張洪博
(西南大學(xué)農(nóng)學(xué)與生物科技學(xué)院,重慶 400715)
煙堿(nicotine),即尼古丁,是煙草生物堿(包括煙堿、降煙堿、新煙草堿和假木賊堿等)的一種,約占煙草生物堿總含量的90%~95%[1]。煙葉煙堿含量占葉片干重的0.6%~3.0%,是煙草和卷煙質(zhì)量的一項重要指標。對煙堿代謝的分子遺傳學(xué)研究可以揭示煙堿代謝累積的分子機制,并為煙堿含量及煙堿成分調(diào)節(jié)相關(guān)的育種工作提供理論基礎(chǔ)。近年來,有關(guān)煙堿合成、轉(zhuǎn)運及轉(zhuǎn)化的一些重要基因已被陸續(xù)克隆,對煙堿合成代謝機理研究和煙草遺傳育種工作產(chǎn)生了重要推動作用。
煙堿分子由一個吡咯烷環(huán)和一個吡啶環(huán)構(gòu)成,在煙草根部合成,通過木質(zhì)部向地上部運輸,在煙草植株的葉片中含量最高,莖部含量最低[2-3]。
煙堿吡咯烷環(huán)由氮代謝中形成的腐胺合成。腐胺可通過精氨酸脫羧酶(ADC,arginine decarboxylase)催化精氨酸脫羧形成,或由鳥氨酸脫羧酶(ODC,ornithine decarboxylase)催化鳥氨酸脫羧形成[4-6]。腐胺在腐胺 N-甲基轉(zhuǎn)移酶(PMT,putrescine-N-methyltransferase)作用下獲得由 S-腺苷蛋氨酸(SAM,S-adenosyl-L-methionine)提供的甲基形成 N-甲基腐胺[7-9],這是一個依賴S-腺苷蛋氨酸合成酶(SAMS,S-adenosylmethionine synthase)活性的反應(yīng)。N-甲基腐胺在N-甲基腐胺氧化酶(MPO,N-methylputrescine oxidase)催化下形成4-甲氨基丁醚[10],并通過自身環(huán)化形成N-甲基-△1-吡咯啉陽離子,隨后與提供吡啶環(huán)部分的煙酸衍生物發(fā)生縮合反應(yīng)形成煙堿[11]。
煙堿吡啶環(huán)部分由煙酸提供,其前體是由天冬氨酸合成的喹啉酸[12]。喹啉酸在喹啉酸磷酸核糖轉(zhuǎn)移酶(QPRT,quinolinate phosphoribosyltransferase)催化下形成煙酰胺腺嘌呤二核苷酸(NAD),然后經(jīng)由吡啶核苷酸循環(huán)途徑生成煙酸[7,13]。
近期有關(guān)煙堿吡咯烷環(huán)部分和吡啶環(huán)部分縮合反應(yīng)的研究表明,NADPH依賴性還原酶的PIP 家族(包括松脂醇還原酶、異黃酮還原酶和苯基香豆?jié)M芐基醚還原酶)成員類異黃酮還原酶基因A622及其同源基因參與了這一過程[14-15],小檗堿橋接酶(Berberine bridge enzyme)家族成員BBL基因也參與了這一反應(yīng)[16]。
煙堿在煙草根尖細胞合成后[2,17],經(jīng)木質(zhì)部運輸?shù)綗熑~的葉肉細胞并儲存于液泡內(nèi),推測應(yīng)有大量蛋白參與了煙堿的轉(zhuǎn)運過程。近期研究已從煙草中分離鑒定了若干煙堿轉(zhuǎn)運蛋白基因,主要有定位于液泡膜的煙堿轉(zhuǎn)運蛋白基因及定位于質(zhì)膜的煙堿轉(zhuǎn)運蛋白基因。
目前發(fā)現(xiàn)的定位于液泡膜的煙堿轉(zhuǎn)運蛋白基因主要是多藥與毒性化合物外排家族(MATE,multidrug and toxic compound extrusion)基因。MATE是一類新型二級轉(zhuǎn)運蛋白基因家族,在植物中有多個成員[18]。2009年,Morita等從煙草中分離到一個MATE家族的轉(zhuǎn)運蛋白基因,該基因受茉莉酸誘導(dǎo)表達,被命名為茉莉酸誘導(dǎo)煙堿轉(zhuǎn)運蛋白基因JAT1[19]。JAT1蛋白定位于煙草葉片細胞的液泡膜上,可以轉(zhuǎn)運煙堿及假木賊堿[19]。同時,另外兩個煙堿轉(zhuǎn)運蛋白基因 MATE1 和MATE2也在煙草中得到分離,MATE1和MATE2蛋白也定位于煙草葉片細胞的液泡膜上[20]。
