兩方面對POCD炎癥機制的研究進展做一綜述,并對有助于改善POCD的抗炎藥物做一介紹。
術(shù)后認(rèn)知障礙; 炎癥; 機制
隨著生活水平和醫(yī)療水平的提高,人均壽命延長,老年患者無論住院手術(shù)還是門診手術(shù)的比例均顯著增加。然而,在臨床實踐中發(fā)現(xiàn)相當(dāng)一部分老年患者術(shù)后出現(xiàn)持續(xù)性認(rèn)知損害,這一術(shù)后并發(fā)癥被命名為“術(shù)后認(rèn)知障礙(postoperative cognitive dysfunction,POCD)”[1]。POCD大大增加了老年患者術(shù)后致殘和致死風(fēng)險,嚴(yán)重降低患者的生活質(zhì)量[2],更增加了醫(yī)療和社會負(fù)擔(dān)。
目前認(rèn)為,POCD是在患者中樞神經(jīng)系統(tǒng)退化的基礎(chǔ)上,由手術(shù)和麻醉應(yīng)激誘發(fā),多因素聯(lián)合作用所致的神經(jīng)功能持續(xù)性損害;在臨床實踐中,POCD指術(shù)后出現(xiàn)的所有認(rèn)知功能的持續(xù)性損害,并不特指某一項認(rèn)知功能。POCD與術(shù)后譫妄不同,譫妄的特點是急性發(fā)作的短暫精神障礙,而POCD則是持續(xù)時間更久、更加細(xì)微的認(rèn)知改變[1]。心臟手術(shù)較非心臟手術(shù)后POCD發(fā)生率高,目前并不明確這兩種手術(shù)后的POCD是否分屬不同疾病,抑或是一種疾病的不同表現(xiàn)[3]。POCD在本文指發(fā)生在非心臟手術(shù)后的認(rèn)知損害,且該認(rèn)知損害持續(xù)時間超過術(shù)后1周。
POCD的發(fā)病機制涉及中樞神經(jīng)系統(tǒng)、內(nèi)分泌和免疫等系統(tǒng)的紊亂,但具體機制仍不十分清楚。術(shù)中或術(shù)后常常出現(xiàn)的低灌注、低氧以及微栓子形成,可能導(dǎo)致大腦的缺血性損傷,然而,這些損傷和POCD的相關(guān)性均未被循證醫(yī)學(xué)證實[1]。手術(shù)或用藥(例如阿片)可能導(dǎo)致睡眠障礙,這些是公認(rèn)的影響認(rèn)知的因素[4],然而,探討睡眠障礙與POCD關(guān)系的研究很少,并且遠(yuǎn)沒有達成一致結(jié)論[5]。在動物實驗中發(fā)現(xiàn)某些麻醉方式可以導(dǎo)致神經(jīng)變性改變[6],然而,探討麻醉與POCD關(guān)系的研究無一例外地都沒有陽性發(fā)現(xiàn)[1,7,8]。近年來在手術(shù)后炎癥反應(yīng)參與POCD的機制方面取得了一定進展,術(shù)后炎癥反應(yīng)被認(rèn)為是POCD發(fā)病的主要機制之一。本文將對老年患者POCD炎癥機制的研究進展做一綜述。
近年的大量證據(jù)支持手術(shù)創(chuàng)傷及之后的炎癥反應(yīng)參與POCD。圍術(shù)期因素產(chǎn)生的炎癥因子會引起大腦中相應(yīng)細(xì)胞發(fā)生炎癥反應(yīng)即中樞性炎癥。而這些炎癥細(xì)胞又會釋放炎癥因子、損傷性蛋白以及神經(jīng)毒素等一系列病理性蛋白。進而與外周炎癥相互作用,最終導(dǎo)致認(rèn)知和記憶相關(guān)神經(jīng)細(xì)胞受損,產(chǎn)生POCD。
研究表明,創(chuàng)傷、感染和手術(shù)等圍術(shù)期應(yīng)激都能促進炎癥因子釋放,而炎癥和免疫系統(tǒng)的激活與認(rèn)知功能下降密切相關(guān)[7]。手術(shù)患者外周和中樞神經(jīng)系統(tǒng)的炎癥因子水平顯著升高,并且其升高程度與認(rèn)知功能下降程度相關(guān)[9]。老年患者術(shù)前的炎癥水平和圍術(shù)期神經(jīng)系統(tǒng)對炎癥的敏感性均較青壯年高,主要表現(xiàn)在:(1)在短暫的外周炎癥刺激后,衰老大腦的炎癥反應(yīng)增強且持續(xù)時間更長,使自限性的術(shù)后神經(jīng)炎癥反應(yīng)轉(zhuǎn)化為持續(xù)性反應(yīng)[10],這可能與高齡和潛在的系統(tǒng)疾病增強或延長術(shù)后炎癥反應(yīng)有關(guān)。(2)炎癥因子減弱參與學(xué)習(xí)記憶的中樞神經(jīng)活動,高濃度炎癥因子導(dǎo)致神經(jīng)毒性,抑制神經(jīng)再生。