丁廣大,陳水森,石 磊,蔡紅梅,葉祥盛*
(1華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,武漢430070;2華中農(nóng)業(yè)大學(xué)作物遺傳改良國家重點實驗室,武漢430070)
磷是植物生長發(fā)育所必需的大量營養(yǎng)元素之一[1]。盡管土壤中總磷的含量可達(dá) 500~2000 mg/kg,但是其中能被植物吸收利用的有效磷的濃度往往很低[2]。主要原因是土壤中大量的磷都被其中的金屬氧化物(酸性土壤)或碳酸鹽化合物(堿性土壤)吸附固定,或者以有機(jī)磷的形態(tài)存在[3],這部分磷對植物來說都無法直接吸收利用,屬于無效磷。因此,缺磷已經(jīng)成為農(nóng)業(yè)生產(chǎn)中重要的限制因子之一。
在低磷的環(huán)境中,植物的形態(tài)、生理、生化及分子等方面會產(chǎn)生一系列的適應(yīng)性變化[4-5]。研究表明,在低磷脅迫下,植物根系形態(tài)構(gòu)型會發(fā)生變化,例如側(cè)根及根毛的長度及數(shù)量增加,根的半徑減小,根冠比增加,根系變淺[6-7]。部分植物還可以形成排根、菌根等以幫助植物吸收更多的磷[8-9]。在缺磷條件下,植物還會將大量的分泌物包括有機(jī)酸、質(zhì)子、酸性磷酸酶等通過根系釋放到根際土壤中,提高土壤中磷的生物有效性,從而改善植物的磷營養(yǎng)[5,10]。同時,為了最大程度地利用磷源,在缺磷條件下,植物不但可以將體內(nèi)的磷通過磷酸酶、核酸酶等的作用從衰老的組織器官轉(zhuǎn)移到新生組織中[11-13],還可以通過代謝調(diào)節(jié)來降低體內(nèi)磷的消耗[14-15],從而提高磷的利用效率。大量的基因參與了植物這些適應(yīng)性變化方面的調(diào)控[16-17]。在過去的十年中,研究人員利用基因芯片技術(shù)發(fā)現(xiàn)了數(shù)以百計的在缺磷條件下表達(dá)水平發(fā)生變化的基因[18-26]。最近,O'Rourke 等利用RNA-seq 技術(shù)在白羽扇豆中發(fā)現(xiàn)有2218條差異表達(dá)的序列[27]。近年來,隨著研究的不斷深入,在植物耐低磷脅迫的遺傳調(diào)控機(jī)理方面取得了較大的進(jìn)展,大量參與該過程調(diào)控的基因相繼被克隆出來,其中包括磷轉(zhuǎn)運子、轉(zhuǎn)錄因子、SPX結(jié)構(gòu)域蛋白、非編碼RNA、參與蛋白質(zhì)修飾的基因如磷酸化與去磷酸化、SUMOylation途徑、蛋白質(zhì)轉(zhuǎn)移等[16-17]。本文就以上的最新進(jìn)展作一簡要綜述。
植物通過根系中的磷轉(zhuǎn)運子基因吸收土壤中的磷,并在磷轉(zhuǎn)運子基因的介導(dǎo)下在體內(nèi)進(jìn)行磷的運轉(zhuǎn)。根據(jù)其動力學(xué)參數(shù)Km值的大小,植物磷轉(zhuǎn)運子基因可以分為兩大類,一類是高親和力轉(zhuǎn)運子,其Km值范圍在3~7 μmol/L左右,另一類是低親和力轉(zhuǎn)運子,其Km值范圍大約在50~330 μmol/L。高親和力轉(zhuǎn)運子的表達(dá)水平受低磷脅迫的影響,而低親和力磷轉(zhuǎn)運子則屬于組成型表達(dá)[3]。Muchhal等以酵母中高親和磷轉(zhuǎn)運蛋白基因PHO84的EST(expressed sequence tag)序列作為探針,首次在擬南芥中成功分離到兩個磷轉(zhuǎn)運子基因AtPT1和AtPT2[28],隨后研究人員在各種高等植物中相繼分離到許多不同的編碼磷轉(zhuǎn)運蛋白的基因[29-30],這些基因主要歸屬于四個基因家族PHT1~PHT4,對各家族基因的亞細(xì)胞定位研究發(fā)現(xiàn),PHT1家族基因主要位于質(zhì)膜上,PHT2家族基因位于葉綠體中,PHT3家族基因位于線粒體中,PHT4家族基因則主要位于高爾基體中,這表明不同的磷轉(zhuǎn)運子家族基因在植物的生長發(fā)育過程中具有不同的生物學(xué)功能[31]。
PHT1家族基因?qū)儆诟哂H和力磷轉(zhuǎn)運蛋白,主要負(fù)責(zé)植物根系磷的吸收和體內(nèi)磷的轉(zhuǎn)運,是目前研究最多的磷轉(zhuǎn)運蛋白家族[32-33]。擬南芥的PHT1家族有9 個成員[34],水稻中有 13 個[35],在其他的植物中如番茄、土豆、玉米、小麥、大麥、煙草、苜蓿等也發(fā)現(xiàn)了大量的PHT1家族同源基因[33]。對這些基因進(jìn)行序列分析發(fā)現(xiàn),它們在結(jié)構(gòu)上非常保守,由12個疏水的跨膜結(jié)構(gòu)域組成[36]。PHT1家族基因主要通過Pi/H+共運輸?shù)姆绞睫D(zhuǎn)運磷,這一過程可能受到其它離子的調(diào)控如Ca2+[37]。無論是在單子葉植物還是雙子葉植物中,大部分的PHT1家族基因都在根系中大量表達(dá)[38-42],同時在地上部組織中如葉片、花蕾也可以檢測到PHT1轉(zhuǎn)運蛋白,表明PHT1家族基因在功能上存在差異[43]。擬南芥AtPht1;5可在老葉中表達(dá),將磷在源庫之間進(jìn)行轉(zhuǎn)移。AtPht1;5超表達(dá)植株角果中磷含量大量增加,植株早熟性衰老,而當(dāng)AtPht1;5基因喪失功能時,其它受缺磷誘導(dǎo)基因的表達(dá)增強(qiáng),缺磷條件下植株地上部磷含量增加,而根系中的磷含量減少[43]。值得注意的是,PHT1家族基因除了轉(zhuǎn)運磷酸鹽,還能轉(zhuǎn)運磷酸鹽類似物,如,亞磷酸鹽[44]、砷酸鹽[45-46]。Remy等對擬南芥 Pht1;9 和 Pht1;8 磷轉(zhuǎn)運子的研究發(fā)現(xiàn),在缺磷條件下,突變體苗期吸收的砷要明顯少于野生型,而超表達(dá)植株中的砷含量顯著高于野生型[47]。有趣的是,無論是砷酸鹽還是亞磷酸鹽,都能像磷酸鹽一樣,使PHT1家族基因的表達(dá)水平下降[44-46]。這些研究為了解高等植物復(fù)雜的磷吸收和轉(zhuǎn)運機(jī)理提供了大量的分子生物學(xué)證據(jù)。
超過80%的維管開花植物都能被叢枝菌根(Arbuscular mycorrhiza,AM)真菌所侵染,植物的根系能與真菌菌絲共生形成菌根,使植物可以吸收到更多的養(yǎng)分,從而提高植物在養(yǎng)分缺乏環(huán)境下的適應(yīng)能力。研究表明,叢枝菌根可以誘導(dǎo)植物根系中高親和磷轉(zhuǎn)運基因的表達(dá)[48]。目前在很多植物中均克隆到受菌根誘導(dǎo)表達(dá)的磷轉(zhuǎn)運子,例如馬鈴薯StPT3、StPT4 和 StPT5[49],番茄 LePT3、LePT4 和LePT5[50-51],水 稻 OsPT11 和 OsPT13[52],苜 蓿MtPT4[53],大 麥 Pht1;8,玉 米 ZmPT6[54],白 楊PtPT8、PtPT10[55],大豆 GmPT10 和 GmPT10[56],矮牽牛花 PhPT4[57]以及在其它植物中的同源基因等[51,58-59]。這類磷轉(zhuǎn)運子均屬于 PHT1 基因家族,其表達(dá)水平隨著磷及菌根的存在與否而發(fā)生變化,有些磷轉(zhuǎn)運子的表達(dá)水平受菌根的誘導(dǎo),如OsPT11、MtPT4等,而有些磷轉(zhuǎn)運子尤其是位于根系表皮中的磷轉(zhuǎn)運子其表達(dá)水平則受到菌根的抑制,如OsPht1;1、MtPht1;1等,這表明植物兩條磷吸收途徑(植物根系表皮途徑以及菌根途徑)之間存在著很好的平衡[60]。