最近分離鑒定的煙草尼古丁吸收透性酶(NUP1,nicotine uptake permease 1)基因編碼另一類具有煙堿轉(zhuǎn)運功能的蛋白,與定位于液泡膜上的MATE蛋白不同,NUP1蛋白定位于質(zhì)膜上,負責(zé)將胞質(zhì)外體的煙堿轉(zhuǎn)運到胞質(zhì)內(nèi)[21]。此外,NUP1與MATE蛋白的煙堿轉(zhuǎn)運功能也有差別[21]。
煙堿是煙草特有亞硝胺NNK[4-(N-甲基亞硝胺基)-1-(3-吡啶基)-1-丁酮]和NNN(N'–亞硝基降煙堿)的前體[22]。煙草中煙堿向降煙堿的轉(zhuǎn)化由細胞色素P450基因家族中CYP82E亞族成員編碼的煙堿-N-去甲基化酶(NND,nicotine N-demethylase)催化[23]。降煙堿是一種有害物質(zhì),是致癌物N'–亞硝基降煙堿(NNN)的主要前體[24-25]。目前已有多個催化煙堿向降煙堿轉(zhuǎn)化的基因得到分離和鑒定,如:CYP82E5v2[23]、CYP82E2[26]、CYP82E10[27]和CYP82E4[28]等。在這些煙堿-N-去甲基化酶基因中,CYP82E5v2在綠色葉片中表達量較高,CYP82E4則主要在衰老葉片中表達[23]。近期還發(fā)現(xiàn)一個亞甲基四氫葉酸還原酶 MTHFR1(Methylenetetrahydrofolate reductase 1)可以通過調(diào)控CYP82E4基因的表達水平而影響煙堿向降煙堿的轉(zhuǎn)化[29]。
煙堿合成受到多種因子調(diào)控,已知參與煙堿代謝調(diào)控的植物激素主要有茉莉酸、生長素及乙烯,其中生長素和乙烯是煙堿合成的負調(diào)控因子[4,30-33]。近期的煙堿代謝調(diào)控研究主要集中于茉莉酸信號途徑調(diào)控因子。茉莉酸(JA,jasmonate)是重要的植物次生代謝調(diào)節(jié)因子,煙草中大部分煙堿合成功能基因都受到茉莉素信號途徑調(diào)控[4,30,32,34-36]。
茉莉酸受體是由COI1、負調(diào)控因子JAZ(Jasmonate ZIM-Domain)蛋白和肌醇戊基磷酸分子組成的復(fù)合體[37-38]。有茉莉酸存在時,茉莉酸衍生物JA-Ile與茉莉酸受體相結(jié)合導(dǎo)致負調(diào)控因子JAZ蛋白的泛素化降解,從而釋放下游轉(zhuǎn)錄激活因子并激活植物的茉莉酸應(yīng)答[39]。煙草的茉莉酸途徑調(diào)控因子COI1和JAZ蛋白都已被證明是煙堿合成調(diào)控因子[35]。近期研究還鑒定了一些調(diào)控?zé)焿A合成的轉(zhuǎn)錄因子,如 ERF轉(zhuǎn)錄因子家族成員JAP1、ERF32及ORC1的同源基因等[40-41],bHLH轉(zhuǎn)錄因子家族成員bHLH1/2和MYC2等[42-43],這些ERF轉(zhuǎn)錄因子和bHLH轉(zhuǎn)錄因子還可以通過彼此間的相互調(diào)控影響煙堿代謝過程[44-45]。
前期對煙堿合成基因PMT啟動子中一段由G-box,AT-rich和GCC-box-like元件構(gòu)成的茉莉酸應(yīng)答片段的研究證明這三個元件都是茉莉酸應(yīng)答的必需元件[32],已鑒定的ERF和bHLH煙堿合成調(diào)控因子可結(jié)合其中的G-box和GCC-box-like元件[41,43],但AT-rich元件的結(jié)合蛋白還未發(fā)現(xiàn),現(xiàn)有研究也無法解釋PMT基因的茉莉酸應(yīng)答機理。因此,煙堿合成代謝相關(guān)調(diào)控因子基因的分離和鑒定仍是一個重要研究方向。
雖然煙草的煙堿代謝途徑已基本清楚,且大部分代謝步驟都有一些功能基因得到分離鑒定,但是這些功能基因在煙草中的同源基因遠未得到完全發(fā)掘,特別是普通煙草為多倍體植物,每個基因都有大約5個同源基因,因此,煙堿代謝功能基因的研究還有大量工作需要開展。近來,煙堿代謝功能基因的調(diào)控機理研究已經(jīng)成為煙堿代謝調(diào)控研究的熱點問題,分離和鑒定煙堿代謝功能基因的調(diào)控因子將是未來一段時期的主要研究內(nèi)容。
[1]Ashihara H, Crozier A, Komamine A.Plant Metabolism and Biotechnology [M].Chippenham∶ John Wiley & Sons, Ltd, 2011.
