鄒 軼 彭 健
(華中農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,武漢 430070)
正常的生理環(huán)境下,由于線粒體內(nèi)氧化還原鏈的作用,占體內(nèi)總耗氧量2%的氧氣轉(zhuǎn)化成超氧化陰離子自由基(·)和一氧化氮自由基(NO·)等 活 性 氧 (reactive oxygen species,ROS)[1],由于體內(nèi)抗氧化系統(tǒng)的作用,機(jī)體產(chǎn)生的ROS可被及時(shí)地清除。ROS在體內(nèi)維持生成和降解的動(dòng)態(tài)平衡,從而保證機(jī)體的正常生理功能[2]。當(dāng)機(jī)體遭受感染、應(yīng)激、過度的運(yùn)動(dòng)、有害的環(huán)境污染物、紫外光照等時(shí),·、NO·、羥自由基(·OH)、烷氧自由基(RO·)、氫過氧化物自由基(ROOH·)、單態(tài)氧()、碳酸鹽負(fù)離子自由基(·)和過氧化氫(H2O2)等ROS在體內(nèi)所占比例大幅提升[3]。當(dāng)ROS在體內(nèi)生成過多或清除過程受阻時(shí),其數(shù)量快速增加,形成累積時(shí)高氧化活性的ROS會對體內(nèi)生物大分子,如DNA、碳水化合物、蛋白質(zhì)和脂類發(fā)生氧化反應(yīng),對機(jī)體造成氧化損傷[1]。由于ROS對機(jī)體的氧化損傷在疾病和衰老中扮演了重要的角色[4],因此,ROS在醫(yī)學(xué)和分子生物學(xué)領(lǐng)域的研究越來越受到人們的關(guān)注。對于直接影響機(jī)體的ROS,由于ROS具有壽命短、反應(yīng)活性高(表1)的特點(diǎn),對于ROS的準(zhǔn)確測定仍然很困難[5-6]。因此,簡單、重復(fù)性好、敏感且經(jīng)濟(jì)有效的ROS測定方法在現(xiàn)代自由基分子生物學(xué)中具有重要的意義。根據(jù)ROS的理化特性,目前用于ROS測定的主要方法有化學(xué)反應(yīng)法、捕捉法、酶聯(lián)免疫吸附測定(ELISA)法、高效液相色譜(HPLC)法、氣相色譜 -質(zhì)譜聯(lián)用(GC-MS)法、免疫印跡法、電洗脫法、等電聚焦法、伏安法等[7-9]。其中,化學(xué)反應(yīng)法由于其具有靈敏度高、廉價(jià)和操作簡便的特點(diǎn),越來越廣泛的被用于生物反應(yīng)中ROS的測定?;瘜W(xué)反應(yīng)法是指由于ROS具有較高的反應(yīng)活性,能夠與許多不同的化合物發(fā)生化學(xué)反應(yīng),產(chǎn)生各種不同的反應(yīng)生成物。根據(jù)這些反應(yīng)生成物或反應(yīng)物的變化程度,通過不同的分析儀器進(jìn)行檢測,就可以對ROS進(jìn)行定量或者定性分析[10]。目前主要的化學(xué)反應(yīng)法有分光光度法、化學(xué)發(fā)光法、熒光光度法和電子自旋共振(ESR)法。
表1 主要活性氧的半衰期Table 1 Half-life of major ROS
分光光度法是通過測定ROS與顯色劑發(fā)生反應(yīng),在特定波長處或一定波長范圍內(nèi)光的吸光度或發(fā)光強(qiáng)度的變化,對該ROS進(jìn)行定性和定量分析的方法。由于分光光度法操作簡單、價(jià)格便宜,在實(shí)驗(yàn)室中受到廣泛的應(yīng)用。目前,ROS分光光度法測定中最常用的為細(xì)胞色素C(cytochrome C)還原法和硝基四氮唑藍(lán)(nitro blue tetrazolium,NBT)還原法。
細(xì)胞色素C還原法指高鐵細(xì)胞色素C能同氧自由基發(fā)生氧化還原反應(yīng),高鐵細(xì)胞色素C被還原為亞鐵細(xì)胞色素C,在分光光度計(jì)550 nm處吸光度增加,由此確定待測樣品中ROS的水平[11]。細(xì)胞色素C還原法雖然是一種有效的ROS測定方法,但是易受到細(xì)胞內(nèi)氧化酶和還原酶的影響[12]。當(dāng)測定ROS產(chǎn)生較低的血管平滑肌細(xì)胞和內(nèi)皮細(xì)胞時(shí),吸光度的測定、重量的稱取以及加樣量多少等誤差的存在,均可以放大結(jié)果的差異性,造成測定結(jié)果準(zhǔn)確性降低[13]。此外,由于細(xì)胞色素C具有能被細(xì)胞內(nèi)氧化酶氧化以及分子質(zhì)量大不易于進(jìn)入細(xì)胞的特點(diǎn),也限制了細(xì)胞色素C還原法在細(xì)胞試驗(yàn)中的應(yīng)用[13]。