研究表明,在受菌根誘導(dǎo)磷轉(zhuǎn)運子基因的啟動子區(qū)域,存在兩個重要的順式作用元件 MYCS(TTTCTTGTTCT)和 P1BS(GNATATNC),調(diào)控這類磷轉(zhuǎn)運子的表達(dá)[61]。Chen等利用反向PCR技術(shù)分別從茄子和煙草中分離了Pht1;3、Pht1;4和Pht1;5等基因的啟動子序列,將這些啟動子序列融合GUS報告基因在煙草中表達(dá),發(fā)現(xiàn)只有在菌根存在的情況下才能檢測到GUS的活性,表明這些啟動子區(qū)域具有重要的響應(yīng)菌根的順式作用元件。隨后,Chen等通過啟動子缺失分析發(fā)現(xiàn)其中均含有一段序列TTTCTTGTTCT是Pht1;3、Pht1;4和Pht1;5等基因的轉(zhuǎn)錄激活位點,命名為 MYCS(mycorrhiza transcription factor binding sequence),在 不 含 有MYCS元件的情況下,報告基因GUS的活性受到嚴(yán)重抑制[61]。分析發(fā)現(xiàn)這些基因的啟動子區(qū)域還含有另外一個元件P1BS元件,該元件作用與MYCS相似。P1BS元件是MYB超家族轉(zhuǎn)錄因子PHR1的轉(zhuǎn)錄結(jié)合位點,在很多PSI基因的啟動子序列中出現(xiàn),如miR399、IPS1等,是植物在低磷脅迫條件下的重要應(yīng)答元件[62-63]。
轉(zhuǎn)錄因子可以結(jié)合到特定的DNA序列上,通過改變RNA聚合酶與目標(biāo)啟動子序列結(jié)合的能力調(diào)節(jié)基因的表達(dá)。轉(zhuǎn)錄因子在植物響應(yīng)低磷脅迫過程中發(fā)揮著非常重要的作用。研究人員利用基因芯片研究擬南芥低磷脅迫條件下的轉(zhuǎn)錄譜變化時,發(fā)現(xiàn)大量的轉(zhuǎn)錄因子的表達(dá)水平發(fā)生變化[18-27]。截至目前,研究人員在高等植物磷信號途徑中分離了一些重要的轉(zhuǎn)錄因子,主要為MYB家族、bHLH家族以及WRKY家族成員。在磷正常的條件下,這些轉(zhuǎn)錄因子多數(shù)起負(fù)調(diào)控的作用,而在缺磷的條件下,這些基因可以使其他受缺磷誘導(dǎo)基因的表達(dá)增強(qiáng)[16-17]。
AtPHR1是第一個在維管植物中分離的參與低磷脅迫轉(zhuǎn)錄調(diào)控的MYB超家族轉(zhuǎn)錄因子,其本身不受外界磷水平的調(diào)控。分析表明,很多 PSI(phosphate starvation induced)基因的啟動子區(qū)域都含有AtPHR1的結(jié)合位點[63]。對phr1突變體的研究發(fā)現(xiàn),當(dāng)PHR1發(fā)生功能突變時,56個響應(yīng)低磷脅迫基因的表達(dá)減弱[64]。這一結(jié)果表明很多PSI基因的表達(dá)水平受到AtPHR1的正向調(diào)控,AtPHR1可能位于低磷信號途徑的下游。水稻中分離到兩個AtPHR1的同源基因OsPHR1和 OsPHR2,研究表明OsPHR2與AtPHR1的功能相似。磷正常情況下超表達(dá)OsPHR2導(dǎo)致植株地上部磷含量增加,這一表型與在野生型和突變體中超表達(dá)AtPHR1一致[65]。近期,Ren等在甘藍(lán)型油菜中克隆了擬南芥AtPHR1的同源基因,命名為BnPHR1,分析表明BnPHR1主要在根系中表達(dá),其表達(dá)水平受外界磷水平的調(diào)控,在擬南芥及油菜中超表達(dá)BnPHR1使得高親和磷轉(zhuǎn)運子ATPT2及BnPT2的表達(dá)量顯著升高[66]。
AtMYB62是另外一個參與低磷脅迫轉(zhuǎn)錄調(diào)控的MYB超家族轉(zhuǎn)錄因子。與 AtPHR1不同的是,AtMYB62在根中的表達(dá)量很低,但在苗期葉片中受缺磷誘導(dǎo)表達(dá)[20,67]。當(dāng)植株恢復(fù)供磷時,AtMYB62的表達(dá)量迅速下降。AtMYB62參與磷信號傳導(dǎo)、高親和磷轉(zhuǎn)運與活化等相關(guān)基因的表達(dá)調(diào)控。在磷充足條件下超表達(dá)AtMYB62,植株會表現(xiàn)出與缺磷情況下相似的反應(yīng),例如主根生長受到抑制,花青素大量積累,根系酸性磷酸酶活性增加等。研究表明,AtMYB62可能通過調(diào)控赤霉素生物合成途徑中的基因影響植物體內(nèi)赤霉素的濃度,進(jìn)而調(diào)節(jié)植物對低磷的響應(yīng)[67]。
Chen等在擬南芥中分離到一個響應(yīng)低磷脅迫的負(fù)調(diào)控因子AtbHLH32,該轉(zhuǎn)錄因子具有螺旋-環(huán) - 螺旋(basic helix-loop-helix,bHLH)結(jié)構(gòu)域[68]?;蛐酒难芯拷Y(jié)果表明,AtbHLH32在根系和葉片中均受缺磷誘導(dǎo)表達(dá)[24]。對Atbhlh32的T-DNA插入突變體的研究表明,在磷充足條件下,與野生型相比突變體體內(nèi)花青素大量積累,磷含量增加,根毛數(shù)目增加,另外一些PSI基因的表達(dá)量明顯上升,例如AtPPCK1、AtPPCK2等。缺磷條件下,參與根毛形成的三個轉(zhuǎn)錄因子AtTTG1、AtGL3以及AtEGL3的突變會導(dǎo)致AtPPCK1和AtPPCK2的表達(dá)量下降。酵母雙雜交實驗顯示AtbHLH32與AtTTG1和AtGL3存在互作,因此,推測AtbHLH32可能通過干擾TTG1-bHLH-MYB復(fù)合體的形成從而影響植物響應(yīng)低磷脅迫的生化和形態(tài)學(xué)過程[68]。Yi等從水稻中分離了另一個具bHLH結(jié)構(gòu)域的轉(zhuǎn)錄因子OsPTF1,該基因在水稻根系中受缺磷誘導(dǎo)表達(dá),而在地上部組成型表達(dá)。超表達(dá)OsPTF1可以顯著提高轉(zhuǎn)基因植株的磷含量,改善轉(zhuǎn)基因植株對低磷脅迫的耐受能力[69]。利用超表達(dá)OsPTF1的轉(zhuǎn)基因植株的DNA進(jìn)行生物芯片分析發(fā)現(xiàn),有158個基因的轉(zhuǎn)錄水平受到OsPTF1的調(diào)控。同樣,通過基因芯片分析發(fā)現(xiàn)了一個編碼一個具有C2H2(cysteine-2/histidine-2)鋅指結(jié)構(gòu)的轉(zhuǎn)錄因子AtZAT6[19]。超表達(dá)AtZAT6可以抑制轉(zhuǎn)基因植株主根的生長,減少轉(zhuǎn)基因植株的磷吸收量,因此,推測AtZAT6可能通過調(diào)控植株的根構(gòu)型來調(diào)節(jié)其體內(nèi)的磷動態(tài)平衡[70]。
AtWRKY75是在擬南芥中分離的另一個受缺磷強(qiáng)烈誘導(dǎo)表達(dá)的轉(zhuǎn)錄因子,是WRKY家族中第一個被鑒定的介導(dǎo)植物營養(yǎng)脅迫和根系發(fā)育的轉(zhuǎn)錄因子[20]。當(dāng)AtWRKY75的表達(dá)受到抑制時,突變體植株花青素的積累較野生型明顯增加,低磷條件下突變體中一些PSI基因的轉(zhuǎn)錄水平明顯下降,相反,側(cè)根的長度及數(shù)量、根毛的數(shù)目卻出現(xiàn)顯著的增加[71]。Chen等在擬南芥中克隆了兩個同屬于WRKY基因家族的轉(zhuǎn)錄因子AtWRKY6和AtWRKY42。研究表明,超表達(dá)AtWRKY6的轉(zhuǎn)基因植株表現(xiàn)出與Atpho1突變體相似的表型。AtWRKY6主要作用于AtPHO1的啟動子區(qū)域。在低磷條件下,由于26S蛋白水解酶的水解作用,使得AtWRKY6結(jié)合到 AtPHO1的啟動子區(qū)域的量下降,導(dǎo)致AtPHO1的表達(dá)增強(qiáng),促進(jìn)植株根系中的磷向地上部運輸。AtWRKY42同樣作用于AtPHO1的啟動子區(qū),抑制其表達(dá)[72]。
