崔喻芳,張開光
安徽醫(yī)科大學(xué)附屬省立醫(yī)院消化內(nèi)科,安徽合肥230001
胃癌是最常見的惡性腫瘤之一,盡管早期檢測、診斷和治療手段有所提高,但由于胃癌細(xì)胞的高度局部浸潤和遠(yuǎn)處轉(zhuǎn)移傾向,胃癌患者的預(yù)后仍然很差。近年來的研究發(fā)現(xiàn)黏附分子在腫瘤細(xì)胞浸潤和轉(zhuǎn)移過程中起重要作用。E-cad(E-cadherin)在介導(dǎo)上皮細(xì)胞與上皮細(xì)胞的黏附、維持組織正常形態(tài)結(jié)構(gòu)中發(fā)揮重要作用,細(xì)胞間黏附喪失是胃癌細(xì)胞侵襲生長的重要因素。E-cad所介導(dǎo)的黏附系統(tǒng)早已被公認(rèn)為“浸潤抑制系統(tǒng)”,其表達(dá)下降或缺失可導(dǎo)致癌細(xì)胞間黏附性減弱,易發(fā)生脫落和轉(zhuǎn)移。
E-cad為Ⅰ型跨膜糖蛋白,相對分子質(zhì)量為120 kDa,由細(xì)胞外肽段、跨膜區(qū)和細(xì)胞內(nèi)肽段構(gòu)成,主要表達(dá)于上皮細(xì)胞膜。E-cad的嗜同性特異黏附作用主要是細(xì)胞間的E-連接素的胞外段共同形成“拉鏈”結(jié)構(gòu)的黏附連接。在細(xì)胞膜,β-連環(huán)蛋白與E-cad組成復(fù)合體,β-連接素和γ-連接素保持細(xì)胞的極性。
1.1 E-cad在胃癌轉(zhuǎn)移中的作用 E-cad表達(dá)缺失被認(rèn)為是涉及細(xì)胞-細(xì)胞黏附系統(tǒng)功能喪失、引起癌癥浸潤轉(zhuǎn)移的重大分子事件之一。Yang等[1]發(fā)現(xiàn)胃癌患者原發(fā)部位的E-cad mRNA與癌旁組織相比明顯降低,這種低表達(dá)在低分化、侵犯漿膜層的彌漫性生長的腫瘤更為常見。原癌部位的E-cad表達(dá)與轉(zhuǎn)移的淋巴結(jié)數(shù)及腫瘤惡性程度呈反比,且在轉(zhuǎn)移的淋巴結(jié)中,E-cad的表達(dá)明顯增高,且隨著疾病的進(jìn)展,這種E-cad在原癌部位及轉(zhuǎn)移淋巴結(jié)中的表達(dá)差別越明顯,當(dāng)腫瘤穿透漿膜層時(shí),腹水中E-cad mRNA的表達(dá)增加顯著,且腹水脫落細(xì)胞學(xué)檢查為陽性。也有學(xué)者[2]對已發(fā)生轉(zhuǎn)移的癌癥患者的漿膜積液進(jìn)行檢測,發(fā)現(xiàn)25例中有22例E-cad表達(dá)陽性,而25例良性滲出液中僅有2例為陽性,差異有統(tǒng)計(jì)學(xué)意義,并提出通過檢測E-cad可更好地區(qū)分漿膜液中腺癌細(xì)胞和反應(yīng)性間皮細(xì)胞。
1.2 E-cad在胃癌致癌方面的作用 大量研究表明E-cad與胃癌的發(fā)生、發(fā)展有密切的關(guān)系。Zali等[3]研究發(fā)現(xiàn)E-cad的異常表達(dá)與胃癌的惡性程度有關(guān),在彌漫型胃癌和晚期胃癌中更為常見。E-cad除了組成E-cad-連接素復(fù)合體外,還可能與多個(gè)信號(hào)通路有關(guān),包括Wnt信號(hào)通路,它通過與β-連接素結(jié)合而影響Wnt信號(hào)通路,后者為Wnt信號(hào)通路的主要細(xì)胞核傳感器,在腫瘤形成過程中,β-連接素的水平對Wnt信號(hào)通路十分重要[4]。Pereira等[5]在果蠅模型中發(fā)現(xiàn)E-cad與Notch信號(hào)通路有關(guān)。Carvalho等[6]指出在腸型胃癌中存在miR-101-EZH2-E-cadherin通路,是由于miR-101的表達(dá)缺失,導(dǎo)致EZH2的表達(dá)上調(diào),從而使E-cad在mRNA和蛋白水平均下調(diào),并使其功能失調(diào)。
1.3 E-cad在胃癌中的表達(dá)及其臨床意義 大量研究發(fā)現(xiàn)E-cad的表達(dá)減少與淋巴結(jié)轉(zhuǎn)移、分期、淋巴管和血管浸潤、5年生存率以及腫瘤的分化程度有關(guān),并且E-cad的表達(dá)減少率在中-低分化/混合型胃癌組織和高分化/腸型中也有明顯差異。Xing等[7]通過Meta分析得出Ecad表達(dá)減少與胃癌患者低生存率密切相關(guān),亞組分析表明亞洲人群中,E-cad的低表達(dá)對胃癌患者的總生存率有不利的影響,且與TNM分期、浸潤深度、淋巴結(jié)轉(zhuǎn)移、遠(yuǎn)處轉(zhuǎn)移、分化程度、血管浸潤及組織學(xué)類型密切相關(guān),該分析認(rèn)為E-cad的表達(dá)有可能作為亞洲人群中胃癌患者的預(yù)后因素。