化學(xué)發(fā)光法指在沒有任何光、電、熱的作用下,基態(tài)分子吸收化學(xué)反應(yīng)放出的化學(xué)能躍遷到激發(fā)態(tài),處于激發(fā)態(tài)的分子以光輻射的形式返回基態(tài),產(chǎn)生化學(xué)發(fā)光。ROS是一類不穩(wěn)定的化合物,且具有很高的氧化活性,能夠與多種化合物發(fā)生氧化還原反應(yīng)。當(dāng)其同化學(xué)發(fā)光試劑反應(yīng)時(shí),發(fā)光試劑會迅速分解釋放光子,可以根據(jù)由此產(chǎn)生的化學(xué)發(fā)光強(qiáng)度對ROS進(jìn)行定量或者定性分析[10]。化學(xué)發(fā)光法由于具有敏感、測定范圍廣泛、簡單、廉價(jià)、安全和可控的特點(diǎn),是目前運(yùn)用最為廣泛的ROS測定方法。在一定條件下,ROS能和魯米諾(luminol;5-amino-2,3-dihydrophthalazine-1,4-dione)、光澤精(lueigenin;N,N’-dimethyl-9,9’-diacridinum)和 腸 腔 素 {coelenterazine;2-(4-hydroxybenzyl)-6-(4-hydroxyphenyl)-8-benzyl-3,7-dihydroimi-dazo[1,2-α]pyrazin-3-one}及其類似物等化學(xué)發(fā)光試劑反應(yīng),產(chǎn)生不同強(qiáng)度、不同發(fā)射波長的化學(xué)發(fā)光輻射。下面將分別介紹不同發(fā)光劑在ROS定量和定性分析研究中的應(yīng)用進(jìn)展。
魯米諾是化學(xué)發(fā)光研究中最常用的試劑之一,由于其具有靈敏、方便、操作簡單的特點(diǎn),對魯米諾的研究與應(yīng)用都很廣泛。在堿性環(huán)境中,魯米諾在催化劑(酶、過渡金屬離子或金屬絡(luò)合物)的催化下可與·OH、·以及H2O2等發(fā)生化學(xué)反應(yīng),迅速分解發(fā)光,其發(fā)光強(qiáng)度可由化學(xué)發(fā)光分析儀檢測。因此,魯米諾化學(xué)發(fā)光法可以應(yīng)用于·OH、·、和 H2O2等 ROS的測定[17]。利用魯米諾化學(xué)發(fā)光法對ROS進(jìn)行檢測具有以下幾個(gè)優(yōu)勢:1)魯米諾能夠與體內(nèi)多種ROS發(fā)生反應(yīng),沒有選擇特異性;2)魯米諾作為一種發(fā)光劑,可同時(shí)用于細(xì)胞內(nèi)和細(xì)胞外ROS水平的檢測;3)由于體內(nèi)多種關(guān)鍵自由基,如·OH、·的半衰期非常短,而魯米諾能夠與其迅速反應(yīng)[18]。目前魯米諾化學(xué)發(fā)光法已被用于精子與精清[19]、血液與組織勻漿上清液[20]、細(xì)胞[21]等樣品中ROS的檢測。然而,由于·OH、·和H2O2這些ROS物質(zhì)均能夠氧化魯米諾產(chǎn)生化學(xué)發(fā)光,很難用于其中單一ROS物質(zhì)的直接測定[22]。因此,在很多情況下,ROS的魯米諾化學(xué)發(fā)光法只能作為定量或者定性分析的輔助手段。
光澤精同魯米諾一樣,也是一種廣泛使用的化學(xué)發(fā)光劑。1935年,Glue等[23]最先報(bào)道了有關(guān)光澤精化學(xué)發(fā)光的文章。與魯米諾相比,光澤精具有以下優(yōu)點(diǎn):1)光澤精的發(fā)光體N-甲基叮淀酮比魯米諾的發(fā)光體3-氨基鄰苯二甲酸發(fā)光更強(qiáng)、發(fā)光效率更高。2)光澤精的化學(xué)發(fā)光對某些還原劑非常敏感。3)含α-羥羰基的化合物與光澤精會發(fā)生強(qiáng)烈的化學(xué)反應(yīng)[24]。4)光澤精化學(xué)發(fā)光法只對·和H2O2敏感,特異性相對比較高。而當(dāng)只存在·OH時(shí),其并不能夠激發(fā)光澤精發(fā)光[25]。但是光澤精自身能夠與氧氣(O2)發(fā)生氧化還原反應(yīng),產(chǎn)生自由基·,當(dāng)生物體系統(tǒng)·水平很低,而光澤精濃度較高時(shí),由光澤精氧化還原反應(yīng)產(chǎn)生·的比例可能要大于生物所含有的·,影響光澤精化學(xué)發(fā)光法測定ROS的準(zhǔn)確度[26-27]。此外,光澤精主要用于胞外自由基的檢測[28]。
