楊宵曼,朱 偉(綜述),劉銘雅,魏 盟(審校)
(上海交通大學(xué)附屬第六人民醫(yī)院心內(nèi)科,上海 200233)
腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)屬于高度保守的絲氨酸/蘇氨酸蛋白激酶,在真核生物中廣泛存在。在機(jī)體消耗ATP的各種應(yīng)激(如骨骼肌的收縮等)和干擾ATP產(chǎn)生(如低糖、低氧應(yīng)激等)等刺激下,激活的AMPK能夠通過(guò)關(guān)閉消耗ATP的合成代謝途徑及啟動(dòng)產(chǎn)生ATP的代謝途徑協(xié)調(diào)細(xì)胞內(nèi)及全身代謝和能量平衡,被稱為“能量調(diào)節(jié)器”。近年來(lái)隨著AMPK的深入研究,其在生理性和病理性血管形成方面的作用引起了各學(xué)科研究人員的關(guān)注。
AMPK是由α(63 ku)、β(30 ku)和γ(37~63 ku)三個(gè)亞單位組成的異源性三聚體,它因底物的不同而發(fā)揮著不同的生物效應(yīng)。其3個(gè)亞單位在AMPK的穩(wěn)定性和生物活性中有各自的作用。α亞基的N末端是起催化作用的核心部位,而C末端則主要負(fù)責(zé)AMPK活性的調(diào)節(jié)以及與β和γ亞基兩個(gè)亞單位的聯(lián)系[1]。β亞基N端區(qū)域后跟著兩個(gè)保守的KIS和ASC結(jié)構(gòu)域。ASC結(jié)構(gòu)域是形成穩(wěn)定有活性的α、β、γ復(fù)合物所必需的,而KIS是β亞基上與糖原結(jié)合的功能性結(jié)構(gòu)域[2]。哺乳動(dòng)物γ亞基與AMPK結(jié)合AMP有關(guān)。γ亞基在結(jié)合兩個(gè)分子的AMP后才發(fā)揮正協(xié)同效應(yīng)。
肝激酶B1基因是一種抑癌基因,是腫瘤易患綜合征的致病基因,也是第一個(gè)被發(fā)現(xiàn)的AMPKK(AMPK激酶)。肝激酶B1是一種絲氨酸/蘇氨酸蛋白激酶,它能夠直接磷酸化AMPKα亞單位上的蘇氨酸172位點(diǎn)(Thr-172)而激活A(yù)MPK。在內(nèi)皮細(xì)胞中,剪切力應(yīng)激[3]、二甲雙胍[4]都通過(guò)磷酸化肝激酶B1而激活A(yù)MPK發(fā)揮其生物效應(yīng)。
鈣/鈣調(diào)蛋白依賴的蛋白激酶β是AMPK的另一個(gè)重要的上游激酶,主要分布在神經(jīng)組織。鈣/鈣調(diào)蛋白依賴的蛋白激酶β通過(guò)升高細(xì)胞內(nèi)Ca2+水平激活A(yù)MPKα1,而與細(xì)胞內(nèi)AMP水平無(wú)關(guān)。已有研究證實(shí),緩激肽和凝血酶均通過(guò)激活鈣/鈣調(diào)蛋白依賴的蛋白激酶β而磷酸化AMPK[5]。
轉(zhuǎn)化生長(zhǎng)因子β-激活激酶1和共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張癥突變基因是近年來(lái)研究發(fā)現(xiàn)的另外兩種AMPKK。轉(zhuǎn)化生長(zhǎng)因子β-激活激酶1是絲裂原激活蛋白激酶家族成員之一,在HeLa細(xì)胞中轉(zhuǎn)化生長(zhǎng)因子β-激活激酶1能夠激活A(yù)MPKα亞基的Thr-172位點(diǎn)[6]。共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張癥突變基因的研究相對(duì)比較少,胰島素樣生長(zhǎng)因子1可通過(guò)共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張癥突變基因和肝激酶B1依賴途徑激活A(yù)MPK[7]。
