国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基片溫度對(duì)鎵鈦共摻雜氧化鋅透明導(dǎo)電薄膜性能的影響

2013-11-26 05:45鐘志有
關(guān)鍵詞:基片時(shí)所導(dǎo)電

鐘志有,張 騰,汪 浩

(中南民族大學(xué)電子信息工程學(xué)院,武漢430074)

有機(jī)光伏電池具有輕薄、成本低、能卷曲、環(huán)境友好、容易實(shí)現(xiàn)大面積制造等獨(dú)特優(yōu)勢(shì)[1-3],在便攜式計(jì)算機(jī)、半透光式充電器以及柔性可卷曲系統(tǒng)等體系中具有潛在的應(yīng)用前景,是未來最為廉價(jià)和最有吸引力的能源模式之一.自從1986年 Tang[4]發(fā)明電子給體-受體雙層結(jié)構(gòu)的有機(jī)光伏電池以來,人們從電池結(jié)構(gòu)、器件機(jī)理、光伏材料和制備工藝等各個(gè)方面卓有成效地開展了研究,電池的性能獲得了明顯提高[5-7].眾所周知,有機(jī)光伏電池的典型結(jié)構(gòu)為三明治夾心結(jié)構(gòu),即依次由透明導(dǎo)電陽(yáng)極、有機(jī)活性層和金屬陰極組成,其中,電池陽(yáng)極一般采用摻錫氧化銦(ITO)透明導(dǎo)電玻璃,但由于銦(In)、錫(Sn)自然儲(chǔ)量較少、制備工藝復(fù)雜、成本高、有毒性、穩(wěn)定性不理想等原因,從而將極大影響未來光伏電池的推廣應(yīng)用,因此,研制可以替代ITO產(chǎn)品的透明導(dǎo)電薄膜已經(jīng)成為該領(lǐng)域的重要課題之一.

氧化鋅(ZnO)是II-VI族n型半導(dǎo)體材料,在室溫條件下直接光學(xué)能隙約為3.37 eV[8],它具有良好的導(dǎo)電性和透光性,在發(fā)光器件、光伏電池、液晶顯示器、透明電磁屏蔽以及觸敏覆蓋層等眾多領(lǐng)域得到了非常廣泛的應(yīng)用[9,10].與目前普遍使用的ITO相比,ZnO薄膜具有自然儲(chǔ)量豐富、價(jià)格低廉、在活性氫和氫等離子體環(huán)境下穩(wěn)定性高等優(yōu)點(diǎn)而備受青睞.研究表明,Al、B、Ti、Zr、Ga 等單元素?fù)诫s能夠較大幅度地提高ZnO薄膜的導(dǎo)電能力,但其光學(xué)性能和化學(xué)穩(wěn)定性卻仍然不盡如人意.為此,近幾年人們開始嘗試采用 Al-Mn[11]、Ga-B[12]、Li-Mg[13]、Al-Sc[14]、Al-Zr[15]、Mn-Co[16]等共摻雜方法來獲得具有優(yōu)良光電性能的ZnO透明導(dǎo)電薄膜.對(duì)于共摻雜ZnO透明導(dǎo)電薄膜,其主要制備方法有脈沖激光沉積 法[17,18]、噴霧熱分解法[19]、化學(xué)氣相沉積法[20]、射頻濺射法[21,22]、直流濺射法[23,24]、溶膠-凝膠法[25-27]等,其中磁控濺射技術(shù)具有設(shè)備簡(jiǎn)單、價(jià)格便宜、易于摻雜等特點(diǎn),所制備的薄膜不僅均勻致密、表面平整、附著性好,而且c軸取向性好、可見光區(qū)透過率高,因此它是目前摻雜ZnO薄膜最常用的制備方法之一.本文以鎵鈦共摻雜氧化鋅(GTZO)陶瓷靶作為靶材,采用射頻磁控濺射技術(shù)制備了GTZO無銦透明導(dǎo)電薄膜,通過 X射線衍射儀(XRD)、分光光度計(jì)和四探針儀等測(cè)試表征,研究了基片溫度對(duì)薄膜結(jié)晶質(zhì)量、電學(xué)性質(zhì)和光學(xué)性能的影響.