由于魯米諾和光澤精都不是特異性的化學(xué)發(fā)光劑,均能與多種ROS發(fā)生反應(yīng)。而另一種親脂性化學(xué)發(fā)光劑腸腔素及其類似物CLA(2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-α]-pyrazin-3-one)和 MCLA{2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-α]pyrazin-3-one}開始運(yùn)用于·的測定。腸腔素是從腸腔類水生動(dòng)物體內(nèi)分離出來的一種親脂性發(fā)光基團(tuán),在ROS中,其對·具有特異性[29],·能夠氧化腸腔素中的乙酰氨基吡啶陰離子,分解釋放出光子[30]。由于腸腔素發(fā)光體乙酰氨基吡啶比光澤精和魯米諾的發(fā)光更強(qiáng),并且不會同O2發(fā)生氧化還原反應(yīng)[31],穩(wěn)定性和準(zhǔn)確性更高。因此,依賴于腸腔素的化學(xué)發(fā)光法已經(jīng)被研究者運(yùn)用于培養(yǎng)的細(xì)胞[32]、嗜中性粒細(xì)胞[33]、血管組織[30]和線粒體[34]中·的測定。CLA和MCLA作為腸腔素的類似物,具有相似的化學(xué)結(jié)構(gòu),同樣對于·具有特異性和敏感性,已經(jīng)被用于不同樣品中·的測定,包括嗜中性粒細(xì)胞以及巨噬細(xì)胞[35]、內(nèi)皮細(xì)胞[36]和血管組織[37]等。值得注意的是,MCLA 作為一種化學(xué)發(fā)光試劑,在對肝臟[38]、腸道[39]、心臟[40]、肺臟[33]和血管組織[41]等機(jī)體組織表面ROS水平的測定已有報(bào)道。雖然腸腔素對于·具有特異性,但是過氧亞硝酸陰離子(ONOO-)同樣能夠誘導(dǎo)腸腔素化學(xué)發(fā)光[34]。因此,在特異性鑒定·的時(shí)候,活性氮抑制劑的選擇,如 ONOO-清除劑的應(yīng)用,可以減少由于ONOO-對總化學(xué)發(fā)光的影響所產(chǎn)生的誤差,增加測定結(jié)果的準(zhǔn)確性。不同化學(xué)發(fā)光劑的作用特點(diǎn)見表2。
表2 不同化學(xué)發(fā)光劑的作用特點(diǎn)Table 2 Action characteristic of different chemiluminescence agents
熒光光度法是通過合適的熒光探針作用于細(xì)胞,在與ROS發(fā)生反應(yīng)后,探針的化學(xué)結(jié)構(gòu)發(fā)生變化,生成具有強(qiáng)熒光的產(chǎn)物,通過檢測反應(yīng)產(chǎn)物的熒光強(qiáng)度可在一定程度上反映ROS水平。熒光光度法由于其具有高細(xì)胞膜穿透性、高分辨率、高靈敏度、可提供細(xì)胞內(nèi)靶分子時(shí)空信息的特點(diǎn),在ROS的測定中得到廣泛應(yīng)用[42-43]。不同的熒光探針,根據(jù)其作用特異性對象的不同和激發(fā)波長及發(fā)射波長的不同,可測定不同的ROS水平(圖3)。目前應(yīng)用最廣泛的熒光探針主要有二氯熒光素(2,7-dichlorodihydrofluorescein,DCFH)、二氫羅丹明123(dihydrorhodamine 123,DHR)和氫化乙啡啶(hydroethidine,HE)等。
DCFH能夠氧化生成強(qiáng)熒光化合物二氯熒光黃(2,7-dichlorofluorescein,DCF),其雙乙酸鹽形式2,7-二氯熒光黃雙乙酸鹽(2,7-dichlorodihydrofluorescein diacetate,DCFH-DA)是一種激發(fā)波長為498 nm,發(fā)射波長為522 nm的熒光染料。由于DCFH-DA極易透過細(xì)胞膜進(jìn)入細(xì)胞內(nèi)[44],在細(xì)胞內(nèi)被酯酶水解為水溶性的DCFH,該物質(zhì)能夠被·OH、ROOH··、H2O2和NO·等多種ROS所氧化,因此被廣泛的運(yùn)用于細(xì)胞內(nèi)ROS的測定[45-46]。雖然,DCFH法能夠準(zhǔn)確、方便地測定總ROS的水平,但是其特異性較差。有研究者發(fā)現(xiàn)使用DCFH對細(xì)胞內(nèi)ROS進(jìn)行測定時(shí),DCFH有可能被機(jī)體內(nèi)的高鐵離子、細(xì)胞色素C、腺嘌呤氧化酶所氧化,致使DCF的含量增加而影響試驗(yàn)結(jié)果的準(zhǔn)確性[47-48]。此外,高濃度的DCFH可產(chǎn)生細(xì)胞毒性,影響測定結(jié)果[49]。