2.1 E-cad的基因突變 E-cad的編碼基因(cadherin 1,CDH1)位于16q22.1,大小為2.4 kb的編碼序列,CDH1的突變主要包括錯(cuò)義突變、無義突變、截?cái)嗤蛔兊?,在彌漫型早期發(fā)病胃癌或遺傳性彌漫型胃癌中,有大量研究關(guān)于CDH1的失活突變和缺失突變。有報(bào)道稱遺傳性彌漫型胃癌與CDH1突變有關(guān),而該胃癌類型約占所有胃癌的1% ~3%,并認(rèn)為篩查CDH1突變對改善胃癌的處理十分重要[8]。Bacani等[9]在胃癌低發(fā)區(qū),中東部安大略地區(qū)的加拿大,從81例年齡<50歲的彌漫型早發(fā)性胃癌患者中篩選出8個(gè)CDH1胚系序列突變體。Oliveira等[10]也報(bào)道在54例彌漫型或混合型胃癌中篩選出了5個(gè)胚系序列突變體。胃癌低發(fā)區(qū)的患者發(fā)生CDH1突變的頻率高,主要為非義突變,高發(fā)區(qū)則主要是錯(cuò)義突變[11]。
2.2 E-cad基因啟動(dòng)子的高甲基化失活 高甲基化是抑癌基因沉默的可能機(jī)制,很多研究認(rèn)為CDH1甲基化與E-cad的表達(dá)缺失或減少有關(guān)。Tamura等[12]用Western blotting分析12例不同組型的胃癌中E-cad的表達(dá),在6例高甲基化腫瘤組織中,4例表現(xiàn)為E-cad表達(dá)缺失或明顯減少。Graziano等[13]在70例胃癌中發(fā)現(xiàn)20例有CDH1啟動(dòng)子高甲基化,其中18例是彌漫型胃癌。在遺傳性彌漫型胃癌家族的患者攜帶CDH1雜合子胚系突變,再通過“第二次打擊”機(jī)制使CDH1完全失活,主要是通過啟動(dòng)子高甲基化,其次是CDH1突變和雜合子丟失。
2.3 H.pylori感染 H.pylori被WHO列為胃癌的一類致癌原,CDH1是抑癌基因之一,其啟動(dòng)子的高甲基化在胃癌的發(fā)生中起重要作用,在胃癌和H.pylori感染的消化不良患者通??砂l(fā)現(xiàn)有CDH1中CpG島的甲基化,而對H.pylori感染的消化不良患者進(jìn)行根除H.pylori后,可發(fā)現(xiàn)CDH1甲基化消失。近來研究表明IL-1β在腫瘤的致病中起重要作用,且其表達(dá)水平與腫瘤的侵襲性和不良預(yù)后相關(guān)。IL-1β可抑制胃酸的分泌,其多態(tài)性可導(dǎo)致H.pylori感染所引發(fā)的胃癌發(fā)生風(fēng)險(xiǎn)增加。在轉(zhuǎn)基因大鼠模型中,IL-1β可引起胃部炎癥和腫瘤改變[14]。在胃癌細(xì)胞株SNU719細(xì)胞中,IL-1β和PGE2可通過增強(qiáng)Snail的表達(dá)而降低E-cad的表達(dá),主要通過轉(zhuǎn)錄抑制來下調(diào) E-cad的表達(dá)[15]。Qian 等[16]體外試驗(yàn)表明 IL-1β 和 H.pylori均可導(dǎo)致胃癌細(xì)胞中CDH1的甲基化,且甲基化可用IL-1ra(IL-1β的拮抗劑)阻止,認(rèn)為H.pylori是通過產(chǎn)生IL-1β來介導(dǎo) CDH1的甲基化。Huang等[17]認(rèn)為H.pylori可能通過激活I(lǐng)L-1β的表達(dá),后者刺激NF-κB轉(zhuǎn)錄系統(tǒng),最終導(dǎo)致 NO/iNOS的表達(dá)激活而導(dǎo)致CDH1的甲基化。