含SPX功能域的基因在植物磷信號傳遞及磷動態(tài)平衡過程中發(fā)揮著重要作用[73]。根據(jù)植物蛋白中是否含有除SPX結(jié)構(gòu)域以外的其它結(jié)構(gòu)域,可以將這類蛋白分為四個家族,它們分別是SPX蛋白家族、SPX-EXS蛋白家族、SPX-MFS蛋白家族和SPX-RING蛋白家族。植物SPX蛋白家族只含有SPX結(jié)構(gòu)域,該家族蛋白長度一般約為280個氨基酸。擬南芥中共含有4個成員,命名為AtSPX1-AtSPX4,水稻中共含有6個成員,命名為 OsSPX1-OsSPX6[74-76]。研究表明,除了 AtSPX4 和 OsSPX4 之外,其余8個基因均受缺磷強(qiáng)烈誘導(dǎo)表達(dá)[74-76]。亞細(xì)胞定位實驗表明,AtSPX1、AtSPX2、OsSPX1和OsSPX2主要位于細(xì)胞核,AtSPX3和OsSPX4主要位于細(xì)胞質(zhì)中,AtSPX4和 OsSPX4主要位于質(zhì)膜上[74,76]。植物SPX-EXS蛋白家族除了含有SPX結(jié)構(gòu)域外,還含有EXS結(jié)構(gòu)域。PHO1家族蛋白是真核生物中唯一含有這兩個結(jié)構(gòu)域的蛋白[73]。Poirier等1991年在擬南芥中發(fā)現(xiàn)了一個突變體Atpho1,該突變體根系中的磷含量較野生型增加,而葉片中的磷含量下降,地上部生長受到抑制[77]。隨后Hamburger等克隆了該基因,分析發(fā)現(xiàn)AtPHO1同時含SPX和EXS兩個功能域,主要參與擬南芥根系木質(zhì)部無機(jī)磷的裝載[78],在擬南芥葉片中超量表達(dá)AtPHO1導(dǎo)致磷從細(xì)胞中流出并進(jìn)入木質(zhì)部導(dǎo)管,表明AtPHO1對磷的外流具有重要作用[79]。同時,研究表明AtPHO1在長距離磷脅迫信號傳導(dǎo)中發(fā)揮著重要作用[80]。擬南芥共發(fā)現(xiàn)11個AtPHO1的同源基因[81]。雖然AtPHO1;H1的功能與AtPHO1相似,但是在低磷條件下,AtPHO1;H1的轉(zhuǎn)錄水平受到AtPHR1的調(diào)控[82],而 AtPHO1的轉(zhuǎn)錄水平受兩個WRKY家族轉(zhuǎn)錄因子 AtWRKY6和 AtWRKY42的調(diào)控[72]。水稻 PHO1家族僅有 3個基因,分別是OsPHO1;1~OsPHO1;3。與擬南芥PHO1家族蛋白不同的是,水稻中的3個基因均參與磷的長距離轉(zhuǎn)運[83]。植物 SPX-MFS(major facilitator superfamily)蛋白家族是同時含有SPX和MFS兩個結(jié)構(gòu)域,是生物中最大運轉(zhuǎn)載體家族,該家族蛋白常??梢酝瑫r轉(zhuǎn)運多種離子。水稻中共有4個成員,命名為OsSPX-MFS1-OsSPX-MFS4,這些基因優(yōu)先在地上部表達(dá),其中OsSPX-MFS1和OsSPX-MFS3受缺磷抑制表達(dá),而OsSPX-MFS2受缺磷誘導(dǎo)表達(dá)[84]。植物SPX-RING(really interesting new gene)蛋白家族同時含有SPX和RING結(jié)構(gòu)域。在擬南芥和水稻中各有2個SPX-RING家族蛋白,分別是AtNLA/AtBAH1和AtNLA2,OsNLA1和OsNLA2。到目前為止,研究的比較清楚的是擬南芥AtNLA基因,該基因發(fā)生突變時,植株早衰,無法形成花青素[85-86]。最新研究表明,該基因參與植物體內(nèi)磷的動態(tài)平衡過程[87]。與野生型相比,Atnla突變體體內(nèi)的磷含量及磷吸收量顯著增加,尤其是在低氮高磷的條件下。這一表型類似于磷超累積突變體Atpho2。突變體在低氮條件下出現(xiàn)早衰可能與磷中毒有關(guān)[87]。與AtPHO2類似,AtNLA的表達(dá)受miR827的調(diào)控,在缺磷的條件下,miR827表達(dá)上升,降解AtNLA的mRNA,從而激活植株磷的吸收以及磷從根系到地上部的轉(zhuǎn)運。因此,AtNLA是植物磷吸收的負(fù)調(diào)控因子[87]。
2.2.3 專家意見的協(xié)調(diào)程度 經(jīng)過第1輪專家咨詢,26項3級指標(biāo)中,22項變異系數(shù)<0.5,占84.6%。第2輪3級指標(biāo)變異系數(shù)均<0.5。
有些RNA序列雖然不能編碼蛋白質(zhì),但是可以產(chǎn)生具有生物學(xué)功能的RNA小分子。這些非編碼的RNA基因在染色體沉默、轉(zhuǎn)錄調(diào)控、翻譯阻抑、發(fā)育控制、逆境響應(yīng)等過程中發(fā)揮著非常重要的作用[88]。Sunkar和 Zhu在篩選非生物脅迫誘導(dǎo)的microRNA時分離到了 miR399[89]。擬南芥基因組中共有六個編碼miR399的位置(a-f)。在缺磷條件下,miR399的表達(dá)量升高。在磷正常條件下,超表達(dá)miR399使轉(zhuǎn)基因植株的磷含量較野生型明顯增加,過量的磷轉(zhuǎn)移至植株地上部,導(dǎo)致植株磷中毒[64,90]。在水稻中超表達(dá) miR399的同源基因,也表現(xiàn)出類似擬南芥的磷中毒癥狀[91]。在煙草中超表達(dá)擬南芥miR399的研究結(jié)果發(fā)現(xiàn),不但轉(zhuǎn)基因植株的磷累積量增加,而且其根系釋放的酸性磷酸酶和質(zhì)子也明顯增加,而后者可以促進(jìn)土壤中有機(jī)磷的水解[92]。因此,miR399通過調(diào)節(jié)植物磷的吸收、分配與再活化等實現(xiàn)其在維持植物體內(nèi)磷動態(tài)平衡中的重要作用。在缺磷的條件下,miR399作為一個正調(diào)控因子促進(jìn)磷的吸收和從根系到地上部的分配[88]。在擬南芥中,miR399可能有三個靶基因,分別是磷轉(zhuǎn)運子基因AtPHT1;7、編碼DEAD box解旋酶的基因和E2泛素連接酶基因 AtPHO2/AtUBC24。目前研究較多的是AtPHO2/AtUBC24,該基因在磷充足條件下在植株根系中大量表達(dá),在缺磷的條件下表達(dá)量下降[64,90]。miR399通過結(jié)合到UBC24的5'非翻譯區(qū)降解該基因,在超表達(dá)miR399的轉(zhuǎn)基因植株中,UBC24的表達(dá)量明顯下降[90]。研究表明miR399與UBC24、PHR1共同參與了植物響應(yīng)低磷脅迫的長距離信號途徑[64,88,93-94]。磷充足情況下,PHO2的表達(dá)量較高,從而抑制了高親和磷轉(zhuǎn)運子Pht1;8和Pht1;9的表達(dá),使植株體內(nèi)保持正常磷水平。當(dāng)植株處于缺磷狀態(tài)時,轉(zhuǎn)錄因子PHR1可能結(jié)合到 miR399的啟動子區(qū)域,起始miR399的轉(zhuǎn)錄,miR399大量增加抑制了PHO2的表達(dá),從而使植株啟動高親和磷轉(zhuǎn)運系統(tǒng),促進(jìn)植株磷的吸收[95]。AT4/TPSI1基因家族中有很多受缺磷誘導(dǎo)表達(dá)非編碼RNA。