DHR是一種非熒光分子,DHR與ROS反應(yīng)后生成具有熒光的脂溶性探針羅丹明123,其激發(fā)波長為505 nm,發(fā)射波長為529 nm,由于DHR具有親脂性,其極易擴(kuò)散進(jìn)入細(xì)胞膜[53]。雖然DHR主要用于測定細(xì)胞內(nèi)H2O2的水平,但是其特異性較低,能夠被多種ROS和氧化物如ONOO-、高鐵離子、細(xì)胞色素C、次氯酸(HClO)和腺嘌呤氧化酶所氧化[45,48]。
不同熒光探針的作用特點(diǎn)見表3。
表3 不同熒光探針的作用特點(diǎn)Table 3 Action characteristic of different fluorescence probes
ESR是指由于不同自由基結(jié)構(gòu)具有特定的核自旋能量,其在穩(wěn)定的磁場作用下,同電磁輻射能相互作用而產(chǎn)生的共振吸收現(xiàn)象。通過對共振譜線的研究可以獲得對自由基未偶電子的狀態(tài)及其周圍環(huán)境方面的信息,從而得到有關(guān)物質(zhì)結(jié)構(gòu)和化學(xué)鍵的信息,以此來鑒定不同自由基的種類和水平[54]。ESR法雖然是目前ROS測定的最直接和有效的方法,但是其應(yīng)用依然受到幾個(gè)方面的限制,其中最主要的限制因素是由于ESR每次掃描都需要幾秒的時(shí)間,而主要的ROS如O-2·和·OH等,由于其在生物體系中有濃度低且存活時(shí)間短的特點(diǎn),因而不易被 ESR法所測定[27]。因此,應(yīng)用ESR法測定存活時(shí)間短的ROS時(shí),可以通過電子自旋共振探針試劑與ROS的相互作用,捕捉ROS,通過二級產(chǎn)物來間接測定[55-56]。電子自旋共振試劑苯基-叔丁基硝酸(PBN)和5,5-二甲基吡咯啉-N-氧化物(DMPO)能夠同ROS發(fā)生反應(yīng),生成包含亞硝基或硝酮的穩(wěn)定化合物,而引起信號的變化,以此來測定ROS的種類和水平[57-58]。但是,電子順磁共振譜儀是相當(dāng)昂貴且對實(shí)驗(yàn)室環(huán)境要求嚴(yán)格的試驗(yàn)儀器,限制了ESR法在普通實(shí)驗(yàn)室的應(yīng)用性。
由于ROS在現(xiàn)代醫(yī)學(xué)和分子生物學(xué)領(lǐng)域的重要性,根據(jù)特定的試驗(yàn)?zāi)康倪x擇靈敏、準(zhǔn)確、特異性高、穩(wěn)定性好和操作簡單的ROS測定方法,在現(xiàn)代自由基生物學(xué)研究中具有重要的意義。但是ROS由于其反應(yīng)活性高、壽命短、積累水平低,加之種類較多的特點(diǎn),很難被直接準(zhǔn)確測定。化學(xué)反應(yīng)法作為目前應(yīng)用最為廣泛的ROS檢測方法,主要有化學(xué)發(fā)光法、分光光度法、熒光光度法和ESR法這4個(gè)體系。研究者針對不同的ROS和不同的樣品時(shí),都可以從化學(xué)反應(yīng)法中選出適宜的方法進(jìn)行測定。但化學(xué)反應(yīng)法由于受化學(xué)反應(yīng)物理化特性的影響,大多特異性較低、易受環(huán)境影響、穩(wěn)定性較差。因此,在對ROS進(jìn)行測定時(shí),需通過對待測樣品的性質(zhì)、類型以及ROS的種類進(jìn)行判斷,選擇適宜的測定方法,以利于得出準(zhǔn)確的結(jié)果。此外,毒性低、穩(wěn)定性好、特異性高的新型化合物的發(fā)現(xiàn)及合成也為未來化學(xué)發(fā)光法更廣泛的應(yīng)用和發(fā)展提供了基礎(chǔ)和方向。
[1]WINTERBOURN C C.Reconciling the chemistry and biology of reactive oxygen species[J].Natural Chemical Biology,2008,5:278-286.
[2]NORDBERG J,ARNéR E S.Reactive oxygen species,antioxidants,and the mammalian thioredoxibn system[J].Free Radical Biology & Medicine,2011,31(11):1287-1312.
[3]KUNWAR A,PRIYADARSINI K I.Free radicals,oxidative stress and importance of antioxidants in human health[J].Journal of Medical and Allied Sciences,2011,1(2):53-60.