[2]Dawson R.Nicotine synthesis in excised tobacco roots[J].Am J Bot, 1942, 29∶ 813-815.
[3]Thurston R, Smith W T, Cooper B P.Alkaloid secretion by trichomes of Nicotiana species and resistance to aphids[J].Entomol Exp Appl, 1966, 9∶ 428-432.
[4]Imanishi S, Hashizume K, Nakakita M, et al.Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures[J].Plant Mol Biol, 1998, 38∶1101-1111.
[5]Tiburcio A F, Galston A W.Arginine decarboxylase as the source of putrescine for tobacco alkaloids[J].Phytochemistry, 1986,25∶ 107-110.
[6]Burtin D, Michael A J.Overexpression of arginine decarboxylase in transgenic plants[J].Biochem J, 1997, 325 (Pt 2)∶331-337.
[7]Chattopadhyay M K, Ghosh B.Molecular analysis of polyamine biosynthesis in higher plants[J].Curr Sci, 1998, 74∶ 517-522.
[8]Chou W M, Kutchan T M.Enzymatic oxidations in the biosynthesis of complex alkaloids[J].Plant J, 1998, 15∶ 289-300.
[9]Kutchan T M.Alkaloid Biosynthesis-The Basis for Metabolic Engineering of Medicinal Plants[J].Plant Cell, 1995, 7∶1059-1070.
[10]Naconsie M, Kato K, Shoji T, et al.Molecular evolution of N-methylputrescine oxidase in tobacco[J].Plant Cell Physiol, 2014,55∶ 436-444.
[11]Mizusaki S, Kisaki T, Tamaki E.Phytochemical studies on the tobacco alkaloids.XII.Identification of gamma-methylaminobutyraldehyde and its precursor role in nicotine biosynthesis[J].Plant Physiol, 1968, 43∶ 93-98.
[12]Katoh A, Hashimoto T.Molecular biology of pyridine nucleotide and nicotine biosynthesis[J].Front Biosci, 2004, 9∶1577-1586.
[13]Wagner R, Feth F, Wagner K G.The pyridine-nucleotide cycle in tobacco∶ Enzyme activities for the recycling of NAD[J].Planta, 1986, 167∶ 226-232.
[14]Deboer K D, Lye J C, Aitken C D, et al.The A622 gene in Nicotiana glauca (tree tobacco)∶ evidence for a functional role in pyridine alkaloid synthesis[J].Plant Mol Biol, 2009, 69∶ 299-312.
[15]Kajikawa M, Hirai N, Hashimoto T.A PIP-family protein is required for biosynthesis of tobacco alkaloids[J].Plant Mol Biol,2009, 69∶ 287-298.
[16]Kajikawa M, Shoji T, Kato A, et al.Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco[J].Plant Physiol, 2011, 155∶ 2010-2022.
[17]Solt M L.Nicotine production and growth of excised tobacco root cultures[J].Plant Physiol, 1957, 32∶ 480-484.
[18]Li L, He Z, Pandey G K, et al.Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification[J].J Biol Chem, 2002, 277∶ 5360-5368.
[19]Morita M, Shitan N, Sawada K, et al.Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion(MATE) transporter in Nicotiana tabacum[J].Proc Natl Acad Sci U S A, 2009, 106∶ 2447-2452.
[20]Shoji T, Inai K, Yazaki Y, et al.Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots[J].Plant Physiol, 2009, 149∶ 708-718.