這些基因的共同點是含有一段長22 bp的非常保守的序列,這段保守序列可以和miR399部分互補(bǔ)。研究表明AT4/IPS1可以抑制miR399對PHO2 mRNA的降解作用,對缺磷條件下植株磷的吸收起調(diào)節(jié)作用[16-17]。目前,已分離的AT4/TPSI1基因家族基因包括番茄中的LeTPSI1[96]、苜蓿中的 Mt4[97],擬南芥 At4、At4.1、At4.2 及 AtIPS1[98-100]、水稻 OsPI1[101]以及大豆中類似于Mt4的基因[98]等。最新研究表明,轉(zhuǎn)錄因子MYB超家族成員AtMYB2可以正調(diào)控miR399的表達(dá)。Baek等研究發(fā)現(xiàn)AtMYB2和miR399f一樣均受缺磷誘導(dǎo)表達(dá),而且它們在相同的組織部位表達(dá)如葉片、根系等。AtMYB2超表達(dá)植株中miR399f的表達(dá)增強(qiáng),植株磷含量增加,而在當(dāng)AtMYB2發(fā)生突變時,在供磷條件下,突變體表型較野生型相比沒有任何變化。體外凝膠阻滯實驗和體內(nèi)染色質(zhì)免疫共沉淀實驗顯示AtMYB2可以結(jié)合到miR399f的啟動子區(qū)域,進(jìn)而激活miR399f的轉(zhuǎn)錄[102]。
植物中除miR399外,研究人員還發(fā)現(xiàn)了其他的受低磷強(qiáng)烈、特異誘導(dǎo)的miRNA如miRNA778、miRNA827 和 miRNA2111 等[88,103]。miR827 的 靶基因是編碼含SPX結(jié)構(gòu)域的基因。擬南芥athmiR827可抑制植物SPX-RING家族基因AtNLA[87]。水稻也有類似報道,但其作用的靶基因不同,水稻osa-miR827的靶基因是SPX-MFS家族基因OsSPXMFS1和 OsSPX-MFS2。超表達(dá)或抑制表達(dá) osamiR827的結(jié)果顯示,osa-miR827負(fù)調(diào)控 OsSPXMFS1和 OsSPX-MFS2 的表達(dá)[84]。
蛋白質(zhì)SUMO(small ubiquitin-related modifier)化修飾是一種重要的蛋白質(zhì)翻譯后修飾。SUMOylation調(diào)控途徑中的基因參與植物對低磷響應(yīng)的調(diào)控。AtSIZ1編碼一個SUMO E3連接酶,Atsiz1突變體植株表現(xiàn)出對缺磷適應(yīng)性反應(yīng),例如主根生長停滯,側(cè)根和根毛增加,根冠比增加,植株體內(nèi)花青素大量積累等,PHR1是AtSIZ1 SUMO化的目標(biāo)基因,AtSIZ1可以促進(jìn)PHR1的SUMOylation過程,進(jìn)而影響下游受缺磷誘導(dǎo)基因的表達(dá)如AtIPS1、AtRNS1等[104]。AtPHO2編碼一個 E2泛素結(jié)合酶[64,105],在 SUMOylation 途徑中,AtSIZ1 可能與AtPHO2結(jié)合而行使功能[90]。Wang等在水稻中分離了2個AtSIZ1的同源基因OsSIZ1和OsSIZ2,分析發(fā)現(xiàn)Ossiz1突變體的主根長、不定根數(shù)目、株高、葉長及粒寬等表型均發(fā)生明顯變化,表明OsSIZ1在水稻的生長發(fā)育過程中具有重要作用[106]。
蛋白質(zhì)的磷酸化與去磷酸化普遍存在于植物體中,是調(diào)節(jié)眾多重要蛋白活性的開關(guān)。缺磷脅迫時,植物體內(nèi)會出現(xiàn)蛋白的磷酸化與去磷酸化。目前,只在番茄中克隆到了一個響應(yīng)低磷脅迫蛋白質(zhì)磷酸酶基因LePS2[107]。磷正常條件下,超表達(dá)LePS2增加了轉(zhuǎn)基因植株體內(nèi)花青素的積累及酸性磷酸酶的活性[108]。
磷轉(zhuǎn)運子的活性取決于其向質(zhì)膜的轉(zhuǎn)運過程。AtPHF1是在擬南芥中分離的第一個響應(yīng)低磷脅迫并參與蛋白質(zhì)轉(zhuǎn)運的基因,受缺磷誘導(dǎo)表達(dá)。AtPHF1主要將高親和磷轉(zhuǎn)運子蛋白從內(nèi)質(zhì)網(wǎng)中轉(zhuǎn)運至質(zhì)膜上,AtPHF1發(fā)生突變時,內(nèi)質(zhì)網(wǎng)中的AtPHT1;1磷轉(zhuǎn)運蛋白發(fā)生滯留,質(zhì)膜上的Pht1;1磷轉(zhuǎn)運蛋白減少,植株體內(nèi)磷的累積下降。AtPHF1主要在根系、花、衰老葉片中表達(dá)[109]。
除此之外,為了維持磷的平衡,缺磷時植株體內(nèi)的磷脂會水解成無機(jī)磷和甘油二脂,甘油二脂隨后轉(zhuǎn)換成半乳糖脂或硫脂,很多參與這一過程的基因受低 磷 脅 迫 誘 導(dǎo)。如 AtSQD1 和 AtSQD2[117]、AtNPC4[118]、AtNPC5[119]、AtPLDZ1 和 AtPLDZ2[120]等。另外,缺磷條件下,無論是植株體內(nèi)還是根系分泌的酶類如酸性磷酸酶、核酸酶等的活性均明顯增加,從而促進(jìn)土壤中的難溶性磷的活化及體內(nèi)磷素的再利用。研究人員在不同的植物中分離了大量編碼這類酶的基因,例如擬南芥、水稻、小麥、大麥、玉米以及豆科植物等[4,121-123]。
遺傳學(xué)通常把生物性狀分為兩類,一類是質(zhì)量性狀(qualitativetrait),另一類是數(shù)量性狀(quantitative trait)。數(shù)量性狀通常表現(xiàn)為連續(xù)的變異,受多基因的調(diào)控,易受環(huán)境影響。作物中大多數(shù)重要的農(nóng)藝性狀和經(jīng)濟(jì)性狀都屬于數(shù)量性狀,如產(chǎn)量、品質(zhì)、抗逆性等??刂茢?shù)量性狀的基因在基因組中的位置稱為數(shù)量性狀位點(quantitative trait loci,QTL)。不同植物根系及地上部對低磷脅迫的響應(yīng)表現(xiàn)出顯著的差異,缺磷條件下的根系形態(tài)構(gòu)型、根系分泌物、磷吸收累積量、干重等性狀往往受多基因的調(diào)控,表現(xiàn)出數(shù)量性狀的特征[124]。目前對磷高效相關(guān)性狀的QTL定位在很多植物中都有報道,例如擬南芥[125]、水稻[126-128]、玉米[129-131]、菜豆[132-133]、大豆[134-135]、小麥[136-137]、大麥[138]、甘藍(lán)[7,139]、白菜[140-141]、油菜[142-145]等,其定位到的QTL數(shù)量數(shù)以百計。
擬南芥是植物科學(xué)包括遺傳學(xué)和植物發(fā)育研究中的模式生物之一。在缺磷的條件下,擬南芥的主根生長受到抑制,而側(cè)根生長明顯加快。Reymond等利用由Bay-0和 Shahdara構(gòu)建的重組自交系(recombinant inbred line,RIL)群體在擬南芥的第1、3、4染色體上定位了3個控制低磷條件下根系生長的QTL,分別命名為LPR1、LPR2和LPR3,其中位于第一染色體上的QTL LPR1為主效QTL,解釋總表型變異的52%以上[125]。隨后,該研究小組通過近等基因系(near-isogenic line,NIL)將該QTL定位到第一染色體頂端2.5Mb的區(qū)間內(nèi)。隨后,Svistoonoff等通過精細(xì)定位最終克隆了該QTL,研究表明LPR1(AT1G23010)編碼一個多銅氧化酶,該基因在根系分生組織和根冠中表達(dá),在缺磷的條件下能抑制主根的生長[112]。LPR1編碼的多銅氧化酶主要位于內(nèi)質(zhì)網(wǎng)中,通過與另一個編碼P5型ATP酶的基因PDR2發(fā)生互作,共同參與調(diào)節(jié)根尖分生組織的活性,從而影響植物根系形態(tài)的建成[111]。