[4]BRANDES R P,JANISZEWSKI M.Direct detection of reactive oxygen species ex vivo[J].Kidney International,2005,67:1662-1664.
[5]HALLIWELL B,WHITEMAN M.Measuring reactive species and oxidative damage in vivo and in cell culture:how should you do it and what the results mean?[J]British Journal of Pharmacology,2004,142:231-255.
[6]林金明,屈鋒,單孝全.活性氧測定的基本原理與方法[J].分析化學(xué),2002,12(30):1507-1514.
[7]CAMERA E,PICARDO M.Analytical methods to investigate glutathione and related compounds in biological and pathological processes[J].Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences,2002,781(1/2):181-206.
[8]TARPEY M,WINK D,GRISHAM M.Methods for detection of reactive metabolites of oxygen and nitrogen:in vitro and in vivo considerations[J].American Journal of Physiology:Regulatory Integrative and Comparative Physiology,2004,286:431-444.
[9]PALMIERI B,SBLENDORIO V.Oxidative stress tests:overview on reliability and use[J].European Review for Medical and Pharmacological Science,2007,11(5):309-342.
[10]LU C,SONG G,LIN J.Reactive oxygen species and their chemiluminescence-detection methods[J].Trends in Analytical Chemistry,2006,25:985-995.
[11]MASSEY V.The microestimation of succinate and the extinction coefficient of cytochrome C[J].Biochimica et Biophysica Acta,1959,34:255-256.
[12]MARGARET M,TARPEY,IRWIN F.Methods of detection of vascular reactive species:nitric oxide,superoxide,hydrogen peroxide,and peroxynitrite[J].Circulation Research,2001,89:224-236.
[13]SERGEY D,KATHY K,DAVID G H.Measurement of reactive oxygen species in cardiovascular studies[J].Hypertension,2007,49:717-727.
[14]THOMAS M,IGOR B A,ANDREI L K,et al.Detection of superoxide in vascular tissue[J].Arteriosclerosis Thrombosis Vascular Biology,2002,22:1761-1768.
[15]CHOI H S,KIM JW,CHA Y N,et al.A quantitativenitroblue tetrazolium assay for determining intracellular superoxidenion production in phagocytic cells[J].Journal of Immunoassay & Immunochemistry,2006,27:31-44.