[21]Hildreth S B, Gehman E A, Yang H, et al.Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism[J].Proc Natl Acad Sci U S A, 2011, 108∶ 18179-18184.
[22]Rodgman A, Perfetti T A.The Chemical Components of Tobacco and Tobacco Smoke [M].Boca Raton∶ CRC Press, 2009.
[23]Gavilano L B, Siminszky B.Isolation and characterization of the cytochrome P450 gene CYP82E5v2 that mediates nicotine to nornicotine conversion in the green leaves of tobacco[J].Plant Cell Physiol, 2007, 48∶ 1567-1574.
[24]Hecht S S.Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines[J].Chem Res Toxicol, 1998, 11∶559-603.
[25]Hoffmann D, Brunnemann K D, Prokopczyk B, et al.Tobacco-specific N-nitrosamines and Areca-derived N-nitrosamines∶chemistry, biochemistry, carcinogenicity, and relevance to humans[J].J Toxicol Environ Health, 1994, 41∶ 1-52.
[26]Chakrabarti M, Meekins K M, Gavilano L B, et al.Inactivation of the cytochrome P450 gene CYP82E2 by degenerative mutations was a key event in the evolution of the alkaloid profile of modern tobacco[J].New Phytol, 2007, 175∶ 565-574.
[27]Lewis R S, Bowen S W, Keogh M R, et al.Three nicotine demethylase genes mediate nornicotine biosynthesis in Nicotiana tabacum L.∶ functional characterization of the CYP82E10 gene[J].Phytochemistry, 2010, 71∶ 1988-1998.
[28]Siminszky B, Gavilano L, Bowen S W, et al.Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase[J].Proc Natl Acad Sci U S A, 2005, 102∶ 14919-14924.
[29]Hung C Y, Fan L, Kittur F S, et al.Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation[J].Plant Physiol, 2013, 161∶ 1049-1060.
[30]Baldwin I T.Jasmonate-induced responses are costly but benefit plants under attack in native populations[J].Proc Natl Acad Sci U S A, 1998, 95∶ 8113-8118.
[31]Xu B F, Sheehan M J, Timko M P.Differential induction of ornithine decarboxylase (ODC) gene family members in transgenic tobacco (Nicotiana tabacum L.cv.Bright Yellow 2) cell suspensions by methyl-jasmonate treatment[J].Plant Growth Regul, 2004, 44∶ 101-116.
[32]Xu B, Timko M.Methyl jasmonate induced expression of the tobacco putrescine N -methyltransferase genes requires both G-box and GCC-motif elements[J].Plant Mol Biol, 2004, 55∶ 743-761.
[33]Shoji T, Nakajima K, Hashimoto T.Ethylene suppresses jasmonate-induced gene expression in nicotine biosynthesis[J].Plant Cell Physiol, 2000, 41∶ 1072-1076.
[34]Shoji T, Yamada Y, Hashimoto T.Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris[J].Plant Cell Physiol, 2000, 41∶ 831-839.
[35]Shoji T, Ogawa T, Hashimoto T.Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes[J].Plant Cell Physiol, 2008, 49∶ 1003-1012.
[36]van der Fits L, Memelink J.ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism[J].Science, 2000, 289∶ 295-297.
[37]Yan J, Zhang C, Gu M, et al.The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor[J].Plant Cell,2009, 21∶ 2220-2236.
[38]Sheard L B, Tan X, Mao H, et al.Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J].Nature,2010, 468∶ 400-405.
[39]Thines B, Katsir L, Melotto M, et al.JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling[J].Nature, 2007, 448∶ 661-665.
[40]De Sutter V, Vanderhaeghen R, Tilleman S, et al.Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells[J].Plant J, 2005, 44∶ 1065-1076.
[41]Shoji T, Kajikawa M, Hashimoto T.Clustered transcription factor genes regulate nicotine biosynthesis in tobacco[J].Plant Cell,2010, 22∶ 3390-3409.
[42]Todd A T, Liu E, Polvi S L, et al.A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana[J].Plant J, 2010, 62∶ 589-600.
[43]Zhang H B, Bokowiec M T, Rushton P J, et al.Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis[J].Mol Plant,2012, 5∶ 73-84.
[44]Shoji T, Hashimoto T.Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes[J].Plant Cell Physiol, 2011, 52∶ 1117-1130.
[45]De Boer K, Tilleman S, Pauwels L, et al.APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis[J].Plant J, 2011, 66∶ 1053-1065.