血管生成是指在現(xiàn)有血管的基礎(chǔ)上形成新生血管的過(guò)程,正常的血管生成在胚胎發(fā)育過(guò)程的器官形成和傷口恢復(fù)的組織重塑中起重要作用。體內(nèi)血管生成是一個(gè)嚴(yán)密調(diào)控的過(guò)程,其中血管內(nèi)皮細(xì)胞在該過(guò)程中發(fā)揮著重要的作用,包括內(nèi)皮祖細(xì)胞的分化、內(nèi)皮細(xì)胞的遷移和管腔形成過(guò)程。在糖尿病患者體內(nèi)可觀察到內(nèi)皮祖細(xì)胞活性功能受損并伴隨有AMPK磷酸化的減少[8]。已有數(shù)據(jù)顯示,內(nèi)皮細(xì)胞前列腺素E2與受體跨膜特定的G蛋白偶聯(lián)受體4結(jié)合后通過(guò)激活A(yù)MPK促使內(nèi)皮祖細(xì)胞的分化、遷移和管腔形成[9]。然而,AMPK的激活能否影響循環(huán)祖細(xì)胞的血管形成目前尚不清楚,但已有研究發(fā)現(xiàn)AMPK的激活通過(guò)一氧化氮依賴性機(jī)制,促使內(nèi)皮祖細(xì)胞向內(nèi)皮細(xì)胞的分化、遷移和管腔形成過(guò)程[10]。
AMPKα亞單位有兩個(gè)亞型(α1和α2),在內(nèi)皮細(xì)胞中均可見(jiàn)兩個(gè)亞單位的表達(dá)并發(fā)揮不同的效應(yīng)。盡管在許多細(xì)胞(如胰腺β細(xì)胞)中AMPK的持續(xù)激活可誘導(dǎo)細(xì)胞的凋亡,然而,在內(nèi)皮細(xì)胞中,AMPK的兩個(gè)α亞型的激活均不能誘導(dǎo)細(xì)胞的凋亡[11]。已有研究證實(shí),在頸動(dòng)脈損傷的小鼠模型研究中AMPKα1的激活是咖啡因誘導(dǎo)的再內(nèi)皮化的必備條件[12];此外,AMPK的激活能通過(guò)對(duì)抗血管緊張素2引起的還原型煙酰胺腺嘌呤-2核苷酸磷的激活調(diào)節(jié)血管氧化還原平衡,并在維持血管內(nèi)穩(wěn)態(tài)方面起保護(hù)性作用[13]。同樣,在內(nèi)皮細(xì)胞中,不同藥物,如促紅細(xì)胞生成素[14]和普伐他汀[15]均通過(guò)激活A(yù)MPK促進(jìn)內(nèi)皮細(xì)胞的增殖、遷移和管腔形成及增加缺血肢體的毛細(xì)血管密度。另一項(xiàng)研究也證實(shí),瘦素能夠通過(guò)增加其受體的表達(dá)和誘導(dǎo)AMPK的磷酸化促進(jìn)腦卒中發(fā)生后的神經(jīng)修復(fù)和血管形成[16]。上述研究證明,AMPK是參與且促血管形成過(guò)程的一個(gè)重要的調(diào)控樞紐。
4.1AMPK與Akt的關(guān)系 Akt又稱蛋白激酶B,是一種絲氨酸/蘇氨酸蛋白激酶,在細(xì)胞存活和凋亡中起重要的作用,在維持血管內(nèi)穩(wěn)態(tài)和血管形成過(guò)程中也發(fā)揮著重要的作用[17]。在新生小鼠的心肌細(xì)胞中,Akt負(fù)向調(diào)節(jié)AMPK的激活[18-19],但在內(nèi)皮細(xì)胞中,剪切力應(yīng)激[20]可同時(shí)激活A(yù)MPK和Akt兩條信號(hào)通路,且兩者在血管形成過(guò)程中又發(fā)揮著協(xié)同作用。生理狀態(tài)下激活的AMPK可通過(guò)磷酸化內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)參與內(nèi)皮細(xì)胞的血管形成過(guò)程,但其作用較弱,它的促血管形成效應(yīng)在很大程度上是通過(guò)激活A(yù)kt來(lái)發(fā)揮作用的。然而在低氧應(yīng)激狀態(tài)下,隨著缺氧時(shí)間的延長(zhǎng)AMPK的促血管形成作用變得尤其重要,相比之下Akt信號(hào)肽在低氧狀態(tài)下發(fā)揮促血管作用已不明顯[21]。此外,激活的AMPK通過(guò)增加糖代謝、脂肪酸氧化和提高胰島素的敏感性而激活磷脂酰肌醇3-激酶-Akt信號(hào)通路來(lái)促進(jìn)血管形成和生長(zhǎng)因子的合成[22]。因此,AMPK和Akt兩條信號(hào)通路之間協(xié)同又拮抗的復(fù)雜關(guān)系值得進(jìn)一步的探討和研究。