2.4 其他可能機(jī)制 轉(zhuǎn)錄因子也可導(dǎo)致E-cad的表達(dá)減少或缺失,Snai調(diào)控E-cad的表達(dá)抑制曾在彌漫型胃癌中報(bào)道[18]。Slug在彌漫型和腸型胃癌中過表達(dá),并可抑制 CDH1的轉(zhuǎn)錄,誘導(dǎo)上皮細(xì)胞間質(zhì)轉(zhuǎn)化[19]。在彌漫型胃癌中,E-cad的表達(dá)減少與Twist的表達(dá)增加有關(guān),在腸型胃癌中,E-cad的表達(dá)減少則主要與SIP1有關(guān)。SASH1的突變也可導(dǎo)致E-cad的表達(dá)缺失[20]。有人發(fā)現(xiàn)結(jié)締組織生長因子可通過影響NF-κB信號(hào)通路下調(diào)E-cad在胃癌細(xì)胞株AGS中的表達(dá),而促進(jìn)胃癌的浸潤、轉(zhuǎn)移[21]。Hu 等[22]發(fā)現(xiàn)胃癌組織中E-cad的表達(dá)較正常胃黏膜組織低,而NF-κB和Snail的表達(dá)則較正常胃黏膜組織高,對胃癌細(xì)胞株SGC-7901加用NF-κB抑制劑后發(fā)現(xiàn)E-cad的表達(dá)上調(diào),Snail的表達(dá)下調(diào),提出可能存在NF-κB-Snail-E-cad軸,胃癌細(xì)胞中E-cad的表達(dá)缺失可能由NF-κB誘導(dǎo)的Snail表達(dá)上調(diào)所介導(dǎo)的。
sE-cad(soluble E-cadherin)相對分子質(zhì)量為80~84 kDa。Juhasz等[23]發(fā)現(xiàn)腸型胃癌患者的 sE-cad濃度明顯高于彌漫型胃癌;腸型胃癌中,晚期的濃度明顯高于早期;彌漫型胃癌中,局限性胃癌明顯高于轉(zhuǎn)移性胃癌,sE-cad的濃度在腸型和彌漫型胃癌中完全不同,所以sE-cad的濃度與Lauren分型結(jié)合起來有可能作為腸型胃癌的生物標(biāo)記物。Chan等[24]對116例胃癌患者血清中sE-cad分析發(fā)現(xiàn)sE-cad>10.0 ng/ml的患者中,90%生存時(shí)間<3年,多變量分析認(rèn)為sE-cad可能作為預(yù)測胃癌患者治療前的預(yù)后因子。胃癌患者sE-cad濃度明顯高于正常人,與胃癌的浸潤深度、淋巴結(jié)轉(zhuǎn)移呈正相關(guān),與分化程度呈負(fù)相關(guān),是獨(dú)立于浸潤深度、淋巴結(jié)轉(zhuǎn)移及分化程度的生存預(yù)后因素,sE-cad可作為一種新的輔助胃癌診斷、評價(jià)病變程度及判斷預(yù)后的血清學(xué)指標(biāo)。
E-cad廣泛分布于上皮組織,對維持緊密連接和間隙連接十分重要,大量研究表明E-cad的表達(dá)減少或缺失與胃癌的浸潤和轉(zhuǎn)移密切相關(guān),而其表達(dá)異常的具體分子機(jī)制仍不十分明確,需要進(jìn)一步研究,有研究發(fā)現(xiàn)塞來昔布可下調(diào)胃癌細(xì)胞中COX-2的表達(dá)從而上調(diào)E-cad的表達(dá)[25],且胃癌患者短期使用塞來昔布可上調(diào)E-cad的表達(dá)。相關(guān)的研究還有針對外顯子9缺失的E-cad的抗體,即E-cad delta 9-1,有望成為針對有E-cad突變的胃癌患者的靶向治療抗體,此外,考慮CDH1啟動(dòng)子甲基化的可逆轉(zhuǎn)性,去甲基化可能為開發(fā)新的抗癌藥物提供思路。
[1]Yang J,Dai DQ.A comparative study of E-cadherin mRNA expression in primary tumors and metastatic foci of gastric cancer[J].Zhonghua Zhong Liu Za Zhi,2005,27(1):25-28.
[2]Moghaddam NA,Tahririan R,Eftekhari M,et al.Diagnostic value of E-cadherin and fibronectin in differentiation between reactive mesothelial and adenocarcinoma cells in serous effusions[J].Adv Biomed Res,2012,1:56.
[3]Zali MR,Moaven O,Asadzadeh Aghdaee H,et al.Clinicopathological significance of E-cadherin,β-catenin and p53 expression in gastric adenocarinoma[J].J Res Med Sci,2009,14(4):239-247.
