国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

勾股定理帶來的小幸福

2014-01-14 07:41賴以威
知識(shí)就是力量 2014年10期
關(guān)鍵詞:瞭望臺(tái)圓面積外圓

賴以威

生活中你會(huì)擁有許多小幸福,比如,在拐角突然撞到校園男神或女神,丟了飯卡卻有人打電話來要還你,還有一種小幸福,是奇妙的勾股定理測(cè)算帶來的。

“直角三角形,夾著直角的兩邊平方相加,等于斜邊平方?!边@個(gè)古代文明中重要的幾項(xiàng)數(shù)學(xué)發(fā)現(xiàn)之一,考卷上常見的概念之一,與我們的現(xiàn)實(shí)生活也有著重要關(guān)系。我們就來看看這兩個(gè)故事——

你看多遠(yuǎn),我都知道

在臺(tái)北某棟大樓的瞭望臺(tái)上,兩個(gè)少男少女靠在窗邊。女孩突然說:“風(fēng)景好漂亮??!從這里能看得好遠(yuǎn),假如沒有被周圍的山擋住,一直往外望,能望到哪里去呢?”

男孩靈機(jī)一動(dòng),往玻璃窗伸出手指,對(duì)窗呵了口氣,在凝聚出來的霧上畫了個(gè)半圓。圓上畫兩個(gè)小人。以小人為起點(diǎn),他畫了一條與大圓相切的切線。

“這是地球,上面的兩個(gè)人,是站在瞭望臺(tái)上的我們。地球半徑約為6400千米,瞭望臺(tái)高度為0.25千米,利用勾股定理,可求出從我們所在位置畫出去的切線長(zhǎng)度x,即(0.25+6400) 2=64002+x2?!?/p>

男孩利落地列出一元二次方程式,然后解釋道,

“(0.25+6400)2=64002+x2展開,左邊是0.252+2×0.25×6400+64002,第一項(xiàng)跟后面兩項(xiàng)比太小,可以忽略,第三項(xiàng)地球半徑平方又可以跟右邊第一項(xiàng)消掉。因此,可得x近似于,大約是56.6千米。換句話說,站在瞭望臺(tái)的我們能看到56.6千米以外的景色。大概是宜蘭、還有東北角外海好幾千米的地方?!?/p>

女孩露出崇拜的眼神看著男孩,問他怎么那么聰明,要他教她數(shù)學(xué)。男孩靦腆地笑笑,答應(yīng)了她的請(qǐng)求。

甜甜圈有多大?

喜歡甜甜圈的小A常??鄲涝撡I哪家的甜甜圈。因?yàn)樘鹛鹑Φ闹虚g開了一個(gè)洞,體積大小不僅跟外面的圓有關(guān),跟中空的內(nèi)圓也有關(guān)系。看起來比較小的,可以推托說:

“我們的內(nèi)圓小,是屬于比較札實(shí)的類型?!?/p>

如果中空的圓很大,也可以解釋成:

“我們的甜甜圈大,內(nèi)圓難免也大一點(diǎn)嘛,數(shù)學(xué)不是有教過嗎,等比例放大,分量絕對(duì)有保證。”

該怎么簡(jiǎn)單測(cè)量甜甜圈體積,揭穿甜甜圈面包師傅的詭計(jì),困擾了小A許久。直到某一天他從勾股定理中意外找到了答案。

假設(shè)甜甜圈的水平剖面完全一樣,體積等于任意水平剖面的面積乘上高度。高度很好算,重點(diǎn)在于水平剖面,也就是由上往下看的環(huán)形面積該如何計(jì)算。最直接的方法是把內(nèi)圓與外圓的半徑都量出來,再用圓面積=π×(半徑)2來計(jì)算。

其中R是外圓的半徑,r是內(nèi)圓的半徑,我們簡(jiǎn)稱為外徑與內(nèi)徑。

與其測(cè)量?jī)?nèi)徑與外徑,再算兩者的平方相減,不如使用勾股定理更簡(jiǎn)單地算出甜甜圈的體積:從甜甜圈內(nèi)圈的任意一點(diǎn)為基準(zhǔn),沿著內(nèi)圈切線方向撕下一片。以撕下那片直邊的長(zhǎng)度為圓直徑所算出的圓面積,就是甜甜圈的水平剖面面積。

根據(jù)定義,切線與內(nèi)圓半徑垂直,而切線與外圓相接的兩個(gè)接點(diǎn),連回圓心的長(zhǎng)度,剛好是外圓的半徑。也就是說,內(nèi)徑、外徑,以及這條撕下的直線的一半,恰好形成一個(gè)三角形,外徑是斜邊。利用勾股定理來計(jì)算撕下直線的一半長(zhǎng)度,恰好是。以此值為半徑,套入圓公式,可以得到對(duì)應(yīng)的圓面積是π(R2-r2),跟之前直接量?jī)?nèi)外圓的半徑有著一樣的結(jié)果。有了勾股定理的幫忙,小A能迅速算出附近幾家甜品店的甜甜圈大小,保證能買到最劃算的甜甜圈。

這兩個(gè)例子雖然很簡(jiǎn)單,但卻有著相當(dāng)重要的象征意義,計(jì)算過程在現(xiàn)實(shí)生活中就相當(dāng)于“成本”,許多公司都以降低成本為第一考量。事實(shí)上,只要善加利用數(shù)學(xué),很多時(shí)候便能輕松地省下大量成本。勾股定理之所以重要且廣為流傳,因?yàn)樗跍y(cè)量上扮演了相當(dāng)重要的角色。透過勾股定理,我們可以計(jì)算出一些原本無法得知的數(shù)據(jù),或者,可以簡(jiǎn)化一些復(fù)雜的測(cè)量。在古代,城池大小、水井深度的測(cè)量,都有勾股定理的蹤影。就算在現(xiàn)代日常生活中,勾股定理依然有許多測(cè)量的應(yīng)用。

猜你喜歡
瞭望臺(tái)圓面積外圓
吉林省林區(qū)瞭望臺(tái)配置與林地可視性分析
高精度專用數(shù)控外圓磨床研制
留在蘇竇山瞭望臺(tái)上的詩(shī)
試求證圓面積與周長(zhǎng)的關(guān)系
十二月,瞭望臺(tái)
瞭望臺(tái)
外圓車削過程的解析建模與實(shí)驗(yàn)驗(yàn)證
圓環(huán)面積門診室
高精度外圓磨床磨削測(cè)力儀的研制
薄壁套類零件外圓車削工藝
尤溪县| 都江堰市| 通道| 乌兰县| 麻栗坡县| 周宁县| 镇远县| 岱山县| 祁连县| 眉山市| 治多县| 柳林县| 达拉特旗| 北流市| 永昌县| 金秀| 忻州市| 奉化市| 同江市| 岱山县| 昔阳县| 铁岭县| 山西省| 新闻| 东乌| 汕尾市| 丰县| 三穗县| 射阳县| 福贡县| 浠水县| 拜城县| 田林县| 定边县| 翁牛特旗| 忻城县| 南和县| 苏尼特右旗| 沂南县| 江都市| 甘泉县|