4.2AMPK與沉默信息調(diào)節(jié)因子1的關(guān)系 沉默信息調(diào)節(jié)因子1(silence information regulator type 1,SIRT1)是一種核蛋白,可通過(guò)與不同的非組蛋白相互作用參與眾多基因轉(zhuǎn)錄、細(xì)胞生長(zhǎng)周期、能量代謝等體內(nèi)許多生理功能的調(diào)節(jié)。此外,SIRT1還可以通過(guò)調(diào)控叉頭框O轉(zhuǎn)錄因子1參與內(nèi)皮細(xì)胞的血管形成[23-24]。近年來(lái)SIRT1與AMPK兩信號(hào)肽間的相互關(guān)系引起了各科學(xué)術(shù)研究者的深切關(guān)注。已有研究證實(shí),SIRT1與AMPK兩信號(hào)肽在不同組織和細(xì)胞中存在相互作用[25-27]。大量研究已表明,AMPK在內(nèi)皮細(xì)胞的血管生成過(guò)程中亦發(fā)揮著不可或缺的作用[9,14-16],然而SIRT1是否參與了AMPK的促血管形成作用或AMPK是否參與了SIRT1的促血管形成作用還有待于進(jìn)一步研究和探討。
4.3AMPK與eNOS的關(guān)系 eNOS是調(diào)控血管功能的關(guān)鍵,它在調(diào)節(jié)內(nèi)皮細(xì)胞的血管形成過(guò)程中也發(fā)揮著重要的作用[28-29]。大量研究顯示,AMPK位于eNOS的上游,它能激活eNOS的多個(gè)磷酸化位點(diǎn),如1177和633兩個(gè)絲氨酸激活磷酸化位點(diǎn)[30,3]和495蘇氨酸抑制性磷酸化位點(diǎn)[30]。新近研究表明,在內(nèi)皮細(xì)胞中,AMPK依賴性eNOS磷酸化在血管形成過(guò)程中發(fā)揮著重要的作用[31-32],在eNOS基因剔除小鼠的內(nèi)皮細(xì)胞中可觀察到剪切力刺激誘導(dǎo)的AMPK激活明顯被削弱[33],由此可見(jiàn)eNOS的磷酸化是AMPK參與介導(dǎo)的血管形成過(guò)程的又一個(gè)重要靶點(diǎn)。
此外,AMPK還可通過(guò)調(diào)節(jié)上述信號(hào)通路參與血管形成:①能夠通過(guò)調(diào)控乙酰輔酶A羧化酶增加β脂肪酸氧化和ATP的產(chǎn)生為血管形成提供能量而促進(jìn)血管形成過(guò)程。②在骨骼肌中長(zhǎng)期訓(xùn)練促進(jìn)的AMPK介導(dǎo)的血管內(nèi)皮生長(zhǎng)因子的高表達(dá)有賴于過(guò)氧化物酶體增殖物激活受體γ共激活物1α的參與[34]。③通過(guò)增加β脂肪酸氧化和ATP的產(chǎn)生為血管形成提供能量而促進(jìn)血管形成過(guò)程[35]。
目前,根據(jù)AMPK調(diào)控血管形成理論及其在生理病理血管生成過(guò)程中作用的探討,許多血管生成的激動(dòng)劑和抑制劑已被應(yīng)用于相關(guān)疾病的治療。但更詳細(xì)的生理生化機(jī)制以及在動(dòng)物模型上的應(yīng)用還需進(jìn)一步研究。隨著對(duì)AMPK調(diào)控血管生成過(guò)程的深入研究將使其成為治療心血管系統(tǒng)疾病的潛在靶點(diǎn),這對(duì)人類疾病的研究及診斷具有深遠(yuǎn)意義。
[1] Iseli TJ,Walter M,van Denderen BJ,etal.AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its c-terminal sequence(186-270)[J].J Biol Chem,2005,280(14):13395-13400.
