鮑俊艷,高春霞,葛志英
(1.河北大學(xué) 數(shù)學(xué)與計(jì)算機(jī)學(xué)院,河北 保定 071002;2.河北大學(xué) 電子信息工程學(xué)院,河北 保定 071002;3.河北工程大學(xué) 理學(xué)院,河北 邯鄲 056038)
隨著科學(xué)技術(shù)的迅速發(fā)展,在生物、物理及工程應(yīng)用等技術(shù)領(lǐng)域出現(xiàn)了具有脈沖影響的非線性微分系統(tǒng)的數(shù)學(xué)模型.這種數(shù)學(xué)模型描述的是在某個(gè)時(shí)刻狀態(tài)會(huì)突然發(fā)生改變的動(dòng)力過程,因此脈沖微分方程更具有一般性和應(yīng)用性,吸引了國內(nèi)外很多學(xué)者從事脈沖微分方程的研究工作,并得到了很多脈沖微分方程解的穩(wěn)定性及存在性結(jié)果[1-10].
另外,近年來集值微分方程的理論得到了快速發(fā)展.Wang等學(xué)者在文獻(xiàn)[11-14]中得到了集值微分系統(tǒng)解的存在性結(jié)果.Bhaskar及其他學(xué)者得到了集值微分系統(tǒng)解的穩(wěn)定性結(jié)果[15-19].然而,Bao在文獻(xiàn)[15]中利用Lyapunov直接方法得到的嚴(yán)格穩(wěn)定性結(jié)果在實(shí)際應(yīng)用中有一定的困難,因?yàn)長yapunov函數(shù)導(dǎo)數(shù)的定號(hào)性條件要求較強(qiáng).本文采用Lyapunov函數(shù)和比較原理,在較弱的條件下得到了脈沖交互集值微分系統(tǒng)的嚴(yán)格穩(wěn)定性,發(fā)展了文獻(xiàn)[15]中的方法,并克服了其在應(yīng)用中存在的困難.
[1]LAKSHMIKANTHAM V,LIU X Z.Stability criteria for impulsive differential equations in terms of two measures[J].J Math Anal Appl,1989,137:591-604.
[2]SHEN Jihai.Razumikhin techniques in impulsive functional differential equations[J].Nonlinear Anal,1999,36:119-130.
[3]WANG Peiguang,LIAN Hairong.Stability in terms of two measures of impulsive integro-differential equations via variation of the Lyapunov method[J].Appl Math Comput,2006,177:387-395.
[4]WANG Peiguang,LIU Xia.φ0-Stability of hybrid impulsive dynamic systems on time scales[J].J Math Anal Appl,2007,334:1220-1231.
[5]AHMAD B,SIVASUNDARAM S.Dynamics and stability of impulsive hybrid setvalued integro-differential equations with delay[J].Nonlinear Anal,2006,65:2082-2093.
[6]AHMAD B,SIVASUNDARAM S.Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipation and retardation[J].Appl Math Comput,2008,197:515-524.
[7]ZHANG Yu,SUN Jitao.Strict stability of impulsive functional differential equations[J].J Math Anal Appl,2005,301:237-248.
[8]LAKSHMIKANTHAM V,LEELA S.Differential and integral inequalities[M].New York:New York Academic Press.1969.
[9]LAKSHMIKANTHAM V,MOHAPATRA R N.Strict stability of differential equations[J].Nonlinear Anal,2001,46:915-921.
[10]LIU Kaien,YANG Guowei.Strict stability criteria for impulsive functional differential systems[J].J Ineq Appl,2008,Aricle ID 243863:1-8.
[11]GALANIS G N,BHASKAR T G,LAKSHMIKANTHAM V,et al.Set valued functions in Frechet spaces:continuity,Hukuhara differentiability and applications to set differential equations[J].Nonlinear Anal,2005,61:559-575.
[12]WANG Peiguang,GAO Wei.Quasilinearization of an initial value problem for a set valued integro-differential equation[J].Compu Math Appl,2011,61:2111-2115.
[13]AHMAD B,SIVASUNDARAM S.The monotone iterative technique for impulsive hybrid set valued integro-differential equations[J].Nonlinear Anal,2006,65:2260-2276.
[14]王培光,高瑋.一階集值微分方程初值問題擬線性化方法[J].河北大學(xué)學(xué)報(bào):自然科學(xué)版,2011,31(1):1-6.
WANG Peiguang,GAO Wei.Quasilinearization of an initial value problem for set differential equations[J].Hebei University:Natural Science Edition,2011,31(1):1-6.
[15]BAO Junyan,ZHOU Caili,GAO Chunxia.Strict stability of impulsive set valued differential equations[J].Anna Diff Equa,2011,27(2):127-131.
[16]PHU N,QUANG L T,TUNG T T.Stability criteria for set control differential equations[J].Nonlinear Anal,2008,69:3715-3721.
[17]TU N N,TUNG T T.Stability of set differential equations and applications[J].Nonlinear Anal,2009,71:1526-1533.
[18]BHASKAR T G,DEVI J V.Stability criteria for set differential equations[J].Math Cop Model,2005,41:1371-1378.
[19]BHASKAR T G,DEVI J V.Set differential systems and vector Lyapunov functions[J].Appl Math Comput,2005,165:539-548.