[16]OZLEM T,JEREMY T,KELTON T.Development ofthe NBT assay as a marker of sperm oxidative stress[J].International Journal of Andrology,2010,33:13-21.
[17]BARTOSZ G.Use of spectroscopic probes for detection of reactive oxygen species[J].Clinica Chimica Acta,2006,368:53-76.
[18]ASHOK A.Chemiluminescence technique for measuring reactive oxygen species[J].Biology Medicine,2004,9(4):466-468.
[19]ESFANDIARI N,SHARMA R K,SALEH R A,et al.Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa[J].Journal of Andrology,2003,24:862-870.
[20]杜丹.高糖日糧對小鼠消化系統(tǒng)自由基和抗氧化能力的影響[D].博士學(xué)位論文.無錫:江南大學(xué),2008.
[21]PALO A.Luminol-enhanced assay for superoxide anion(·)[M].La Jolla,CA:Agilent Technologies,2009.
[22]KOBAYASHI H,GIL-GUZMAN E,M.MAHRAN A,et al.Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay[J].Journal of Andrology,2001,22:568-574.
[23]GLEU K,PETSCH W.Additional information how to cite[J].Angewandte Chemie International Edition,1935,48:57-59.
[24]黃榮富.活性氧化學(xué)發(fā)光分析特性研究[D].碩士學(xué)位論文.西安:陜西師范大學(xué),2007.
[25]CASTRO M M,RIZZI E,RODRIGUES G J,et al.Antioxidant treatment reduces matrix metalloproteinase-2-induced vascular changes in renovascular hypertension[J].Free Radical Biology and Medicine,2009,46:1298-1307.
[26]LIOCHEV S I,F(xiàn)RIDOVICH I.Lucigenin(bis-N-methylacridinium)as amediator of superoxide anion production[J].Archives of Biochemistry and Biophysics,1997,337:115-120.
[27]TARPEY M M,F(xiàn)RIDOVICH I.Methods of detection of vascular reactive species:nitric oxide,superoxide,hydrogen peroxide,and peroxynitrite[J].Circulation Research,2001,89:224-236.
[28]MCKINNEY K A,LEWIS S E,THOMPSON W.Reactive oxygen species generation in human sperm:luminol and lucigenin chemiluminescence probes[J].Archives of Andrology,1996,36:119-125.
[29]NAKANO M.Determination of superoxide radical and singlet oxygenbased on chemiluminescence of luciferin analogs[J].Methods in Enzymology,1990,186:585-591.
[30]HINK U,LI H,MOLLNAU H,et al.Mechanis msunderlying endothelial dysfunction in diabetes mellitus[J].Circulation Research,2001,88:14-22.
[31]TERANISHI K,SHIMOMURA O.Coelenterazine analogs as chemiluminescentprobe for superoxide anion[J].Analytical Biochemistry,1997,249:37-43.
[32]DUERRSCHMIDT N,WIPPICH N,GOETTSCH W,et al.Endothelin-1 induces NAD(P)H oxidase in human endothelialcells[J].Biochemical and Biophysical Research Communications,2000,269:713-717.
[33]LUCAS M,SOLANO F.Coelenterazine is a superoxide anion-sensitive chemiluminescent probe:its usefulness in the assay of respiratory burstin neutrophils[J].Analytical Biochemistry,1992,206:273-277.
[34]RAHA S,MCEACHERN G E,MYINT A T,et al.Superoxidesfrom mitochondrial complexⅢ:the role of manganese superoxidedismutase[J].Free Radical Biology Medicine,2000,29:170-180.
[35]NAKANO M,SUGIOKA K,USHIJIMA Y.Chemiluminescenceprobe with Cypridina luciferin analog,2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-α]pyrazin-3-one,for estimating the ability of human granulocytesto generate[J].Analytical Biochemistry,1986,159:363-369.
[36]ISHII M,SHIMIZU S,YAMAMOTO T.Acceleration of oxidative stress-induced endothelial cell death by nitricoxide synthase dysfunction accompanied with decrease in tetrahydrobiopterincontent[J].Life Science,1997,61:739-747.
[37]SKATCHKOV M P,SPERLING D,HINK U.Quantification of superoxide radical formation in intact vascular tissueusing a cypridina luciferin analog as an alternative to lucigenin[J].Biochemical and Biophysical Research Communications,1998,248:382-386.