[2] Polekhina G,Gupta A,Michell BJ,etal.AMPK beta subunit targets metabolic stress sensing to glycogen[J].Curr Biol,2003,13(10):867-871.
[3] Chen Z,Peng IC,Sun W,etal.AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase ser633[J].Circ Res,2009,104(4):496-505.
[4] Xie Z,Dong Y,Scholz R,etal.Phosphorylation of lkb1 at serine 428 by protein kinase c-zeta is required for metformin-enhanced activation of the AMP-activated protein kinase in endothelial cells[J].Circulation,2008,117(7):952-962.
[5] Stahmann N,Woods A,Carling D,etal.Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta[J].Mol Cell Biol,2006,26(16):5933-5945.
[6] Momcilovic M,Hong SP,Carlson M.Mammalian tak1 activates snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro[J].J Biol Chem,2006,281(35):25336-25343.
[7] Fu X,Wan S,Lyu YL,etal.Etoposide induces atm-dependent mitochondrial biogenesis through AMPK activation[J].PLoS One,2008,3(4):e2009.
[8] Wang XR,Zhang MW,Chen DD,etal.AMP-activated protein kinase rescues the angiogenic functions of endothelial progenitor cells via manganese superoxide dismutase induction in type 1 diabetes[J].Am J Physiol Endocrinol Metab,2011,300(6):E1135-E1145.
[9] Zhu Z,Fu C,Li X,etal.Prostaglandin E2promotes endothelial differentiation from bone marrow-derived cells through AMPK activation[J].PLoS One,2011,6(8):e23554.
[10] Li X,Han Y,Pang W,etal.AMP-activated protein kinase promotes the differentiation of endothelial progenitor cells[J].Arterioscler Thromb Vasc Biol,2008,28(10):1789-1795.
[11] Nagata D,Kiyosue A,Takahashi M,etal.A new constitutively active mutant of AMP-activated protein kinase inhibits anoxia-induced apoptosis of vascular endothelial cell[J].Hypertens Res,2009,32(2):133-139.
[12] Spyridopoulos I,Fichtlscherer S,Popp R,etal.Caffeine enhances endothelial repair by an AMPK-dependent mechanism[J].Arterioscler Thromb Vasc Biol,2008,28(11):1967-1974.
[13] Schuhmacher S,Foretz M,Knorr M,etal.α1AMP-activated protein kinase preserves endothelial function during chronic angiotensin ii treatment by limiting Nox2 upregulation[J].Arterioscler Thromb Vasc Biol,2011,31(3):560-566.
[14] Su KH,Yu YB,Hou HH,etal.AMP-activated protein kinase mediates erythropoietin-induced activation of endothelial nitric oxide synthase[J].J Cell Physiol,2012,227(8):3053-3062.
[15] Izumi Y,Shiota M,Kusakabe H,etal.Pravastatin accelerates ischemia-induced angiogenesis through AMP-activated protein kinase[J].Hypertens Res,2009,32(8):675-679.
[16] Avraham Y,Davidi N,Lassri V,etal.Leptin induces neuroprotection neurogenesis and angiogenesis after stroke[J].Curr Neurovasc Res,2011,8(4):313-322.
[17] Zhang H,Han Y,Tao J,etal.Cellular repressor of e1a-stimulated genes regulates vascular endothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway[J].Exp Cell Res,2011,317(20):2904-2913.