1 實(shí)驗(yàn)

1.1 基片處理

實(shí)驗(yàn)選用普通玻璃作為基片材料,首先采用丙酮擦拭玻璃基片表面,然后用清水沖洗干凈,再依次使用丙酮、無水乙醇和去離子水各超聲清洗約15 min,最后在無水乙醇中煮沸,吹干待用.

1.2 薄膜制備

利用射頻磁控濺射技術(shù)在玻璃基片上制備透明導(dǎo)電的GTZO薄膜,所用實(shí)驗(yàn)設(shè)備為國(guó)產(chǎn)KDJ567型高真空復(fù)合鍍膜系統(tǒng),所用濺射靶材的直徑為50 mm、厚度為4 mm,它由ZnO、Ga2O3和 TiO2混合燒結(jié)而成,ZnO、Ga2O3和TiO2的純度均為99.99%,其中ZnO、Ga2O3和TiO2的質(zhì)量分?jǐn)?shù)分別為97%、1.5%和1.5%.濺射所用氣體為純度99.99%的高純氬氣,GTZO薄膜沉積之前,先將玻璃基片放置于鍍膜系統(tǒng)的真空室中,待氣壓抽至低于5×10-4Pa后通入氬氣,并先采用氬離子體對(duì)基片表面清洗約3 min,然后再對(duì)靶材表面預(yù)濺射5 min以去除其表面的雜質(zhì)和污染物.實(shí)驗(yàn)時(shí),制備GTZO薄膜的具體工藝參數(shù)如下:濺射功率為200 W,靶-基距離為70 mm,工作壓強(qiáng)為0.5 Pa,氬氣流量為15 sccm,濺射時(shí)間為40 min,基片溫度分別為300℃、350℃和400℃.

1.3 性能表征

GTZO薄膜的晶體結(jié)構(gòu)采用德國(guó)Bruker公司的D8-ADVANCE型X射線衍射儀(Cu Kα,射線源的波長(zhǎng)λ=0.15406 nm)分析,薄膜的方塊電阻利用SZ-82型數(shù)字式四探針儀測(cè)試,薄膜的光學(xué)性能使用TU-1901型雙光束紫外-可見光分光光度計(jì)進(jìn)行表征.

2 結(jié)果與討論

2.1 薄膜的微觀結(jié)構(gòu)

不同基片溫度時(shí)所制備GTZO薄膜樣品的XRD圖譜如圖1所示,由圖可見,所有GTZO樣品的特征譜線與均ZnO薄膜六角纖鋅礦結(jié)構(gòu)的特征譜線相吻合,這說明GTZO薄膜樣品均具有六角纖鋅礦結(jié)構(gòu),并且存在(002)方向上的擇優(yōu)取向.另外從XRD圖譜看出,對(duì)于所有GTZO薄膜,在衍射峰位34.4°附近存在一個(gè)很強(qiáng)的(002)衍射峰,并且沒有檢測(cè)到Ga2O3相和TiO2相的存在,這說明摻雜到薄膜當(dāng)中的Ga原子和Ti原子均以替位形式取代了六角晶格中的部分Zn原子的位置,或者它們彌散在薄膜的晶粒間界區(qū)域[28,29],對(duì)于不同元素?fù)诫s的 ZnO薄膜,也有類似結(jié)果的報(bào)道[30-32].

圖2為GTZO薄膜(002)衍射峰位2θ及其衍射強(qiáng)度隨基片溫度的變化關(guān)系,可以看出,基片溫度對(duì)GTZO樣品(002)衍射峰位的影響并不明顯,但對(duì)(002)峰的衍射強(qiáng)度具有較為顯著的影響,當(dāng)基片溫度為300℃、350℃和400℃時(shí),GTZO薄膜(002)峰衍射強(qiáng)度分別為3.5 ×105cps,6.6 ×105cps,6.3×105cps,呈現(xiàn)出先升高、后降低的變化趨勢(shì),其中基片溫度為350℃時(shí)所對(duì)應(yīng)的衍射峰強(qiáng)度最大.