水稻是世界重要的糧食作物。Wissuwa等在水稻中利用由日本晴和Kasalath構(gòu)建的群體定位了一個抗低磷脅迫的QTL Pup1,該QTL位于水稻第12染色體的長臂上,能解釋總表型變異的78.8%,對含Pup1高效位點的NIL材料進(jìn)行分析發(fā)現(xiàn)其在缺磷條件下的產(chǎn)量要比對照高出一倍[126-127]。隨后,Heuer等對Pup1位點進(jìn)行了精細(xì)定位,結(jié)合已測序的水稻品種日本晴的物理圖譜,將該QTL的候選基因鎖定在第12染色體長臂上278kb的區(qū)間內(nèi)[146]。研究人員發(fā)現(xiàn)在含Pup1區(qū)段的水稻品種中,超過50%表現(xiàn)出較好的適應(yīng)逆境如干旱、磷脅迫等的能力,結(jié)果證實了Pup1在干旱或低磷脅迫條件下提高水稻產(chǎn)量的巨大潛力。因此,根據(jù)兩親本在Pup1位點的序列差異開發(fā)了用于水稻耐低磷脅迫分子輔助育種的分子標(biāo)記[147]。研究表明,Pup1在不同的遺傳背景及環(huán)境中均能發(fā)揮作用[148]。最近,Gamuyao等成功克隆了該基因,并將其命名為phosphorusstarvation tolerance 1(PSTOL1),分析表明超表達(dá)PSTOL1可以顯著提高轉(zhuǎn)基因植株在缺磷條件下的產(chǎn)量,進(jìn)一步研究表明PSTOL1通過促進(jìn)根系的生長,提高植株在缺磷條件下的磷及其它礦質(zhì)元素吸收量[149]。Pup1的克隆對于改良水稻地方品種耐低磷脅迫的能力具有重要意義。
油菜是產(chǎn)油效率最高的油料作物之一,是重要的食用油來源。為闡明油菜磷高效的遺傳特性,Yang等以由磷高、低效甘藍(lán)型油菜品種為親本構(gòu)建的重組自交系群體(命名為BE-RILs,F(xiàn)10)為材料,采用紙培試驗,調(diào)查了高磷和低磷條件下BERILs的苗期干物重、地上部及根系磷含量和根系形態(tài)等共12個性狀,共檢測到136個顯著性QTL,經(jīng)整合得到94個一致性QTL(高磷44個和低磷50個)和37個特異性QTL,包括高磷特異的QTL 10個,低磷特異的QTL 15個,穩(wěn)定表達(dá)的QTL 12個。通過與擬南芥進(jìn)行比較作圖,Yang等將擬南芥中423個與磷代謝途徑、低磷脅迫響應(yīng)、根系發(fā)育和激素傳導(dǎo)等相關(guān)基因的位置信息,用電子作圖方法定位在BE-RILs遺傳圖譜的810個基因座位上,其中67個基因位于特異性QTL區(qū)間所對應(yīng)的保守區(qū)段內(nèi),預(yù)測為 QTL 的候選基因[142-143]。Ding 等利用同一油菜群體考察了不同磷水平下成熟期產(chǎn)量及產(chǎn)量相關(guān)性狀的表型變異,并最終定位了74個顯著性QTL,同時利用與擬南芥比較作圖,在45個QTL區(qū)間內(nèi)找到了161個與目標(biāo)性狀相關(guān)的候選基因[144]。近期,Shi等利用另一個甘藍(lán)型油菜雙單倍體(double haploid,DH)群體,通過瓊脂培養(yǎng),調(diào)查了包括不同磷水平下的生物量、根系形態(tài)等5個性狀,在9條連鎖群上定位了38個顯著性 QTL[145]。Hammond等研究也表明甘藍(lán)根系發(fā)育和構(gòu)型性狀,尤其是側(cè)根的數(shù)目、長度和生長速率與磷利用效率密切相關(guān),并在甘藍(lán)C1、C3和C7染色體上定位了控制地上部干重、磷含量和磷利用效率的QTL簇[139]。甘藍(lán)型油菜(Brassica napus,AACC 2n=38)由白菜型油菜(Brassica rapa,AA 2n=20)和甘藍(lán)(Brassica oleracea,CC 2n=18)天然雜交自然加倍而來,其基因組間具有較高的同源性。通過對以上定位的QTL進(jìn)行比較分析,發(fā)現(xiàn)無論是在不同的甘藍(lán)型油菜群體之間還是在甘藍(lán)和甘藍(lán)型油菜之間,均能在特定的染色體區(qū)段定位到不同的QTL,例如在油菜C1、C3和C7染色體上檢測到的磷高效相關(guān)QTL可能與甘藍(lán)中檢測到的磷效率相關(guān)QTL簇位于同一染色體區(qū)段[139,142]。這些 QTL信息和候選基因為解析油菜適應(yīng)低磷脅迫的機(jī)制奠定了基礎(chǔ),也為下一步定位和克隆這些基因提供了大量的信息。
磷礦屬于不可再生資源,隨著農(nóng)業(yè)投入的加大,磷礦資源的耗竭不斷加劇。因此,單純靠增加磷肥投入無法實現(xiàn)現(xiàn)代農(nóng)業(yè)的穩(wěn)定發(fā)展以及磷礦資源的可持續(xù)利用。研究磷脅迫條件下植物吸收利用磷的生理與遺傳機(jī)理,通過傳統(tǒng)的遺傳育種或現(xiàn)代分子生物學(xué)手段改良作物的磷利用效率,被認(rèn)為是農(nóng)業(yè)生產(chǎn)中最經(jīng)濟(jì)最有效的解決土壤有效磷缺乏的方法之一[150-151]。總的來說,隨著研究的不斷深入,人們對植物耐低磷脅迫的認(rèn)識無論是在生理還是在遺傳等方面都得到了極大的提升,這些研究進(jìn)展具有廣闊的應(yīng)用前景。一方面,在磷脅迫條件下,植物在表型形態(tài)、生理生化及分子遺傳等方面會產(chǎn)生一系列的變化,然而變化最快的是基因表達(dá),尤其是位于缺磷信號傳導(dǎo)上游的基因,例如前文中提到的基因IPS1,因此,以這類基因為起點進(jìn)行研究,可以相對容易地找到植物根系中缺磷信號感知的原點,解析植物響應(yīng)低磷脅迫的信號通路。另一方面,有些基因如SPX家族基因,它們受缺磷特異誘導(dǎo),且在缺磷條件下持續(xù)性表達(dá),當(dāng)恢復(fù)供磷時,其表達(dá)量迅速下降。因此,這類基因可以作為評估植物磷缺乏狀況的理想標(biāo)記基因,應(yīng)用于植物磷缺乏狀況的分子診斷當(dāng)中[19,152]。隨著一大批與植物磷吸收利用相關(guān)基因的克隆,人們看到了通過遺傳手段改良作物磷效率的希望,然而這離作物磷高效品種的培育還有很長的一段路要走。另外,磷是植物所必需的大量營養(yǎng)元素,其吸收利用的遺傳調(diào)控機(jī)理十分復(fù)雜,到目前為止關(guān)于植物耐低磷脅迫的遺傳研究大量集中在擬南芥、水稻等模式植物當(dāng)中,在其它的復(fù)雜基因組作物如玉米、大豆、油菜、小麥等中的報道相對較少,因此,對于作物磷高效的遺傳調(diào)控機(jī)制還有很多未解之謎。然而可喜的是隨著功能基因組時代的來臨,在不久的將來關(guān)于作物磷高效的遺傳與分子機(jī)理研究必將取得新的更大的進(jìn)展。
[1] Marschner H.Mineral nutrition of higher plants(2nd Edn)[M].London:Academic Press,1995.
[2] Hinsinger P.Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review[J].Plant Soil,2001,237:173-195.
[3] Schachtman D P,Reid R J,Ayling S M.Phosphorus uptake by plants:From soil to cell[J].Plant Physiol.,1998,116:447-453.
