国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

半線(xiàn)性隨機(jī)變延遲微分方程數(shù)值解的收斂性

2014-01-23 10:45劉國(guó)清
關(guān)鍵詞:哈爾濱工業(yè)大學(xué)收斂性大慶

劉國(guó)清,張 玲

(大慶師范學(xué)院數(shù)學(xué)科學(xué)學(xué)院,黑龍江大慶 163712)

半線(xiàn)性隨機(jī)變延遲微分方程數(shù)值解的收斂性

劉國(guó)清,張 玲

(大慶師范學(xué)院數(shù)學(xué)科學(xué)學(xué)院,黑龍江大慶 163712)

隨機(jī)變延遲微分方程;指數(shù)Euler方法;Lipschitz條件;It?公式;強(qiáng)收斂性

隨機(jī)模型在生物學(xué)、傳染病、經(jīng)濟(jì)與金融等領(lǐng)域應(yīng)用廣泛.大多數(shù)隨機(jī)微分方程都是非線(xiàn)性的,其解析解不能表達(dá)為顯式形式,因此,數(shù)值解的研究在實(shí)際應(yīng)用中非常重要.隨機(jī)微分方程數(shù)值解的研究目前已有許多成果[1-5],Higham等[3]給出了隨機(jī)微分方程數(shù)值解的幾乎處處與矩指數(shù)穩(wěn)定性.文獻(xiàn)[6-11]研究了隨機(jī)延遲微分方程.曹婉蓉等[6]給出了隨機(jī)延遲微分方程Euler-Maruyama方法的均方穩(wěn)定性;毛學(xué)榮[11]討論了隨機(jī)延遲微分方程Euler-Maruyama方法的指數(shù)穩(wěn)定性.對(duì)于半線(xiàn)性隨機(jī)延遲微分方程指數(shù)Euler方法的收斂性和穩(wěn)定性研究目前報(bào)道較少.文獻(xiàn)[6-7]首先把指數(shù)Euler方法應(yīng)用到隨機(jī)微分方程上;文獻(xiàn)[12]給出了隨機(jī)微分方程指數(shù)Euler方法的穩(wěn)定性和收斂性;文獻(xiàn)[13]應(yīng)用Lyapunov方法給出了常延遲隨機(jī)微分方程指數(shù)Euler方法的收斂性和穩(wěn)定性;文獻(xiàn)[14]用直接證明方法給出了兩類(lèi)隨機(jī)延遲微分方程指數(shù)Euler方法的收斂性和指數(shù)穩(wěn)定性.本文給出該隨機(jī)變延遲微分方程的指數(shù)Euler方法,得到了其數(shù)值解的收斂性.

1 預(yù)備知識(shí)及指數(shù)Euler方法

2 指數(shù)Euler方法數(shù)值解的收斂性

引理1如果線(xiàn)性增長(zhǎng)條件(H2)成立,則存在常數(shù)C1>0,使得方程(1)的精確解和連續(xù)指數(shù)Euler方法的近似解(5)滿(mǎn)足如下關(guān)系:

3 數(shù)值算例

表1 指數(shù)Euler方法數(shù)值解的全局誤差Table 1 Global error of numerrical solutions by the exponential Euler method

[1] Friedman A.Stochastic Differential Equations and Applications[M].New York:Academic Press,1975.

[2] Higham D J.An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations[J].SIAM Review,2001,43(3):525-546.

[3] Higham D J,MAO Xuerong,YUAN Chenggui.Almost Sure and Moment Exponential Stability in the Numerical Simulation of Stochastic Differential Equations[J].SIAM J Numer Anal,2007,45(2):592-609.

[4] MAO Xuerong.Stochatic Differential Equations and Applications[M].Chichester:Horwood Publishing,1997.

[5] MAO Xuerong,YUAN Chenggui.Stochastic Differential Equations with Markovian Switching[M].London:Imperial College Press,2006.