GTZO樣品(002)衍射峰半高寬(B)隨基片溫度的變化如圖3(a)所示,由圖可知,基片溫度升高時(shí),半高寬B先逐漸減小、后逐漸增加,當(dāng)基片溫度為350℃時(shí)GTZO薄膜的B值最小,大約為0.162°.基于(002)衍射峰的峰位2θ值和對(duì)應(yīng)的半高寬B,不同基片溫度時(shí)GZTO薄膜的晶粒尺寸(D)可以根據(jù) Debye-Scherrer公式[33,34]計(jì)算:

公式(1)中,θ為衍射角,λ為X射線的波長(zhǎng)(對(duì)于銅靶,λ=0.15406 nm),k為形狀因子(這里取 k=0.89)[35].不同基片溫度時(shí)所制備 GTZO 樣品的晶粒尺寸D如圖3(b)所示,從圖中可以看出,當(dāng)基片溫度為300℃,350℃和400℃時(shí),GTZO樣品的晶粒尺寸 D 分別為36.6 nm,50.8 nm 和45.9 nm,結(jié)果說明GTZO薄膜的晶粒尺寸D明顯受到基片溫度的影響,D隨基片溫度的變化趨勢(shì)與半高寬B相反,當(dāng)基片溫度為350℃時(shí)樣品的晶粒尺寸最大(50.8 nm).

圖1 不同基片溫度時(shí)樣品的XRD圖譜Fig.1 XRD patterns of the samples deposited with different substrate temperatures

圖2 不同基片溫度時(shí)樣品的(002)峰位置和衍射強(qiáng)度Fig.2 The peak position(2θ)(a)and intensity(b)of(002)plane for the samples deposited with different substrate temperatures

圖3 不同基片溫度時(shí)樣品的(002)峰半高寬和晶粒尺寸Fig.3 The full-width at half-maximum(B)(a)and grain size(D)(b)of(002)plane for the samples deposited with different substrate temperatures

圖4 不同基片溫度時(shí)樣品的透射譜Fig.4 Transmittance spectra of the samples deposited with different substrate temperatures

2.2 薄膜的光電性能

圖4為不同基片溫度時(shí)所制備GTZO薄膜的透過率曲線,可以看出,所有薄膜樣品的透過率曲線顯示了清晰、光滑的干涉條紋,這種透過率曲線的多級(jí)振蕩來自于薄膜上表面和下表面(即與基片之間的界面)反射光之間的干涉,良好的振蕩特性表明所制備的GTZO薄膜具有平整的表面、均勻的厚度和良好的光學(xué)質(zhì)量[36,37].對(duì)于圖 4 的透過率譜線,可以粗略地分成3個(gè)區(qū)域:透明振蕩區(qū)(400~800 nm)、中等吸收區(qū)(360~400 nm)和強(qiáng)吸收區(qū)(200~360 nm).透明振蕩區(qū)表明GTZO薄膜在此光譜范圍內(nèi)基本上是透明的.隨著波長(zhǎng)(λ)減小,GTZO薄膜進(jìn)入中等吸收區(qū),這時(shí)薄膜具有一定的弱吸收能力.當(dāng)波長(zhǎng)λ繼續(xù)減小時(shí),GTZO薄膜進(jìn)入強(qiáng)吸收區(qū),可以看到大約在λ=355 nm處,薄膜的透過率急劇下降,其吸收能力顯著增強(qiáng),表明了GTZO薄膜的光學(xué)能隙在此附近.圖5(a)給出了不同溫度時(shí)沉積在玻璃基片上GTZO薄膜的平均透過率(Tav,未扣除玻璃基片),當(dāng)基片溫度為300℃,350℃和400℃時(shí),GTZO薄膜/玻璃基片的可見光區(qū)平均透過率Tav分別為71.5%,72.6% 和 73.2%,可見,薄膜的平均透過率隨著基片溫度的升高略有增加,但并沒有顯著性的變化.圖5(b)為GTZO薄膜的方塊電阻(Rs)與基片溫度之間的變化關(guān)系,隨著基片溫度的升高,方塊電阻Rs單調(diào)增加,呈現(xiàn)出先平緩而后陡峭的變化趨勢(shì).可見,雖然GTZO薄膜的Tav和Rs都隨基片溫度的升高而增加,但是二者的變化速率卻明顯不同,因此為了評(píng)價(jià)透明導(dǎo)電薄膜的光電綜合性能,Haacke[38]定義了優(yōu)良指數(shù),即薄膜的品質(zhì)因數(shù)(FH)為:

公式(2)中,Tav為GTZO薄膜可見光波段的平均透過率,Rs為薄膜的方塊電阻[39].不同基片溫度下所制備GTZO薄膜樣品的品質(zhì)因數(shù)FH如圖6所示,基片溫度從300℃升高到350℃時(shí),F(xiàn)H增大,而當(dāng)基片溫度繼續(xù)升高到400℃時(shí),F(xiàn)H反而減小,可見,基片溫度為350℃時(shí)GTZO薄膜的FH值最大(4.2×10-3Ω-1),這表明基片溫度為350℃時(shí)所制備的GTZO薄膜具有最好的光電綜合性能.

2.3 薄膜的光學(xué)能隙

由圖4可知,GTZO薄膜在波長(zhǎng)λ為400~800 nm范圍內(nèi)表現(xiàn)出良好的透光性能,并在355 nm左右有一陡峭的吸收邊,在吸收邊附近,薄膜的透過率(T)與吸收系數(shù)(α)之間滿足如下關(guān)系式[40]:

公式(3)中,T0和t分別為常數(shù)和薄膜厚度.對(duì)于吸收邊附近有 T0≈1[41],因此,利用式(3)式由薄膜厚度t以及對(duì)應(yīng)的吸收邊附近的光學(xué)透過率T就可以獲得薄膜的光學(xué)吸收系數(shù) α.根據(jù) Tauc法則[42],對(duì)于薄膜的吸收邊附近,光學(xué)吸收系數(shù)α與入射光子能量(hv)之間滿足如下方程:

圖5 不同基片溫度時(shí)樣品的可見光區(qū)平均透過率和方塊電阻值Fig.5 Average visible transmittance(Tav)(a)and sheet resistivity(Rs)(b)of the samples deposited with different substrate temperatures

圖6 不同基片溫度時(shí)樣品的品質(zhì)因數(shù)Fig.6 Figure of merit for the samples deposited with different substrate temperatures

公式(4)中,C為常數(shù),Eg為薄膜的光學(xué)能隙,指數(shù)m取決于躍遷的類型.當(dāng)m=2時(shí),對(duì)應(yīng)于直接躍遷,而當(dāng) m=0.5時(shí)則對(duì)應(yīng)于間接躍遷[43].由于GTZO薄膜屬于直接躍遷,故取m=2作出(αhv)2與hv之間的關(guān)系曲線圖,根據(jù)外推法得到橫軸(hv)上的交點(diǎn)(αhv=0)后,容易計(jì)算獲得薄膜的光學(xué)能隙Eg.圖7為不同基片溫度時(shí)所制備GTZO薄膜的(αhv)2-hv關(guān)系曲線,利用外推法可得樣品的光學(xué)能隙Eg值如圖8所示,不同基片溫度時(shí)所制備GTZO薄膜的Eg值為3.48~3.54 eV,均大于純ZnO薄膜的光學(xué)能隙(Eg0=3.37 eV)[8],這主要是 Burstein-Moss(B-M)效應(yīng)[43,44]所引起的,即由于導(dǎo)帶底部附近量子態(tài)基本上已被電子占據(jù),故價(jià)帶中的電子欲想直接躍遷到導(dǎo)帶中時(shí),則必須吸收更多的能量才能躍遷到導(dǎo)帶中較高的空位上,就如同禁帶寬度增加了.GTZO薄膜在紫外光區(qū)的吸收是由薄膜中的載流子濃度ne所決定的,由B-M效應(yīng)而引起的能隙寬化)可以表示為[27,45]:

圖7 不同基片溫度時(shí)樣品的(αhv)2-hv關(guān)系曲線Fig.7 (αhv)2as a function of hv for the samples deposited with different substrate temperatures

圖8 不同基片溫度時(shí)樣品的光學(xué)能隙Fig.8 Optical energy gap(Eg)of the samples deposited with different substrate temperatures

3 結(jié)語(yǔ)

采用高密度鎵鈦共摻雜氧化鋅鋁陶瓷靶作為濺射源,利用射頻磁控濺射技術(shù)制備了GTZO透明導(dǎo)電薄膜,研究了基片溫度對(duì)薄膜結(jié)構(gòu)、電學(xué)性質(zhì)和光學(xué)性能的影響.實(shí)驗(yàn)結(jié)果表明:基片溫度明顯影響GTZO薄膜的晶體結(jié)構(gòu)和光電性能,當(dāng)基片溫度為350℃時(shí),GTZO薄膜具有最好的c軸取向性、最大的晶粒尺寸、較低的方塊電阻和較高的可見光區(qū)平均透射率,其品質(zhì)因數(shù)最大、光電綜合性能最佳.由于受Burstein-Moss效應(yīng)的影響,所制備GTZO薄膜的光學(xué)能隙均大于純ZnO薄膜的能隙值,同時(shí)基片溫度對(duì)光學(xué)能隙也有一定程度的影響,當(dāng)基片溫度為350℃時(shí),GTZO薄膜的光學(xué)能隙最大.

[1]Brabec C J.Organic photovoltaics:technology and market[J].Sol Energy Mater Sol Cells,2004,83(2-3):273-292.

[2]Sariciftci N S,Smilowitz L,Heeger A J,et al.Photoinduced electron transfer from conducting polymers onto buckminsterfullerence[J].Science,1992,258(5087):1474-1476.

[3]Yu G,Gao J,Hummelen J C,et al.Polymer photovoltaic cells:enhanced efficiencies via a network ofinternal donor-acceptor heterojunctions[J].Science,1995,270(5243):1789-1791.

[4]Tang C W.Two-layer organic photovoltaic cell[J].Appl Phys Lett,1986,48(2):183-185.

[5]Li G,Shrotriya V,Huang J,et al.High-efficiency solution processable polymer photovoltaic cells by selforganization of polymer blends[J].Nat Mater,2005,4(11):864-868.

[6]Kim J Y,Lee K,Coates N E,et al.Tandem polymer solar cells fabricated by all-solution processing[J].Science,2007,317(5835):222-225.

[7]Chen H Y,Hou J,Zhang S,et al.Polymer solar cells with enhanced open-circuit voltage and efficiency[J].Nat Photonics,2009,3(11):649-653.

[8]Chen H X,Ding J J,Zhao X G,et al.Microstructure and optical properties of ZnO:Al films prepared by radio frequency reactive magnetron sputtering[J].Phys B,2010,405(7):1339-1344.

[9]Jayaraj M K,Antony A,Ramachandran M.Transparent conducting zinc oxide thin film prepared by off-axis rf magnetron sputtering[J].Bull Mater Sci,2002,25(3):227-230.

[10]Sakurai K,Kanehiro M,Nakahara K,et al.Effects of oxygen plasma condition on MBE growth of ZnO[J].J Cryst Growth,2000,209(2-3):522-252.

[11]Cao H T,Pei Z L,Gong J,et al.Transparent conductive Al and Mn doped ZnO thin films prepared by dc reactive magnetron sputtering[J].Surf Coat Technol,2004,184(1):84-92.