[4] Fang Z Y,Shao C,Meng Y J et al.Phosphate signaling in Arabidopsis and Oryza sativa[J].Plant Sci.,2009,176:170-180.
[5] Vance C P,Uhde-Stone C,Allan D L.Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource[J].New Phytol.,2003,157:423-447.
[6] Lynch J P. Root phenes for enhanced soil exploration and phosphorus acquisition:tools for future crops[J].Plant Physiol.,2011,156:1041-1049.
[7] Hammond J P,White P J.Sugar signaling in root responses to low phosphorus availability[J].Plant Physiol.,2011,156:1033-1040.
[8] Cheng L,Bucciarelli B,Shen J et al.Update on lupin cluster roots.Update on white lupin cluster root acclimation to phosphorus deficiency[J].Plant Physiol.,2011,156:1025-1132.
[9] Burleigh S H,Cavagnaro T,Jakobsen I.Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition[J].J.Exp.Bot.,2002,53:1591-1601.
[10] Zhang H W,Huang Y,Ye X S,Xu F S.Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus conditions[J].Sci.China Life Sci.,2010,53:709-717
[11] Smith F W,Jackson W A,van den Berg P J.Internal phosphorus flows during development of phosphorus stress[J].Aust.J.Plant Physiol.,1990,17:451-464.
[12] Bariola P A,Howard C J,Taylor C B et al.The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation[J].Plant J.,1994,6:673-685.
[13] Duff S M G,Plaxton W C,Lefebvre D D.Phosphate-starvation response in plant cells:De novo synthesis and degradation of acid phosphatases[J].Proc.Natl.Acad Sci.USA,1991,88:9538-9542.
[14] Wasaki J,Shinano T,Onishi K et al.Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves[J].J.Exp.Bot.,2006,57:2049-2059.
[15] Plaxton W C,Tran H T.Metabolic adaptations of phosphatestarved plants[J].Plant Physiol.,2011,156:1006-1015.
[16] Yang X J,F(xiàn)innegan P M.Regulation of phosphate starvation responses in higher plants[J].Ann.Bot.,2010,105:513-526.
[17] Chiou T J,Lin S I.Signaling network in sensing phosphate availability in plants[J].Ann.Rev.Plant Biol.,2011,62:185-206.
[18] Hernández G,Ramírez M,Valdés-López O et al.Phosphorus stress in common bean:root transcript and metabolic responses[J].Plant Physiol.,2007,144:752-767.
[19] Hammond J P,Bennett M J,Bowen H C et al.Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants[J].Plant Physiol.,2003,132:578-596.
[20] Misson J,Raghothama KG,Jain A et al.A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation[J].Proc.Natl.Acad.Sci.USA,2005,102:11934-11939.
[21] MorcuendeR, BariR, Gibon Y etal. Genome-wide reprogramming ofmetabolism and regulatory networks of Arabidopsis in response to phosphorus[J].Plant Cell.Environ.,2007,30:85-112.
[22] Müller R,Morant M,Jarmer H et al.Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism[J].Plant Physiol.,2007,143:156-171.
[23] Nilsson L,Müller R,Nielsena T H.Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation[J].Physiol.Plantarum.,2010,139:129-143.
[24] Wu P,Ma L,Hou X et al.Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves[J].Plant Physiol.,2003,132:1260-1271.
[25] Uhde-Stone C,Zinn K E,Ramirez-Yá?ez M et al.Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency[J].Plant Physiol.,2003,131:1064-1079.
[26] Wasaki J,Yonetani R,Kuroda S et al.Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots[J].Plant Cell Environ.,2003,26:1515-1523.
[27] O'Rourke J A,Yang S S,Miller S S et al.An RNA-Seq transcriptome analysis of Pi deficient white lupin reveals novel insights into phosphorus acclimation in plants[J]. Plant Physiol.,2012,doi:10.1104/pp.112.209254.
[28] Muchhal U S, Pardo J M, Raghothama K G. Phosphate transporters from the higher plant Arabidopsis thaliana[J].Proc.Natl.Acad.Sci.USA,1996,93:10519-10523.
[29] 王萍,陳愛群,余玲,徐國華.植物磷轉(zhuǎn)運蛋白基因及其表達(dá)調(diào)控的研究進(jìn)展[J].植物營養(yǎng)與肥料學(xué)報,2006,12(4):584-591.Wang P,Chen A Q,Yu L,Xu G H.Advance of plant phosphate transporter genes and their regulated expression[J].Plant Nutr.Fert.Sci.,2006,12(4):584-591.
[30] Lin W Y,Lin S I,Chiou T J.Molecular regulators of phosphate homeostasis in plants[J].J.Exp.Bot.,2009,60:1427-1438.
[31] Rausch C,Bucher M.Molecular mechanisms of phosphate transport in plants[J].Planta,2002,216:23-37.
[32] Bucher M.Functional biology of plant phosphate uptake at root and mycorrhiza interfaces[J].New Phytol.,2007,173:11-26.
[33] Nussaume L,Kanno S,Javot H et al.Phosphate import in plants:focus on the PHT1 transporters[J].Front Plant Sci.,2011,2:83.
[34] Mudge S R,Rae A L,Diatloff E et al.Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis[J].Plant J.,2002,31:341-353.
[35] Goff S A,Ricke D,Lan T H et al.A draft sequence of the rice genome(Oryza sativa L.ssp japonica)[J].Science,2002,296:92-100.
[36] Raghothama K G.Phosphate acquisition[J].Ann.Rev.Plant Physiol.Plant Mol.Biol.,1999,50:665-693.
[37] Liu T Y,Aung K,Tseng C Y et al.Vacuolar Ca2+/H+transport activity is required for systemic phosphate homeostasis involving shoot-to-rootsignaling in Arabidopsis[J]. Plant Physiol.,2011,156:1176-1189.
[38] Jia H F,Ren H Y,Gu M et al.Phosphate transporter gene,OsPht1;8,is involved in phosphate homeostasis in rice[J].Plant Physiol.,2011,156(3):1164-1175.
[39] Bayle V,Arrighi J F,Creff A et al.Arabidopsis thaliana highaffinity phosphate transporters exhibit multiple levels of posttranslational regulation[J].Plant Cell,2011,23:1523-1535.
[40] Shin H,Shin H S,Dewbre G R et al.Phosphate transport in Arabidopsis:Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low-and high-phosphate environments[J].Plant J.,2004,39:629-642.
[41] Ai P H,Sun S B,Zhao J N et al.Two rice phosphate transporters,OsPht1;2 and OsPht1;6,have different functions and kinetic properties in uptake and translocation[J].Plant J.,2009,57:798-809.
[42] Sun S,Gu M,Cao Y et al.A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in Pi-replete rice[J].Plant Physiol.,2012,159:1571-1581.
[43] Nagarajan V K,Jain A,Poling M D et al.Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs,and influences the interaction between phosphate homeostasis and ethylene signaling[J].Plant Physiol.,2011,156:1149-1163.
[44] Varadarajan D K, Karthikeyan A S, Matilda P D et al.Phosphite,an analog of phosphate,suppresses the coordinated expression of genes under phosphate starvation[J]. Plant Physiol.,2002,129:1232-1240.
[45] Wu Z,Ren H,McGrath S P et al.Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice[J].Plant Physiol.,2011,157:498-508.
[46] Catarecha P,Segura M D,F(xiàn)ranco-Zorrilla J M et al.A mutant of the arabidopsis phosphate trans-porter PHT1;1 displays enhanced arsenic accumulation[J].Plant Cell,2007,19:1123-1133.
[47] Remy E,Cabrito T R,Batista R A et al.The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation[J].New Phytol.,2012,195:356-371.
[48] Smith S E,Jakobsen I,Grφnlund M et al.Roles of arbuscular mycorrhizas in plant phosphorus nutrition:interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J].Plant Physiol.,2011,156(3):1050-1057.
[49] Rausch C,Daram P,Brunner S et al.A phosphate transporter expressed in arbuscule-containing cells in potato[J].Nature,2001,414:462-466.
[50] Nagy R,Drissner D,Amrhein N et al.Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated[J].New Phytol.,2009,181(4):950-959.
[51] Chen A,Hu J,Sun S et al.Conservation and divergence of both phosphate-and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species[J].New Phytol.,2007,173(4):817-831.
[52] Paszkowski U, Kroken S, Roux C et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J].Proc.Natl.Acad.Sci.USA,2002,99:13324-13329.