老年患者的神經(jīng)系統(tǒng)對炎癥因子的敏感性較高,因此對炎癥損傷更加易感。(3)隨年齡增加,血腦屏障功能下降,外周產(chǎn)生的炎癥介質(zhì)可以通過迷走神經(jīng)傳入途徑進入中樞神經(jīng)系統(tǒng)[11]。此外,中樞炎癥反應(yīng)還與全身細(xì)胞因子釋放以及海馬、杏仁核、邊緣系統(tǒng)的神經(jīng)炎癥有關(guān)[12,13],手術(shù)損傷可在術(shù)后3d內(nèi)持續(xù)激活小膠質(zhì)細(xì)胞[6,7],還可以顯著升高海馬內(nèi)IL-1β和IL-6水平[2,3,14]。
正常認(rèn)知功能有賴于低水平免疫反應(yīng),損傷和感染相關(guān)的促炎因子水平升高已被證實參與認(rèn)知功能損害[15]。臨床研究中觀察到手術(shù)相關(guān)的組織損傷激活外周免疫系統(tǒng),促進包括細(xì)胞因子、活性氧簇(reactive oxygen species,ROS)以及內(nèi)皮素在內(nèi)的炎性介質(zhì)釋放[16?18]。并且外周炎癥因子如白細(xì)胞介素(interleukins,IL)-6和IL-1β水平也明顯升高[7,19],這些均與認(rèn)知功能損害密切相關(guān)。Fidalgo等[20]也發(fā)現(xiàn),給予脂多糖刺激造成亞臨床炎癥反應(yīng),在顯著提升血清IL-1β水平的同時明顯損害術(shù)后認(rèn)知能力。這些臨床研究結(jié)果均支持炎癥機制在POCD發(fā)生發(fā)展中的重要作用。
研究表明,炎性因子進入體循環(huán)后,通過下述途徑影響中樞神經(jīng)系統(tǒng)功能。第一,細(xì)胞因子,例如IL-1β,IL-6和腫瘤壞死因子α(tumor necrosis factor α,TNFα)等能夠在相對薄弱的室周區(qū),以主動轉(zhuǎn)運方式穿過血腦屏障[21];第二,細(xì)胞因子與血腦屏障的內(nèi)皮細(xì)胞受體結(jié)合,進一步導(dǎo)致中樞神經(jīng)系統(tǒng)內(nèi)炎性因子釋放[21];第三,外周免疫因子還可刺激迷走神經(jīng)傳入纖維,進而激活中樞炎性反應(yīng)通路[21],導(dǎo)致中樞神經(jīng)系統(tǒng)內(nèi)小膠質(zhì)細(xì)胞激活,活化的小膠質(zhì)細(xì)胞進一步合成和釋放細(xì)胞因子、ROS和其他炎癥因子[22];第四,細(xì)胞因子水平升高,可直接或通過與神經(jīng)營養(yǎng)因子以及神經(jīng)遞質(zhì)系統(tǒng)相互作用,影響神經(jīng)元的信息處理過程;有研究發(fā)現(xiàn)手術(shù)后海馬內(nèi)IL-1β升高伴隨腦源性神經(jīng)營養(yǎng)因子水平降低[23],而且,術(shù)后細(xì)胞因子水平升高可能導(dǎo)致tau的過度磷酸化以及形成與Alzheimer病密切相關(guān)的神經(jīng)纖維纏結(jié)[24]。
海馬是參與學(xué)習(xí)和記憶過程的重要的腦區(qū),且亦為促炎因子受體的高表達腦區(qū)[8]。研究發(fā)現(xiàn)海馬似乎對炎癥介導(dǎo)的損傷最為敏感[14],因此,基礎(chǔ)實驗更多關(guān)注炎癥反應(yīng)在手術(shù)后海馬功能改變中的作用。研究者采用場景恐懼記憶[8,21,23]和空間學(xué)習(xí)記憶[2]等方法,探討了手術(shù)后的海馬炎癥反應(yīng)以及海馬依賴的認(rèn)知損害;此外亦有研究者利用聽覺誘導(dǎo)的恐懼反應(yīng)來觀察手術(shù)對非海馬依賴的認(rèn)知功能的影響[22]。這些研究結(jié)果提示術(shù)后促炎因子的增高可以負(fù)面影響海馬依賴的場景恐懼記憶,但并不影響聽覺誘導(dǎo)的條件恐懼[1]。借助CX3CR1 CCR2轉(zhuǎn)基因動物觀察到海馬對骨髓源性巨噬細(xì)胞的募集是POCD發(fā)生的重要機制之一。
同臨床觀察到的炎癥因子影響認(rèn)知功能一致的是,基礎(chǔ)研究亦觀察到成年實驗動物在術(shù)后早期即出現(xiàn)認(rèn)知功能損害[7,21,23],并且其認(rèn)知功能損害和炎癥反應(yīng)在術(shù)后1周內(nèi)逐漸恢復(fù)正常。
研究發(fā)現(xiàn)圍術(shù)期應(yīng)用抗炎藥物可能有助于減少POCD的發(fā)生,也從另一個方面支持術(shù)后炎癥反應(yīng)參與了POCD。