[18] Horman S,Vertommen D,Heath R,etal.Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491[J].J Biol Chem,2006,281(9):5335-5340.
[19] Soltys CL,Kovacic S,Dyck JR.Activation of cardiac AMP-activated protein kinase by LKB1 expression or chemical hypoxia is blunted by increased akt activity[J].Am J Physiol Heart Circ Physiol,2006,290(6):H2472-H2479.
[20] Fleming I,Fisslthaler B,Dixit M,etal.Role of PECAM-1 in the shear-stress-induced activation of akt and the endothelial nitric oxide synthase(eNOS) in endothelial cells[J].J Cell Sci,2005,118(Pt 18):4103-4111.
[21] Nagata D,Mogi M,Walsh K.AMP-activated protein kinase(AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress[J].J Biol Chem,2003,278(33):31000-31006.
[22] Kim JY,Jo KJ,Kim BJ,etal.17β-estradiol induces an interaction between adenosine monophosphate-activated protein kinase and the insulin signaling pathway in 3T3-L1 adipocytes[J].Int J Mol Med,2012,30(4):979-985.
[23] Potente M,Ghaeni L,Baldessari D,etal.SIRT1 controls endothelial angiogenic functions during vascular growth[J].Genes Dev,2007,21(20):2644-2658.
[24] Paik JH.FOXOs in the maintenance of vascular homoeostasis[J].Biochem Soc Trans,2006,34(Pt 5):731-734.
[25] Fulco M,Sartorelli V.Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues.Cell Cycle,2008,7(23):3669-3679.
[26] Canto C,Auwerx J.PGC-1alpha,SIRT1 and AMPK,an energy sensing network that controls energy expenditure[J].Curr Opin Lipidol,2009,20(2):98-105.
[27] Yang Z,Kahn BB,Shi H,etal.Macrophage alpha1 AMP-activated protein kinase(alpha1AMPK) antagonizes fatty acid-induced inflammation through SIRT1[J].J Biol Chem,2010,285(25):19051-19059.
[28] Iwabayashi M,Taniyama Y,Sanada F,etal.Role of serotonin in angiogenesis:induction of angiogenesis by sarpogrelate via endothelial 5-HT1B/AKT/eNOS pathway in diabetic mice[J].Atherosclerosis,2012,220(2):337-342.
[29] Kolluru GK,Sinha S,Majumder S,etal.Shear stress promotes nitric oxide production in endothelial cells by sub-cellular delocalization of enos:a basis for shear stress mediated angiogenesis[J].Nitric Oxide,2010,22(4):304-315.
[30] Chen ZP,Mitchelhill KI,Michell BJ,etal.AMP-activated protein kinase phosphorylation of endothelial no synthase[J].FEBS Lett,1999,443(3):285-289.
[31] Ikeda Y,Aihara K,Yoshida S,etal.Heparin cofactor ii,a serine protease inhibitor,promotes angiogenesis via activation of the AMP-activated protein kinase-endothelial nitric-oxide synthase signaling pathway[J].J Biol Chem,2012,287(41):34256-34263.
[32] Teng RJ,Du J,Afolayan AJ,etal.AMP kinase activation improves angiogenesis in pulmonary artery endothelial cells with in utero pulmonary hypertension[J].Am J Physiol Lung Cell Mol Physiol,2013,304(1):L29-L42.
[33] Thors B,Halldorsson H,Thorgeirsson G.Thrombin and histamine stimulate endothelial nitric-oxide synthase phosphorylation at Ser1177 via an AMPK mediated pathway independent of PI3K-Akt[J].FEBS Lett,2004,573(1/3):175-180.
[34] Leick L,Hellsten Y,Fentz J,etal.PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice[J].Am J Physiol Endocrinol Metab,2009,297(1):E92-E103.
[35] Stahmann N,Woods A,Spengler K,etal.Activation of AMP-activated protein kinase by vascular endothelial growth factor mediates endothelial angiogenesis independently of nitric-oxide synthase[J].J Biol Chem,2010,285(14):10638-10652.