[12]Abduev A K,Akhmedov A K,Asvarov A S.The structural and electrical properties of Gd-doped ZnO and Ga,B-codoped ZnO thin films:the effects of additional boron impurity[J].Sol Energy Mater Sol Cells,2007,91(4):258-260.

[13]Aksoy S,Caglar Y,Ilican S,et al.Sol-gel derived Li-Mg co-doped ZnO films: preparation and characterization via XRD,XPS,F(xiàn)ESEM[J].J Alloy Compd,2012,512(1):171-178.

[14]Chen J,Chen D,He J,et al.The microstructure,optical,and electrical properties of sol-gel-derived Scdoped and Al-Sc co-doped ZnO thin films[J].Appl Surf Sci,2009,255(23):9413-9419.

[15]袁玉珍,王 輝,張化福,等.膜厚對(duì) Zr,Al共摻雜ZnO透明導(dǎo)電薄膜結(jié)構(gòu)和光電性能的影響[J].人工晶體學(xué)報(bào),2010,39(1):169-173.

[16]Nirmala M,Smitha P,Anukaliani A.Optical and electrical properties of undoped and(Mn,Co)codoped ZnO nanoparticles synthesized by DC thermal plasma method[J].Superlattice Microst,2011,50(5):563-571.

[17]Liu Y,Lian J.Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition[J].Appl Surf Sci,2007,253(7):3727-3730.

[18]Shukla R K,Srivastava A,Srivastava A,et al.Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition[J].J Cryst Growth,2006,294(2):427-431.

[19]Chen M,Pei Z L,Sun C,et al.ZAO:an attractive potential substitute for ITO in flat display panels[J].Mater Sci Eng B,2001,85(2-3):212-217.

[20]Martin A,Espinos J P,Justo A,et al.Preparation of transparent and conductive Al-doped ZnO thin films by ECR plasma enhanced CVD[J].Surf Coat Technol,2002,151-152(1):289-293.

[21]Heo G S,Gim I G,Park J W,et al.Effects of substrate temperature on propertiesofITO-ZnO composition spread films fabricated by combinatorial RF magnetron sputtering[J].J Solid State Chem,2009,182(10):2937-2940.

[22]Lin Y C,Chen M Z,Kuo C C,et al.Electrical and opticalproperties ofZnO:Alfilm prepared on polyethersulfone substrate by RF magnetron sputtering[J].Colloids Surf A,2009,337(1-3):52-56.

[23]Jeong S H,Park B N,Yoo D G,et al.Al-ZnO thin filmsas transparentconductive oxides:synthesis,characterization,and application tests[J].J Korean Phys Soc,2007,50(3):622-625.

[24]Pei Z L,Zhang X B,Zhang G P,et al.Transparent conductive ZnO:Al thin films deposited on flexible substrates prepared by direct current magnetron sputtering[J].Thin Solid Films,2006,497(1-2):20-23.

[25]Xu Z Q,Deng H,Li Y R,et al.Characteristics of Aldoped c-axis orientation ZnO thin films prepared by the sol-gel method[J].Mater Res Bull,2006,41(2):354-358.

[26]Kim Y S,Tai W P.Electrical and optical properties of Al-doped ZnO thin films by sol-gel process[J].Appl Surf Sci,2007,253(11):4911-4916.

[27]Wang M,Lee K E,Hahn S H,et al.Optical and photoluminescent properties of sol-gel Al-doped ZnO thin films[J].Mater Lett,2007,61(4-5):1118-1121.

[28]Chen H,Guo W,Ding J,et al.Ti-incorporated ZnO films synthesized via magnetron sputtering and its optical properties[J].Superlattice Microst,2012,51(4):544-551.

[29]Jiang M,Liu X,Chen G,et al.Preparation and photoelectric properties of Ti doped ZnO thin films annealed invacuum[J].JMaterSci:Mater Electron,2009,20(12):1225-1228.

[30]Ma Q-B,Ye Z-Z,He H-P,et al.Effects of deposition pressure on the properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering[J].Mat Sci Semicon Proc,2007,10(4-5):167-172.