[38]UEHARA K,MARUYAMA N,HUANG C K.The firstapplication of a chemiluminescence probe,2-methyl-6-[p-methoxyphenyl]-3,7-dihydroimidazo[1,2-α]pyrazin-3-one(MCLA),for detectingproduction,in vitro,from Kupffer cells stimulated by phorbol myristateacetate[J].Febs Letters,1993,335:167-170.
[39]SAITOH D,KADOTA T,OKADA Y.Direct evidence for the occurrence of superoxide radicals in thesmallintestine of the burned rat[J].American Journal Emergency Medicine,1995,13:37-40.
[40]USHIRODA S,MARUYAMA Y,NAKANO M.Continuous detection of superoxide in situ during ischemia and reperfusion in the rabbit heart[J].Japanese Heart Journal,1997,38:91-105.
[41]TARPEY M M,WHITE C R,SUAREZ E,et al.Chemiluminescent detection of oxidants in vascular tissue:lucigenin but not coelenterazine enhances superoxide formation[J].Circulation Research,1999,84:1203-1211.
[42]GOMES A,F(xiàn)ERNANDESE,LIMA JL F C.Fluorescence probes used for detection of reactive oxygen species[J].Journal Biochemical and Biophysical Methods,2005,65:45-80.
[43]NOBUAKI S.Recent advances in fluorescent probes for the detection of reactive oxygen species[J].Analytical and Bioanalytical Chemistry,2006,386:532-543.
[44]KESTON A S,BRANDT R.The fluorometric analysis of ultramicro quantities of hydrogen peroxide[J].Analytical Biochemistry,1965,1:1-5.
[45]CROW JP.Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro:implications for intracellular measurement of reactive nitrogen and oxygen species[J].Nitric Oxide:Biology and Chemistry,1997,1(2):145-157.
[46]WANG H,JOSEPH J A.Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader[J].Free Radical Biology Medicine,1999,27:612-617.
[47]ZHU H,BANNENBERG G L,MOLDEUS P.Oxidation pathways for the intracellular probe 2V,7V-dichlorofluorescein[J].Archives Toxicology,1994,68:582-587.
[48]HEMPEL S L,BUETTNER G R,O’MALLEY Y Q.Dihydrofluorescein diacetate is superior for detecting intracellular oxidants:comparison with 2V,7V-dichlorodihydrofluorescein diacetate,5(and 6)-carboxy-2V,7V-dichlorodihydrofluorescein diacetate,and dihydrorhodamine 123[J].Free Radical Biology Medicine,1999,27:146-159.
[49]WRONA M,PATEL K,WARDMAN P.Reactivity of 2’,7’-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate,nitrogen dioxide,and hydroxyl radicals[J].Free Radical Biology Medicine,2005,38(2):262-270.
[50]BINDOKAS V P,JORDAN J,LEE C C.Superoxide production in rat hippocampal neurons:selective imaging with hydroethidine[J].Neuroscience,1996,16:1324-1336.
[51]BENOV L,SZTEJNBERG L,F(xiàn)RIDOVICH I.Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical[J].Free Radical Biology Medicine,1998,25:826-831.
[52]WALRAND S,VALEIX S,RODRIGUEZ C,et al.Flow cytometry study of polymorphonuclear neutrophil oxidative burst:a comparison of three fluorescent probes[J].Clinica Chimica Acta,2003,331:103-110.
[53]CARTER W O,NARAYANAN P K,ROBINSON J P.Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells[J].Journal of Leukocyte Biology,1994,55:253-258.
[54]SARAN M,BORS W.Direct and indirect measurements of oxygen radicals[J].Klinische Wochenschrift,1991,69:95-96.
[55]DAMBROVA M,BAUMANE L,KALVINSH I,et al.Improved method for EPR detection of DEPMPO-superoxide radicals by liquid nitrogen freezing[J].Biochemical Biophysical Research Communications,2000,275:895-898.
[56]VASQUEZ-VIVAR J,KALYANARAMAN B,KENNEDY M C.Mitochondrial aconitase is a source of hydroxyl radical.An electron spin resonance investigation[J].Journal of Biological Chemistry,2000,275:14064-14069.
[57]FREJAVILLE C,KAROUI H,TUCCIO B,et al.5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide:a new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen-centered radicals[J].Medicinal Chemistry Research,1995,38:258-265.
[58]JANZEN E G.Spin trapping and associated vocabulary[J].Free Radical Research Communications,1990,9:163-167.