[53] Harrison M J,Dewbre G R,Liu J.A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi[J].Plant Cell,2002,14(10):2413-2429.
[54] Glassop D,Smith S E,Smith F W.Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots[J].Planta,2005,222(4):688-698.
[55] Loth-Pereda V,Orsini E,Courty P E et al.Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa[J].Plant Physiol.,2011,156:2141-2154.
[56] Tamura Y, Kobae Y, Mizuno T et al. Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean[J].Biosci.Biotechnol.Biochem.,2012,76:309-313.
[57] Tan Z,Hu Y,Lin Z.PhPT4 is a mycor rhizal-phosphate transporter suppressed by lysophosphatidylcholine in petunia roots[J].Plant Mol.Biol.Rep.,2012,30:1480-1487.
[58] Shu B,Xia R X,Wang P.Differential regulation of Pht1 phosphate transporters from trifoliate orange(Poncirus trifoliata L.Raf)seedlings[J].Sci.Hortic.,2012,146:115-123.
[59] Wegmüller S,Svistoonoff S,Reinhardt D et al.A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia[J].Plant J.,2008,54:1115-1127.
[60] Javot H,Pumplin N,Harrison M J.Phosphate in the arbuscular mycorrhizal symbiosis:transport properties and regulatory roles[J].Plant Cell Environ.,2007,30:310-322.
[61] Chen A,Gu M,Sun S et al.Identification of two conserved cisacting elements,MYCS and P1BS,involved in there regulation of mycorrhiza-activated phosphate transporters in eudicot species[J].New Phytol.,2011,189:1157-1169.
[62] Sobkowiak L,Bielewicz D,Malecka EM et al.The role of the P1BS element containing promoter-driven genes in Pi transport and homeostasis in plants[J].Front Plant Sci.,2012,3:58.
[63] Rubio V,Linhares F,Solano R et al.A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J].Genes Dev.,2001,15:2122-2133.
[64] Bari R,Pant B D,Stitt M et al.PHO2,microRNA399,and PHR1 define a phosphate-signaling pathway in plants[J].Plant Physiol.,2006,141:988-999.
[65] Zhou J,Jiao F C,Wu Z C et al.OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J].Plant Physiol.,2008,146:1673-1686.
[66] Ren F,Guo Q Q,Chang L L et al.Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation[J]. PLoS One,2012,7(8):e44005.doi:10.1371/journal.pone.0044 005.
[67] Devaiah B N,Madhuvanthi R,Karthikeyan A S et al.Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis[J].Mol.Plant,2009,2:43-58.
[68] Chen Z H,Nimmo G A,Jenkins G I et al.BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis[J].Biochem.J.,2007,405:191-198.
[69] Yi K,Wu Z,Zhou J et al.OsPTF1,a novel transcription factor involved in tolerance to phosphate starvation in rice[J].Plant Physiol.,2005,138:2087-2096.
[70] Devaiah B N,Nagarajna V K,Raghothama K G.Phosphate homeostasis and root development in Arabidopsis are synchronized by the zing finger transcription factor ZAT6[J].Plant Physiol.,2007,145:147-159.
[71] Devaiah B N,Karthikeyan A S,Raghothama K G.WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis[J].Plant Physiol.,2007,143:1789-1801.
[72] Chen Y F,Li L Q,Xu Q et al.The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis[J].Plant Cell,2009,21:3554-3566.
[73] Secco D,Wang C,Arpat B A et al.The emerging importance of the SPX domain-containing proteins in phosphate homeostasis[J].New Phytol.,2012,193:842-851.
[74] Duan K,Yi K,Dang L et al.Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation[J].Plant J.,2008,54:965-975.
[75] Wang C,Ying S,Huang H et al.Involvement of OsSPX1 in phosphate homeostasis in rice[J].Plant J.,2009,57:895-904.
[76] Wang Z,Hu H,Huang H et al.Regulation of OsSPX1 and OsSPX3 on expression of OsSPX domain genes and Pi-starvation signaling in rice[J].J.Integr.Plant Biol.,2009,51:663-674.
[77] Poirier Y,Thoma S,Somerville C et al.A mutant of Arabidopsis deficient in xylem loading of phosphate[J].Plant Physiol.,1991,97:1087-1093.
[78] Hamburger D,Rezzonico E,MacDonald-Comber P.Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem[J].Plant Cell,2002,14:889-902.
[79] Stefanovic A,Arpat AB,Bligny R et al.Over-expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux[J].Plant J.,2011,66:689-699.
[80] Rouached H,Stefanovic A,Secco D et al.Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis[J].Plant J.,2011,65:557-570.
[81] Wang Y,Ribot C,Rezzonico E et al.Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis[J].Plant Physiol.,2004,135:400-411.
[82] Stefanovic A,Ribot C,Rouached H et al.Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to shoot,and are regulated by phosphate deficiency via distinct pathways[J].Plant J.,2007,50:982-994.
[83] Secco D,Baumann A,Poirier Y.Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons[J].Plant Physiol.,2010,152:1693-1704.
[84] Lin S I,Santi C,Jobet E et al.Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation[J].Plant Cell Physiol.,2010,51:2119-2131.
[85] Peng M,Hannam C,Gu H et al.A mutation in NLA,which encodes a RING-type ubiquitin ligase,disrupts the adaptability of Arabidopsis to nitrogen limitation[J].Plant J.,2007,50:320-337.
[86] Peng M,Hudson D,Schofield A et al.Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene[J].J.Exp.Bot.,2008,59:2933-2944.
[87] Kant S,Peng M,Rothstein S J.Genetic regulation by NLA and MicroRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis[J].PLoS Gen.,2011,7:e1002021.
[88] Kuo H F,Chiou T J.The role of microRNAs in phosphorus deficiency signaling[J].Plant Physiol.,2011,156:1016-1024.
[89] Sunkar R,Zhu J K.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J].Plant Cell,2004,16:2001-2019.
[90] Fujii H,Chiou T J,Lin S I et al.A miRNA involved in phosphate-starvation response in Arabidopsis[J].Curr.Biol.,2005,15:2038-2043.
[91] Hu B,Zhu C,Li F et al.LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice[J].Plant Physiol.,2011,156:1101 -1115.
[92] Gao N,Su Y,Min J et al.Transgenic to mato over-expressing ath-miR399d has enhanced phosphorus accumulation through increased acidphosphatase and proton secretion aswellas phosphate transporters[J].Plant Soil,2010,334:123-136.
[93] Lin S, ChiangS, Lin W etal. Regulatory network of microRNA399 and PHO2 by systemic signaling[J]. Plant Physiol.,2008,147(2):732-746.
[94] Pant B D,Buhtz A,Kehr J et al.MicroRNA399 is a longdistance signal for the regulation of plant phosphate homeostasis[J].Plant J.,2008,53:731-773.
[95] Doerner P.Phosphate starvation signaling:a threesome controls systemic P(i)homeostasis[J].Curr.Opin.Plant Biol.,2008,11(5):536-540.
[96] Liu C M,Muchhal U S, Raghothama K G.Differential expression of TPS11,a phosphate starvation-induced gene in tomato[J].Plant Mol.Biol.,1997,33:867-874.
[97] Burleigh S H,Harrison M J.Characterization of the Mt4 gene from Medicago truncatula[J].Gene,1998,216:47-53.
[98] Burleigh S H,Harrison M J.The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to shoots[J].Plant Physiol.,1999,119:241-248.
[99] Martín A C,Del Pozo J C,Iglesias J et al.Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis[J].Plant J.,2000,24:559-567.
[100] Shin H,Shin H S,Chen R J et al.Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation[J].Plant J.,2006,45:712-726.
[101] Wasaki J,Yonetani R,Shinano T et al.Expression of the OsPI1 gene,cloned from rice roots using cDNA microarray,rapidly responds to phosphorus status[J].New Phytol.,2003,158:239-248.
[102] Baek D,Kim M C,Chun H J et al.Regulation of miR399f transcription by AtMYB2 affects phosphate-starvation responses in Arabidopsis[J].Plant Physiol.,2012,doi:10.1104/pp.112.205922.
[103] Zhao X,Liu X,Guo C et al.Identification and characterization of microRNAs from wheat(Triticum aestivum L.)under phosphorus deprivation[J].J.Plant Biochem.Biotechnol.,2012,22(1):113-123.
[104] Miura K,Rus A,Sharkhuu A et al.The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses[J].Proc.Natl.Acad Sci.USA,2005,102:7760-7765.