[31]Yang W,Liu Z,Peng D-L,et al.Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method[J].Appl Surf Sci,2009,255(11):5669-5673.

[32]Zhang H-F,Liu R-J,Liu H-F,et al.Mn-doped ZnO transparent conducting films deposited by DC magnetron sputtering[J].Mater Lett,2010,64(5):605-607.

[33]Fang G J,Li D,Yao B L.Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target[J].Thin Solid Films,2002,418(1):156-162.

[34]Hong R,Shao J,He H,et al.ZnO:Zn phosphor thin films prepared by face-to-face annealing[J].J Cryst Growth,2005,284(3-4):347-352.

[35]Kale R B,Lokhande C D.Influence of air annealing on the structural,opticaland electricalpropertiesof chemically deposited CdSe nano-crystallites[J].Appl Surf Sci,2004,223(4):343-351.

[36]Yadav H K,Sreenivas K,Gupta V.Influence of postdeposition annealing on the structural and optical properties of cosputtered Mn doped ZnO thin films[J].J Appl Phys,2006,99(8):083507-1-083507-8.

[37]Zhong Z-Y,Gu J-H,Sum F-L,et al.Preparation and properties ofgallium-doped zinc oxide transparent conductive thin films[J].J Synth Cryst,2012,41(5):1337-1344.

[38]Haacke G.New figure of merit for transparent conductors[J].J Appl Phys,1976,47(9):4086-4089.

[39]Zhou J,Zhong Z Y.Structural and optoelectrical properties of Ga-doped ZnO semiconductor thin films grown by magnetron sputtering[J].Cryst Res Technol,2012,47(9):944-952.

[40]顧錦華,鐘志有,何 翔,等.真空退火處理對(duì)光敏薄膜及聚合物太陽(yáng)電池性能的影響[J].中南民族大學(xué)學(xué)報(bào):自然科學(xué)版,2009,28(3):30-33.

[41]李桂鋒,張 群,王穎華,等.高遷移率IWO透明導(dǎo)電氧化物薄膜制備及其退火處理研究[J].真空科學(xué)與技術(shù)學(xué)報(bào),2008,28(2):95-98.

[42]Ratana T,Amornpitoksuk P,Suwanboon S,et al.The wide band gap of highly oriented nanocrystalline Al doped ZnO thin films from sol-gel dip coating[J].J Alloy Compd,2009,470(3):408-412.

[43]孫奉?yuàn)?,惠述?襯底溫度對(duì)射頻濺射沉積ZAO透明導(dǎo)電薄膜性能的影響[J].中南民族大學(xué)學(xué)報(bào):自然科學(xué)版,2009,28(2):10-13.

[44]Prepelita P,Medianu R,Sbarcea B,et al.The influence of using different substrates on the structural and optical characteristics of ZnO thin films[J].Appl Surf Sci,2010,256(9):1807-1811.

[45]Fallah H R,Ghasemi M,Hassanzadeh A,et al.The effect of deposition rate on electrical,optical and structural properties of tin-doped indium oxide(ITO)films on glass at low substrate temperature[J].Phys B,2006,373(1):274-279.

猜你喜歡
基片時(shí)所導(dǎo)電
無Sn-Pd活化法制備PANI/Cu導(dǎo)電織物
Si和316L基片上TiN薄膜微觀結(jié)構(gòu)和應(yīng)力的對(duì)比分析
Ag NWs@SH-GO復(fù)合透明導(dǎo)電薄膜的制備與電學(xué)性能
Kappa運(yùn)動(dòng)搖搖杯
導(dǎo)電的風(fēng)箏
煙梗顆粒加填對(duì)再造煙葉基片物理性能的影響
基片表面傾斜及衍射對(duì)激光會(huì)聚原子沉積條紋的影響
澳議員用“納粹言論”遭抨擊
AL2O3陶瓷化學(xué)鍍Ni—P工藝研究
汽車電器盒用PCB導(dǎo)電能力的研究