[6] CAO Wanrong,LIU Mingzhu,F(xiàn)AN Zhencheng.MS-Stability of the Euler-Maruyama Method for Stochastic Differential Delay Equations[J].Appl Math Comput,2004,159(1):127-135.

[7] 范振成,劉明珠.隨機(jī)延遲微分方程數(shù)值解的p階均方指數(shù)穩(wěn)定[J].黑龍江大學(xué)自然科學(xué)學(xué)報(bào),2005,22(4):468-470.(FAN Zhencheng,LIU Mingzhu.Thepth Moment Exponential Stability for the Stochastic Delay Differential Equation[J].Journal of Natural Science of Heilongjiang University,2005,22(4):468-470.)

[8] MAO Xuerong.Numerical Solutions of Stochastic Differential Delay Equations under the Generalized Khasminskii-Type Conditions[J].App Math Comput,2011,217(12):5512-5524.

[9] MAO Xuerong.Numerical Solutions of Stochastic Functional Differential Equations[J].LMS J Comput Math,2003,6:141-161.

[10] MAO Xuerong,Sabanis S.Numerical Solutions of Stochastic Differential Delay Equations under Local Lipschitz Condition[J].J Comput Appl Math,2003,151(1):215-227.

[11] MAO Xuerong.Exponential Stability of Equidistant Euler-Maruyama Approximations of Stochastic Differential Delay Equations[J].J Comput Appl Math,2007,200(1):297-316.

[12] 史春妹.隨機(jī)微分方程指數(shù)Euler方法收斂性和穩(wěn)定性[D].哈爾濱:哈爾濱工業(yè)大學(xué),2011.(SHI Chunmei.The Convergence and Stability of Exponential Euler Method for Stochastic Differential Equations[D].Harbin:Harbin Institute of Technology,2011.)

[13] 周雪.隨機(jī)延遲微分方程指數(shù)Euler法的收斂性和穩(wěn)定性[D].哈爾濱:哈爾濱工業(yè)大學(xué),2012.(ZHOU Xue.Convergence and Stability of Exponential Euler Method for Stochastic Delay Differential Equations[D].Harbin:Harbin Institute of Technology,2012.)

[14] 張玲.幾類(lèi)隨機(jī)延遲微分方程的數(shù)值分析[D].哈爾濱:哈爾濱工業(yè)大學(xué),2013.(ZHANG Ling.Numerical Analysis for Several Classes of Stochastic Delay Differential Equations[D].Harbin:Harbin Institute of Technology,2013.)

Convergence of Numerical Solutions for Semi-linear Stochastic Variable Delay Differential Equations

LIU Guoqing,ZHANG Ling
(SchoolofMathematicalSciences,DaqingNormalUniversity,Daqing163712,HeilongjiangProvince,China)

stochastic variable delay differential equation;exponential Euler method;Lipschitz condition;It?formula;strong convergence

O241.81

A

1671-5489(2014)03-0451-09

10.13413/j.cnki.jdxblxb.2014.03.09

2013-11-22.

劉國(guó)清(1966—),男,漢族,碩士,教授,從事拓?fù)鋭?dòng)力系統(tǒng)的研究,E-mail:lgq660609@163.com.通信作者:張 玲(1978—),女,漢族,博士,講師,從事微分方程數(shù)值解和隨機(jī)過(guò)程的研究,E-mail:zl78521@163.com.

黑龍江省教育廳科研項(xiàng)目(批準(zhǔn)號(hào):11553003).

趙立芹)

猜你喜歡
哈爾濱工業(yè)大學(xué)收斂性大慶
李大慶
《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
Lp-混合陣列的Lr收斂性
國(guó)之大慶,成就報(bào)道如何“融”新出彩
END隨機(jī)變量序列Sung型加權(quán)和的矩完全收斂性
《物外真游》
——高大慶作品欣賞
《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
哈爾濱工業(yè)大學(xué)設(shè)計(jì)學(xué)系
行為ND隨機(jī)變量陣列加權(quán)和的完全收斂性