丙泊酚(propofol)是常用的靜脈全麻藥物,我國學(xué)者對丙泊酚的抗炎癥反應(yīng)、抑制POCD的作用做了大量工作。目前認(rèn)為,丙泊酚抑制中樞神經(jīng)系統(tǒng)炎癥反應(yīng)的作用包括:抑制谷氨酸引起的星形膠質(zhì)細(xì)胞的激活;抑制星形膠質(zhì)細(xì)胞分泌炎癥因子IL-1β、IL-6和TNF-α;增強抗炎細(xì)胞因子IL-10的合成與釋放;抑制系統(tǒng)性炎癥反應(yīng)中炎癥因子的釋放和中性粒細(xì)胞的呼吸爆發(fā)與趨化作用,從而阻斷炎癥因子的傷害性作用[25]。韋氏成人記憶量表的結(jié)果表明丙泊酚可減少老年患者術(shù)后早期炎癥因子IL-6和TNF-α釋放,部分改善老年患者的術(shù)后記憶,因此丙泊酚可能是老年患者全麻用藥的較佳選擇[26]。
烏司他?。╱linastatin)是一種廣譜胰蛋白酶抑制劑,顯著抑制多種蛋白酶、糖和脂水解酶,是臨床常用的抗炎藥物[27],烏司他丁可減輕與炎癥因子和氧自由基密切相關(guān)的腦缺血再灌注損傷及神經(jīng)元凋亡,從而改善學(xué)習(xí)記憶功能[28]。其作用機制包括穩(wěn)定溶酶體膜、抑制溶酶體酶釋放,清除氧自由基及抑制多種炎癥因子釋放;阻止細(xì)胞因子、炎癥因子與白細(xì)胞的相互作用,防止過度炎癥反應(yīng)和炎癥因子瀑布樣級聯(lián)反應(yīng)等。這些基礎(chǔ)研究結(jié)果在臨床上已經(jīng)得到驗證:烏司他丁預(yù)處理可以有效抑制胰腺手術(shù)患者術(shù)后炎癥反應(yīng),降低POCD發(fā)生率[29]。
氟比洛芬(flurbiprofen)為非選擇性環(huán)氧合酶-2抑制劑,利用脂微球包裹,可靶向聚集到炎癥部位和手術(shù)切口,減少前列腺素生成,抑制促炎因子釋放;抑制核轉(zhuǎn)因子NF-κB的活化,在轉(zhuǎn)錄水平抑制IL-1β、IL-6和TNF-α水平;恢復(fù)機體正常的炎癥應(yīng)答過程[30]。氟比洛芬可以部分改善老年患者術(shù)后記憶功能,降低患者POCD的發(fā)生率[30]。另一種環(huán)氧合酶-2抑制劑美洛昔康(meloxicam)預(yù)處理,可以延緩實驗動物的認(rèn)知功能下降[31]。
右美托咪定(dexmedetomidine)是一種高效、高選擇性的α2腎上腺素能受體激動劑,具有鎮(zhèn)靜、鎮(zhèn)痛,抗焦慮、抗交感,穩(wěn)定血流動力學(xué),減少麻醉藥用量等作用。研究表明,該藥可通過降低炎癥因子過度激活,抑制神經(jīng)元的炎癥反應(yīng),使機體產(chǎn)生適度的免疫應(yīng)答,從而對POCD的發(fā)生起到一定的干預(yù)作用[32]。
綜上所述,炎癥機制是POCD發(fā)生發(fā)展的重要機制,是臨床治療和預(yù)防POCD的重要靶標(biāo)。但POCD的發(fā)生是多因素相互作用的結(jié)果,因而未來的研究應(yīng)更多關(guān)注多因素的綜合研究。
[1] Krenk L, Rasmussen LS, Kehlet H. New insights into the pathophysiology of postoperative cognitive dysfunction[J]. Acta Anaesthesiol Scand, 2010, 54(8): 951?956.
[2] Steinmetz J, Christensen KB, Lund T,. Long-term consequences of postoperative cognitive dysfunction[J]. Anesthesiology, 2009, 110(3): 548?555.
[3] Rasmussen LS. Postoperative cognitive dysfunction: incidence and prevention[J]. Best Pract Res Clin Anaesthesiol, 2006, 20(2): 315?330.
[4] Kozinn J, Mao L, Arora A,. Inhibition of glutamatergic activation of extracellular signal-regulated protein kinases in hippocampal neurons by the intravenous anesthetic propofol[J]. Anesthesiology, 2006, 105(6): 1182?1191.
