李軍成 韓志玉 李佳峰 陳征
摘要:研究了柴油機低速部分負荷工況引入不同EGR對缸內(nèi)燃燒排放特性的影響. 將CHEMKINⅡ化學反應求解器集成到KIVA 3V Release 2程序中, 用正庚烷化學反應機理替代柴油燃燒, 建立柴油機缸內(nèi)燃燒數(shù)值模擬模型; 結合試驗數(shù)據(jù), 模擬分析噴油時刻保持不變, EGR率(廢氣再循環(huán))從0%增加到 60%的燃燒過程、NOx和碳煙排放. 結果表明: 引入大比例EGR后點火延遲明顯增長, 燃燒相位推遲, 燃燒溫度降低; 較低燃燒溫度避開了NOx的高濃度生成區(qū), EGR率60%時NOx排放比無EGR時降低93.5%; 但高EGR率未使燃燒路徑避開碳煙生成區(qū), 加之較低的氧濃度不利于碳煙的氧化, 碳煙排放增高.
關鍵詞:柴油機;廢氣再循環(huán);燃燒模擬;化學動力學
中圖分類號:TK421.2 文獻標識碼:A
各工況模擬計算的缸內(nèi)壓力曲線和放熱率曲線如圖9所示.由圖可知,隨著EGR率的增加,滯燃期增長,使得燃燒相位移向膨脹行程.引入的EGR改變了進氣的組分,使得缸內(nèi)壓縮壓力略有降低且隨著EGR率的增大降低幅度增大.在著火延遲增加和壓縮壓力下降的共同影響下,大EGR率的缸內(nèi)燃燒壓力相對較低.
4結論
1)編寫的接口程序成功地將CFD程序KIVA和氣相化學反應求解器CHEMKIN耦合起來,實現(xiàn)了缸內(nèi)流場求解與化學反應的聯(lián)合模擬,形成了基于化學動力學機理的柴油機模擬燃燒模擬平臺.
4)在噴油參數(shù)不變的條件下,大比例EGR雖然控制缸內(nèi)溫度,但是燃燒過程中局部過濃的現(xiàn)象仍然存在,燃燒路徑無法完全避開高濃度碳煙生成區(qū).因此,要實現(xiàn)低碳煙排放,必須優(yōu)化噴油策略,增加油氣混合的均勻度.
參考文獻
[1]GAN S Y, NG H K, PANG K M. Homogeneous charge compression ignition (HCCI) combustion: implementation and effects on pollutants in direct injection diesel enginesJ]. Applied Energy, 2011, 88(3):559-567.
2]DEC J E. Advanced compressionignition engines understanding the incylinder processesJ]. Proceedings of the Combustion Institute, 2009, 32(2):2727-2742.
3]HANSON R M, KOKJOHN S L, SPLITTER D A, et al. An experimental investigation of fuel reactivity controlled PCCI combustion in a heavyduty engineJ]. SAE International Journal of Engines, 2010, 3(1):700-716.
4]KONG S C, MARRIOTT C, REITZ R D, et al. Modeling and experiments of HCCI engine combustion using detailed chemical kinetics with multidimensional CFDR]//USA:SAE Technical Paper Detroit, Michigan, 2001-01-1026.
5]AMSDEN A A. KIVA3V, RELEASE 2, improvements to KIVA3VR].USA: Los Alamos National Laboratory, LAVR99915,1999.
6]KEE R J, RUPLEY F M, MILLER J A. ChemkinⅡ:a fortran chemical kinetics package for the analysis of gasphase chemical kineticsR]. USA: Sandia National Laboratories, SAND898009,1989.
7]HAN Z Y, ULUDOGAN A, HAMPSON G J, et al. Mech anism of soot and NOx emission reduction using multipleinjection in a diesel engineC]// SAE Technical Paper,960633, Detroit, Michigan, USA:1996:960633.
8]HIROYASU H, KADOTA T, ARAI M. Development and use of a spray combustion modeling to prediction dieselengine efficiency and pollutant emissions ( Part 1 combustion modeling)J]. Bulletin of the JSME, 1983, 26(214):569- 575.
9]NANLE J, STRICKLANDCONSTABLE R F. Oxidation of carbon between 1000~2000°CC]//Proceeding of the Fifth Carbon Conference.Oxford,UK: Pergamon Press, 1962:154.
10]RA Y, REITZ R D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuelsJ]. Combustion and Flame, 2008, 155(4):713-738.
11]SUN Y. Diesel combustion optimization and emissions reduction using adaptive injection strategies (AIS) with improved numerical models D]. Madision: DERC University of WisconsinMadision, 2007.
12]FIEWEGER K, BLUMENTHAL R, ADOMEIT G. Selfignition of SI engine model fuels: a shock tube investigation at high pressureJ]. Combustion and Flame, 1997, 109(4):599-619.
13]ZHOU T, HAN Z, CHEN Z, et al. A study on a passenger car diesel engine fueled with butanoldiesel blend under typical operating conditionJ]. Applied Mechanics and Materials, 2012, 190/191: 1345-1350.
14]王 滸, 堯命發(fā), 鄭尊請, 等. 多次噴射與EGR耦合控制對柴油機性能和排放影響的實驗研究J].內(nèi)燃機學報, 2010, 28(1): 26-32.
WANG Hu, YAO Mingfa, ZHENG Zunqing, et al. Experimental study of the influence of multiinjection coupled with EGR on diesel performance and emissions J]. Transactions of CSICE, 2010, 28(1): 26-32. (In Chinese)
15]KITAMURA T, ITO T, SENDA J, et al. Mechanism of smokeless diesel combustion with oxygenated fuels based on the dependence of the equivalence ration and temperature on soot particle formationJ]. International Journal of Engine Research, 2002, 3(4):223-248.