康東升,張微微,吳 紅
(中南民族大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院,武漢430074)
本文研究下列橢圓方程組
(1)
假設(shè)參數(shù)滿(mǎn)足下面條件:
c1(|u|p+|v|p)≤Q(u,v)≤c2(|u|p+|v|p).
(H3)Qu(u,v),Qv(u,v)對(duì)任意u,v嚴(yán)格遞增,則存在:
Qu(u,v)≤M1(|u|p-1+|v|p-1),
Qv(u,v)≤M2(|u|p-1+|v|p-1).
u0,v0≠0,(u0,v0),(φ,ψ)=0,?(φ,ψ)∈((Ω))2.
近年來(lái)帶有Hardy項(xiàng)和臨界Sobolev指數(shù)的方程受到關(guān)注[1,2],但主要是對(duì)半線(xiàn)性方程的研究如文獻(xiàn)[3],近幾年才擴(kuò)展到擬線(xiàn)性問(wèn)題上來(lái)如文獻(xiàn)[4],2012年文獻(xiàn)[5]通過(guò)局部緊性理論研究了擬方程無(wú)窮解的存在性,本文基于此來(lái)研究此方程組的無(wú)窮解.
本文中因?yàn)榕R界指數(shù)p*的存在,I0(u,v)在大范圍中不滿(mǎn)足P-S條件,所以建立如下擾動(dòng)方程組及相應(yīng)能量泛函:
(2)
本文的結(jié)果可歸結(jié)為下面的兩個(gè)定理.
定理2 假設(shè)(H1),(H2),(H3)成立,則方程組(1)有無(wú)窮解.
引理1 當(dāng)ε=εn→0時(shí),(un,vn)是方程組(2)的解,滿(mǎn)足‖(un,vn)‖≤C.
(ii)對(duì)i,j=1,…,k,若i≠j,則當(dāng)n→∞時(shí)
證明過(guò)程與文獻(xiàn)[5]中附錄D相似,故省略.
(3)
的解,A>0是充分大的常數(shù).
由比較原則|un(x)| ≤wn(x),|vn(x)| ≤wn(x).
引理3[5]w是方程
引理4w是方程
通過(guò)引理2可得:
‖C+Cw1‖q1≤C′+C‖w1‖q1≤
引理5 (u,v)是方程組
的解且(u,v)∈(W1,p(RN))2,α+β=p*,則:
證明證明過(guò)程與文獻(xiàn)[5]附錄B解的衰退估計(jì)相似,故省略.
證明由引理4和引理6可直接得證.
不包括(un,vn)的任意集中點(diǎn),這個(gè)區(qū)域我們稱(chēng)作(un,vn)的安全區(qū)域.
證明證明與文獻(xiàn)[5]相同,故省略.
(4)
(5)
因此
(6)
則(4)式得證,同理(5)式得證,由(4)和(5)式及引理8可得:
(7)
利用引理8 及(6)和(7)式可得:
(8)
定理1證明我們有以下兩種情形:
F(un,vn,x,x0,v)=
(9)
情形(ii)取x0=xn.
因?yàn)閜n
(10)
把?Bn分解為?Bn=?iBn∪?eBn,其中?iBn=?Bn∩Ω,?eBn=?Bn∩?Ω.
在?Ω上un=vn=0中,則:
(11)
且當(dāng)n→∞時(shí),‖un,2‖+‖vn,2‖→0,通過(guò)引理5,若N>p2,則:
(13)
因?yàn)樵赗NΩ中,un=0,vn=0.
(14)
(15)
假設(shè)(ρxn,1,λn,1(U1),ρxn,1,λn,1(V1))是所有爆破項(xiàng)中有最小集中率的,則:
同理
(16)
因此存在常數(shù)c′>0滿(mǎn)足:
(17)
同理
(18)
由(14)~(18)式得:
(19)
[1]Hardy G,Littlewood J,Polya G. Inequalities[M]. Cambridge: Cambridge University Press,1988: 239-243.
[2]Egnell H. Elliptic boundary value problems with singular coefficients and critical nonlinearities [J]. Indiana Univ Math,1989,38(2): 235-251.
[3]Bahri A,Coron J M. On a nonlinear elliptic equation involving the critical Sobolev exponent [J]. Comm Pure Appl Math,1988,41:253-294.
[4]Azorero J,Peral I. Existence and nonuniqueness for thep-Laplacian [J]. Comm Partial Differential Equations,1987,12: 1389-1430.
[5]Cao D,Peng S,Yan S. Infinitely many solutions forp-Laplacian equation involving critical Sobolev growth [J]. J Funct Anal,2012,262:2861-2902.
[6]Rabinowitz P. Minimax methods in critical points theory with applications to differential equations [M]. Washington: American Mathematical Society,1986: 7-50.
[7]Ambrosetti A,Rabinowitz P. Dual variational methods in critical point theory and applications [J]. J Funct Anal,1973,14:349-381.
[8]Cao D,Yan S. Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential [J].Calc Var PDE,2010,38:471-501.