[5] Gogenur I. Postoperative circadian disturbances[J]. Dan Med Bull, 2010, 57(12): B4205.
[6] Kalenka A, Gross B, Maurer MH,. Isoflurane anesthesia elicits protein pattern changes in rat hippocampus[J]. J Neurosurg Anesthesiol, 2010, 22(2): 144?154.
[7] Cibelli M, Fidalgo AR, Terrando N,. Role of interleukin-1beta in postoperative cognitive dysfunction[J]. Ann Neurol, 2010, 68(3): 360?368.
[8] Cao XZ, Ma H, Wang JK,. Postoperative cognitive deficits and neuroinflammation in the hippocampus triggered by surgical trauma are exacerbated in aged rats[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2010, 34(8): 1426?1432.
[9] Buvanendran A, Kroin JS, Berger RA,. Upregulation of prostaglandin E2and interleukins in the central nervous system and peripheral tissue during and after surgery in humans[J]. Anesthesiology, 2006, 104(3): 403?410.
[10] Terrando N, Rei Fidalgo A, Vizcaychipi M,. The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction[J]. Crit Care, 2010, 14(3): R88.
[11] Pan W, Kastin AJ. Polypeptide delivery across the blood-brain barrier[J]. Curr Drug Targets CNS Neurol Disord, 2004, 3(2): 131?136.
[12] Konsman JP, Parnet P, Dantzer R. Cytokine-induced sickness behaviour: mechanisms and implications[J]. Trends Neurosci, 2002, 25(3): 154?159.
[13] Annane D. Hippocampus: a future target for sepsis treatment[J]! Intensive Care Med, 2009, 35(4): 585?586.
[14] Price CC, Garvan CW, Monk TG. Type and severity of cognitive decline in older adults after noncardiac surgery[J]. Anesthesiology, 2008, 108(1): 8?17.
[15] Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis[J]. Brain Behav Immun, 2011, 25(2): 181?213.
[16] Giannoudis PV, Dinopoulos H, Chalidis B,. Surgical stress response[J]. Injury, 2006, 37(Suppl 5): S3?S9.
[17] Levy JH, Tanaka KA. Inflammatory response to cardiopulmonary bypass[J]. Ann Thorac Surg, 2003, 75(2): S715?S720.