[105] Aung K, Lin S I, Wu C C et al. pho2, a phosphate overaccumulator,is caused by a nonsense mutation in a microRNA399 target gene[J].Plant Physiol.,2006,141:1000-1011.
[106] Wang H,Makeen K,Yan Y et al.OsSIZ1 regulates the vegetative growth and reproductive development in rice[J].Plant Mol.Biol.Rep.,2011,29:411-417.
[107] Baldwin J C,Karthikeyan A S,Raghothama K G.LEPS2,a phosphorus starvation-induced novel acid phosphatase from tomato[J].Plant Physiol.,2001,125:728-737.
[108] Baldwin J C,Karthikeyan A S,Cao A Q et al.Biochemical and molecular analysis of the LePS2;1:a phosphate starvation induced protein phosphatase gene from tomato[J].Planta,2008,228:273-280.
[109] González E,Solano R,Rubio V et al.Phosphate transporter traffic facilitator1 is a plant-specific SEC12-related protein that enables the endoplasmicreticulum exitofa high-affinity phosphate transporter in Arabidopsis[J].Plant Cell,2005,17:3500-3512.
[110] Ticconi C A,Delatorre C A,Lahner B et al.Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development[J].Plant J.,2004,37:801-814.
[111] Ticconi C A,Lucero R D,Sakhonwasee S et al.ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability[J].Proc.Natl.Acad Sci.USA,2009,106:14174-14179.
[112] Svistoonoff S,Creff A,Reymond M et al.Root tip contact with low-phosphate media reprograms plant root architecture[J].Nat.Genet.,2007,39:792-796.
[113] Jain A,Poling M D,Karthikeyan A S et al.Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis[J].Plant Physiol.,2007,144:232-247.
[114] Zakhleniuk O V,Raines C A,Lloyd J C.pho3:a phosphorusdeficient mutant of Arabidopsis thaliana(L.)Heynh[J].Planta,2001,212:529-534.
[115] Lloyd J C, Zakhleniuk O V. Responses of primary and secondarymetabolism to sugaraccumulation revealed by microarray expression analysis of the Arabidopsis mutant,pho3[J].J.Exp.Bot.,2004,55:1221-1230.
[116] Lei M,Liu Y,Zhang B et al.Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis[J].Plant Physiol.,2011,156:1116-1130.
[117] Yu B,Xu C,Benning C.Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth[J].Proc.Natl.Acad Sci.USA,2002,99:5732-5737.
[118] NakamuraY, AwaiK, Masuda T etal. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis[J].J.Biol.Chem.,2005,280:7469-7476.
[119] Gaude N,Nakamura Y,Scheible W et al.Phospholipase C5(NPC5)is involved in galactolipid accumulationduring phosphate limitation in leaves of Arabidopsis[J].Plant J.,2008,56:28-39.
[120] Li M,Welti R,Wang X.Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation.Roles of phospholipases DZ1 and DZ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerolaccumulation in phosphorusstarved plants[J].Plant Physiol.,2006,142:750-761.
[121] Dionisio G,Madsen C K,Holm P B et al.Cloning and characterization of purple acid phosphatase phytases from wheat,barley,maize,and rice[J].Plant Physiol.,2011,156:1087-1100.
[122] Li C,Gui S,Yang T et al.Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis[J].Ann.Bot.,2012,109(1):275-285.
[123] Robinson W D,Park J,Tran H T et al.The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana[J].J.Exp.Bot.,2012,63:6531-6542.
[124] Vance C P.Quantitative trait loci,epigenetics,sugars,and microRNAs:quaternaries in phosphate acquisition and use[J].Plant Physiol.,2010,154:582-588.
[125] Reymond M,Svistoonoff S,Loudet O et al.Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana[J].Plant Cell Environ.,2006,29:115-125.
[126] Wissuwa M,Yano M,Ae N.Mapping of QTLs for phosphorusdeficiency tolerance in rice(Oryza sativa L.)[J].Theor.Appl.Genet.,1998,97:777-783.
[127] Wissuwa M,Wegner J,Ae N et al.Substitution mapping of Pup1:a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil[J].Theor.Appl.Genet.,2002,105:890-897.
[128] Ming F,Zheng X W, Mi G H et al. Identification of quantitative trait loci affecting tolerance to low phosphorus in rice(Oryza Sativa L.)[J].Chin.Sci.Bull.,2000,45:520-524.
[129] Zhu J M,Kaeppler S M,Lynch J P.Mapping of QTL controlling root hair length in maize(Zea mays L.)under phosphorus deficiency[J].Plant Soil,2005,270:299-310.
[130] Chen J,Xu L,Cai Y et al.QTL mapping of phosphorus efficiency and relative biologic characteristics in maize(Zea mays L.)at two sites[J].Plant Soil,2008,313:251-266.
[131] Hochholdinger F,Tuberosa R.Genetic and genomic dissection of maize root development and architecture[J].Curr.Opin.Plant Biol.,2009,12:172-177.
[132] Liao H,Yan X L,Rubio G et al.Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean[J].Funct.Plant Biol.,2004,31:959-970.
[133] Yan X L,Liao H,Beebe S E et al.QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean[J].Plant Soil,2004,265:17-29.
[134] Li Y D,Wang Y J,Tong Y P et al.QTL Mapping of phosphorus deficiency tolerance in soybean(Glycine max L.Merr.)[J].Euphytica,2005,142:137-142.
[135] Liang Q,Cheng X,Mei M et al.QTL analysis of root traits as related to phosphorus efficiency in soybean[J].Ann.Bot.,2010,106:223-234.
[136] Su J Y,Xiao Y M,Li M et al.Mapping QTLs for phosphorusdeficiency tolerance at wheat seedling stage[J].Plant Soil,2006,281:25-36.
[137] Su J Y,Zheng Q,Li H W et al.Detection of QTL for phosphorus use efficiency in relation to agronomic performance in wheatgrown underphosphorussufficientand limited conditions[J].Plant Sci.,2009,176:824-836.
[138] Gahoonia T S,Nielsen N E.Root traits as tools for creating phosphorus efficient crop varieties[J].Plant Soil,2004,260:47-57.
[139] Hammond J P,Broadley M R,White P J et al.Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits[J].J.Exp.Bot.,2009,60:1953-1968.
[140] Zhao J J,Jamar D C L,Lou P et al.Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa[J].Plant Cell Environ.,2008,31:887-900.
[141] Hammond J P,Mayes S,Bowen H C et al.Regulatory hotspots are associated with plant gene expression under varying soil phosphorus(P)supply in Brassica rapa[J].Plant Physiol.,2011,156:1230-1241.
[142] Yang M,Ding G D,Shi L et al.Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus[J].Theor.Appl.Genet.,2010,121:181-193.
[143] Yang M,Ding G D,Shi L et al.Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus[J].Plant Soil,2011,339:97-111.
[144] Ding G,Zhao Z,Liao Y et al.Quantitative trait loci for seed yield and yield-related traits,and their responses to reduced phosphorus supply in Brassica napus[J].Ann.Bot.,2012,109:747-759.
[145] Shi L,Shi T,Broadley M R et al.High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities [J]. Ann. Bot., 2012, doi:10.1093/aob/mcs245.
[146] Heuer S,Lu X,Chin J H et al.Comparative sequence analyses of themajor quantitative trait locus Phosphorus uptake 1(Pup1)reveal a complex genetic structure[J].Plant Biotechnol.J.,2009,7:456-471.
[147] Chin J H,Haefele S M,Gamuyao R et al.Development and application of gene based markers for the major rice QTL phosphorus uptake 1[J].Theor.Appl.Genet.,2010,120:1073-1086.
[148] Chin J H,Gamuyao R,Dalid C et al.Developing rice with high yield under phosphorus deficiency:Pup1 sequence to application[J].Plant Physiol.,2011,156:1202-1216.
[149] Gamuyao R,Chin J H,Pariasca-Tanaka J et al.The protein kinase Pstol1 from traditionalrice confers tolerance of phosphorus deficiency[J].Nature,2012,488:535-539.
[150] Fageria N K,Baligar V C,Li Y C.The role of nutrient efficient plants in improving crop yields in the twenty first century[J].J.Plant Nutr.,2008,31:1121-1157.
[151] Yan X,Wu P,Ling H et al.Plant nutriomics in China:an overview[J].Ann.Bot.,2006,98:473-482.
[152] Yang G,Ding G,Shi L et al.Characterization of phosphorus starvation-induced gene BnSPX3 in Brassica napus[J].Plant Soil,2012,350:339-351.