[4]Brembeck FH,Rosario M,Birchmeier W.Balancing cell adhesion and Wnt signaling,the key role of beta-catenin[J].Curr Opin Genet Dev,2006,16(1):51-59.
[5]Pereira PS,Teixeira A,Pinho S,et al.E-cadherin missense mutations,associated with hereditary diffuse gastric cancer(HDGC)syndrome,display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia [J].Hum Mol Genet,2006,15(10):1704-1712.
[6]Carvalho J,van Grieken NC,Pereira PM,et al.Lack of microRNA-101 causes E-cadherin functional deregulation through EZH2 up-regulation in intestinal gastric cancer[J].J Pathol,2012,228(1):31-44.
[7]Xing X,Tang YB,Yuan G,et al.The prognostic value of E-cadherin in gastric cancer:A meta-analysis[J].Int J Cancer,2012,132(11):2589-2596.
[8]Corso G,Marrelli D,Roviello F.Familial gastric cancer and germline mutations of E-cadherin[J].Ann Ital Chir,2012,83(3):177-182.
[9]Bacani JT,Soares M,Zwingerman R,et al.CDH1/E-cadherin germline mutations in early-onset gastric cancer[J].J Med Genet,2006,43(11):867-872.
[10]Oliveira C,F(xiàn)erreira P,Nabais S,et al.E-Cadherin(CDH1)and p53 rather than SMAD4 and Caspase-10 germline mutations contribute to genetic predisposition in Portuguese gastric cancer patients[J].Eur J Cancer,2004,40(12):1897-1903.
[11]Corso G,Marrelli D,Pascale V,et al.Frequency of CDH1 germline mutations in gastric carcinoma coming from high-and low-risk areas:metanalysis and systematic review of the literature[J].BMC Cancer,2012,12:8.
[12]Tamura G,Yin J,Wang S,et al.E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas[J].J Natl Cancer Inst,2000,92(7):569-573.
[13]Graziano F,Arduini F,Ruzzo A,et al.Combined analysis of E-cadherin gene(CDH1)promoter hypermethylation and E-cadherin protein expression in patients with gastric cancer:implications for treatment with demethylating drugs[J].Ann Oncol,2004,15(3):489-492.
[14]Tu S,Bhagat G,Cui G,et al.Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice[J].Cancer Cell,2008,14(5):408-419.
[15]Jee YS,Jang TJ,Jung KH.Prostaglandin E2 and Interleukin-1β reduce E-cadherin expression by enhancing Snail expression in gastric cancer cells[J].J Korean Med Sci,2012,27(9):987-992.
[16]Qian X,Huang C,Cho CH,et al.E-cadherin promoter hypermethylation induced by interleukin-1beta treatment or H.pylori infection in human gastric cancer cell line [J].Cancer Lett,2008,263(1):107-113.
[17]Huang FY,Chan AO,Rashid A,et al.Helicobacter pylori induces promoter methylation of E-cadherin via interleukin-1beta activation of nitric oxide production in gastric cancer cells[J].Cancer,2012,118(20):4969-4980.
[18]Rosivatz E,Becker I,Specht K,et al.Differential expression of the epithelial-mesenchymal transition regulators snail,SIP1,and twist in gastric cancer[J].Am J Pathol,2002,161(5):1881-1891.
[19]Castro Alves C,Rosivatz E,Schott C,et al.Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin [J].J Pathol,2007,211(5):507-515.
[20]Zhou D,Wei Z,Wang T,et al.SASH1 regulates melanocyte transepithelial migration through a novel Gαs-SASH1-IQGAP1-E-Cadherin dependent pathway cell[J].Signal,2013,25(6):1526-1538.
[21]Mao Z,Ma X,Rong Y,et al.Connective tissue growth factor enhances the migration of gastric cancer through downregulation of E-cadherin via the NF-κB pathway[J].Cancer Sci,2011,102(1):104-110.
[22]Hu Z,Liu X,Tang Z,et al.Possible regulatory role of Snail in NF-κB-mediated changes in E-cadherin in gastric cancer[J].Oncol Rep,2013,29(3):993-1000.
[23]Juhasz M,Ebert MP,Schulz HU,et al.Dual role of serum soluble E-cadherin as a biological marker of metastatic development in gastric cancer[J].Scand J Gastroenterol,2013,38(8):850-855.
[24]Chan AO,Chu KM,Lam SK,et al.Soluble E-cadherin is an independent pretherapeutic factor for long-term survival in gastric cancer[J].J Clin Oncol,2003,21(12):2288-2293.
[25]Sitarz R,Leguit RJ,de Leng W,et al.clooxygenase-2 mediated regulation of E-cadherin occurs in conventional but not early-onset gastric cancer cell lines[J].Cell Oncol,2009,31(6):475-485.