[18] Karlidag R, Unal S, Sezer OH,. The role of oxidative stress in postoperative delirium[J]. Gen Hosp Psychiatry, 2006, 28(5): 418?423.
[19] Beloosesky Y, Hendel D, Weiss A,. Cytokines and C-reactive protein production in hip-fracture-operated elderly patients[J]. J Gerontol A Biol Sci Med Sci, 2007, 62(4): 420?426.
[20] Fidalgo AR, Cibelli M, White JP,. Systemic inflammation enhances surgery-induced cognitive dysfunction in mice[J]. Neurosci Lett, 2011, 498(1): 63?66.
[21] Dilger RN, Johnson RW. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system[J]. J Leukoc Biol, 2008, 84(4): 932?939.
[22] Lucin KM, Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little[J]? Neuron, 2009, 64(1): 110?122.
[23] Fidalgo AR, Cibelli M, White JP,. Peripheral orthopaedic surgery down-regulates hippocampal brain-derived neurotrophic factor and impairs remote memory in mouse[J]. Neuroscience, 2011, 190: 194?199.
[24] Tan WF, Cao XZ, Wang JK,. Protective effects of lithium treatment for spatial memory deficits induced by tau hyperphosphorylation in splenectomized rats[J]. Clin Exp Pharmacol Physiol, 2010, 37(10): 1010?1015.
[25] Milligan ED, Sloane EM, Langer SJ,. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10[J]. Mol Pain, 2005, 1: 9.
[26] Lin LC. Effect of propofol on early postoperative cognition and inflammatory cytokines in elderly patients[J]. J Clin Anesthesiol, 2011, 3(27): 254?256.
[27] Ito K, Mizutani A, Kira S,. Effect of ulinastatin, a human urinary trypsin inhibitor, on the oleic acid-induced acute lung injury in ratsthe inhibition of activated leukocytes[J]. Injury, 2005, 36(3): 387?394.
[28] Yano T, Anraku S, Nakayama R,. Neuroprotective effect of urinary trypsin inhibitor against focal cerebral ischemia-reperfusion injury in rats[J]. Anesthesiology, 2003, 98(2): 465?473.
[29] Uemura K, Murakami Y, Hayashidani Y,. Randomized clinical trial to assess the efficacy of ulinastatin for postoperative pancreatitis following pancreaticoduodenectomy[J]. J Surg Oncol, 2008, 98(5): 309?313.
[30] Esme H, Kesli R, Apiliogullari B,. Effects of flurbiprofen on CRP, TNF-alpha, IL-6, and postoperative pain of thoracotomy[J]. Intern J Med Sci, 2011, 8(3): 216?221.
[31] Kamer AR, Galoyan SM, Haile M,. Meloxicam improves object recognition memory and modulates glial activation after splenectomy in mice[J]. Eur J Anaesthesiol, 2012, 29(7): 332?337.
[32] McGrane S, Girard TD, Thompson JL,. Procalcitonin and C-reactive protein levels at admission as predictors of duration of acute brain dysfunction in critically ill patients[J]. Crit Care, 2011, 15(2): R78.
(編輯: 王雪萍)
Inflammatory mechanism of postoperative cognitive dysfunction in the elderly: a research update
XU Wei-Gang1, LI Yong-Qi2*
(1Outpatient Department, General Political Department of PLA, Beijing 100120, China;2Department of Comprehensive Diagnosis and Therapy, Xijing Hospital, the Fourth Military Medical University, Xi’an 710032, China)
Postoperative cognitive dysfunction (POCD), one of severe postoperative complications in elderly patients, greatly increases the risk of postoperative morbidity and mortality, and severely reduces the quality of life at the same time in these patients. However, since the pathogenesis of POCD remains unclear, effective treatment has not been defined yet. Recent evidences suggest that postoperative inflammation be the main mechanism for POCD. This article reviewed the inflammatory mechanisms of POCD based on basic and clinical researches, and also introduced some anti-inflammatory drugs which are beneficial to POCD treatment.
postoperative cognitive dysfunction; inflammation; mechanism
R614; R619
A
10.3724/SP.J.1264.2013.00223
2013?09?25;
2013?11?08
李永奇, E-mail: devneuro@fmmu.edu.cn