莊科俊
(安徽財(cái)經(jīng)大學(xué)統(tǒng)計(jì)與應(yīng)用數(shù)學(xué)學(xué)院應(yīng)用數(shù)學(xué)研究所,安徽 蚌埠 233030)
傳染病學(xué)中數(shù)學(xué)模型的引入,為理解疾病傳播機(jī)制及其控制策略提供了一個(gè)全新的視角[1].Tuck與Wan建立了如下的HIV型種群動(dòng)力學(xué)模型[2]:
其中x與y分別是t時(shí)刻未感染和已感染的CD4+T細(xì)胞的數(shù)量,z表示t時(shí)刻血漿中病毒粒子的數(shù)目.系統(tǒng)中所有系數(shù)均為正數(shù),s是CD4+T細(xì)胞的生成率,μ是人均死亡率,k是CD4+T細(xì)胞被病毒的感染率,a是被感染細(xì)胞的人均消失率,c為感染細(xì)胞與病毒的轉(zhuǎn)化率,而γ則是病毒粒子的死亡率.對(duì)系統(tǒng)(1),已有學(xué)者研究其簡化系統(tǒng)的動(dòng)力學(xué)性質(zhì)[3]、同倫攝動(dòng)解[4].
最近,分?jǐn)?shù)階微積分引起了眾多學(xué)者的廣泛關(guān)注.由于分?jǐn)?shù)階模型的非局部性、記憶性等性質(zhì),分?jǐn)?shù)階微分方程在生物系統(tǒng)的建模中更加貼切實(shí)際,并且出現(xiàn)了一些描述傳染病動(dòng)力學(xué)、種群動(dòng)力學(xué)的分?jǐn)?shù)階模型[5-6].因此,這里將考慮系統(tǒng)(1)的分?jǐn)?shù)階情形:其中 α ∈ (0,1],Dα是 α 階 Caputo微分算子[7].Arafa等人利用廣義Taylor公式與同倫分析法,研究了系統(tǒng)(2)的簡化模型的解[8].而本文的主要目的在于,研究分?jǐn)?shù)階系統(tǒng)(2)的平衡點(diǎn)的穩(wěn)定性,并通過數(shù)值模擬驗(yàn)證理論分析的結(jié)果.
圖1 α=0.95時(shí)系統(tǒng)(2)的平衡點(diǎn)E2漸近穩(wěn)定
系統(tǒng)(2)在平衡點(diǎn)E1處的Jacobi矩陣為
相應(yīng)的特征方程為
根據(jù)分?jǐn)?shù)階 Routh - Hurwitz準(zhǔn)則[9-10]可知,分?jǐn)?shù)階系統(tǒng)的平衡點(diǎn)穩(wěn)定當(dāng)且僅當(dāng)所有特征根滿足|arg(λ)|>απ/2.通過簡單計(jì)算不難發(fā)現(xiàn),當(dāng)arμ>ks(c-a)時(shí),平衡點(diǎn)E1漸近穩(wěn)定;否則,E1不穩(wěn)定.
對(duì)平衡點(diǎn)E2,相應(yīng)的特征方程為:
令D(P)=18a1a2a3+(a1a2)2-,根據(jù)文獻(xiàn)[9-10]中的相關(guān)結(jié)論,可以得到如下的關(guān)于平衡點(diǎn)E2的穩(wěn)定性結(jié)果.
定理
(1)若D(P)>0,則E2漸近穩(wěn)定當(dāng)且僅當(dāng)a1>0,a1a2>a3>0.
(2)若D(P)< 0,a1≥0,a2≥0,a3> 0,0.5 < α<2/3,則E2漸近穩(wěn)定.
(3)若D(P)< 0,a1> 0,a2> 0,a1a2=a3,0.5 <α <1,則E2漸近穩(wěn)定.
(4)若D(P)<0,a1<0,a2<0,α >2/3,則E2不穩(wěn)定.
根據(jù)文獻(xiàn)[11],取 s=0.272,γ =2,μ =0.00136,k=0.00027,a=0.33,c=50,則E2=(49.21,0.6214,15.43),借助Mathematica計(jì)算可得,a1=0.350173,a2=0.0128939,a3=1.86975 ×10-6,則D(P)=1.16422 × 10-5> 0,a1a2> a3,從而平衡點(diǎn)E2漸近穩(wěn)定,見圖1.
通過之前的分析及數(shù)值例子可以發(fā)現(xiàn),當(dāng)參數(shù)在一定情況下,分?jǐn)?shù)階系統(tǒng)將保持整數(shù)階的穩(wěn)定性不變.關(guān)于分?jǐn)?shù)階系統(tǒng)(2)的動(dòng)力學(xué)性質(zhì),特別是其分支現(xiàn)象,還有待進(jìn)一步的研究.
[1]F.Brauer,C.Castillo- Chavez.Mathematical Models in Population Biology and Epidemiology[M].New York:Springer-Verlag,2001.
[2]Henry C.Tuckwell,F(xiàn)rederic Y.M.Wan.Nature of Equilibria and Effects of Drug Treatments in Some Simple Viral Population Dynamical Models[J].IMA Journal of Mathematics in Medicine and Biology,2000,17:311-327.
[3]Henry C.Tuckwell,F(xiàn)rederic Y.M.Wan.On the Behavior of Solutions in Viral Dynamical Models[J].Biosystems,2004,73:157-161.
[4]Mehmet Merdan,ve Tahir Khaniyev.Homotopy Perturbation Method for Solving Viral Dynamical Model[J].Fen Bilimleri Dergisi,2010,31(1):65 -77.
[5]Nuri Ozalp,Elif Demirci.A Fractional Order SEIR Model with Vertical Transmission[J].Mathematical and Computer Modelling,2011,54:1-6.
[6]程媛媛,蔣威.分?jǐn)?shù)階時(shí)滯單種群模型的穩(wěn)定性[J].佳木斯大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,39(3):468-469.
[7]I.Podlubny.Fractional Differential Equations[M].San Diego:Academic Press,1999.
[8]AAM Arafa,SZ Rida,M Khalil.The Effect of Anti- viral Drug Treatment of Human Immunodeficiency Virus Type 1(HIV-1)Described by a Fractional Order Model[J].Applied Mathematical Modelling,2012.
[9]E.Ahmed,A.M.A.El-Sayed,Hala A.A.El-Saka.On Some Routh-Hurwitz Conditions for Fractional Order Differential Equations and Their Applications in Lorenz,Rssler,Chua and Chen Systems[J].Physics Letters A,2006,358:1 -4.
[10]Mohammad Reza Faieghi,Hadi Delavari.Chaos in Fractional-order Genesio- Tesi System and its Synchronization[J].Commun.Nonlinear Sci.Numer.Simulat.,2012,17:731 -741.
[11]AN Phillips.Reduction of HIV Concentration during Acute Infection:Independence from a Special Immune Response[J].Science,271:497-499.