于瑞杰,王 鋒綜述,汪俊軍審校
大量證據(jù)顯示出生時(shí)體型較小的個(gè)體與其成人期疾病如心血管疾病(cardiovascular disease,CVD)和2型糖尿病(type 2 diabetes,T2D)的發(fā)生有關(guān)[1-2]。宮內(nèi)或出生后異常的生長(zhǎng)模式可增加成人期代謝紊亂和疾病發(fā)生的危險(xiǎn)性[3-5]。在生命早期即胎兒期、嬰幼兒期及兒童期的成長(zhǎng)過(guò)程中,不良的生長(zhǎng)環(huán)境可使機(jī)體自身代謝和器官組織結(jié)構(gòu)發(fā)生適應(yīng)性調(diào)節(jié),即最優(yōu)化地利用有限的營(yíng)養(yǎng)供給保證生存,重新分配營(yíng)養(yǎng)以滿足重要生命器官如腦發(fā)育。如果不良因素得不到及時(shí)糾正,這種適應(yīng)性調(diào)節(jié)將導(dǎo)致包括肝、胰腺等組織和器官結(jié)構(gòu)發(fā)生永久性改變,進(jìn)而促使成人期疾病的發(fā)生[6]。這一“程序化”的改變可被諸多后天環(huán)境因素放大,從而加速成人期疾病的發(fā)展過(guò)程。
目前生命早期生長(zhǎng)狀況與心血管危險(xiǎn)因素如高血糖[7]、血脂異常[8-9]等之間的相關(guān)性大多通過(guò)檢測(cè)空腹?fàn)顟B(tài)下各指標(biāo)的變化進(jìn)行研究。然而,近年研究表明生命早期生長(zhǎng)狀況與空腹血脂水平相關(guān)性不大[8-9],而餐后血脂和血糖水平的升高可作為CVD 的強(qiáng)預(yù)測(cè)因子[10-13]。因此,餐后代謝指標(biāo)水平的變化能夠部分解釋生命早期生長(zhǎng)狀況與成人期疾病的關(guān)系。文中就生命早期生長(zhǎng)狀況對(duì)餐后血糖、胰島素、血脂和炎癥反應(yīng)及成人期疾病的影響進(jìn)行綜述,旨在為進(jìn)一步揭示生命早期生長(zhǎng)狀況與成人期疾病相關(guān)性的機(jī)制提供思路。
目前對(duì)于生命早期生長(zhǎng)狀況與成人期代謝疾病危險(xiǎn)因素相關(guān)性的研究較多,而其中有關(guān)生命早期生長(zhǎng)狀況是否影響成人期餐后代謝的研究才剛涉及。Perala等[14]研究了生命早期生長(zhǎng)狀況對(duì)餐后4 h反應(yīng)的影響,餐后反應(yīng)表現(xiàn)為餐后各代謝指標(biāo)水平較餐前的變化值,用曲線下面積增值(incremental area under the curve,IAUC)表示。此研究將人群分為2組,即出生時(shí)體型較小、早期生長(zhǎng)緩慢的超重成人與對(duì)照組為出生時(shí)體型、早期生長(zhǎng)正常的超重成人;結(jié)果顯示前者空腹血糖、胰島素、三酰甘油(triglyceride,TG)和游離脂肪酸(free fatty acids,F(xiàn)FA)濃度無(wú)明顯改變,而餐后 TG-IAUC增加約30%,胰島素-IAUC和胰島素血糖比率明顯升高,F(xiàn)FA和血糖濃度無(wú)明顯變化,最近的研究結(jié)果亦支持上述結(jié)論[15]。Schou 等[16]也證實(shí)了出生體重對(duì)餐后血糖和胰島素反應(yīng)的影響,將成年體重正常人群分為低出生體重組(出生體重<3.01 kg,n=24)和正常出生體重組(出生體重3.39~4.30 kg,n=25),結(jié)果顯示,低出生體重組的空腹血糖升高、胰島素水平無(wú)明顯變化,而餐后195 min血糖和胰島素的IAUC明顯升高。上述研究提示低出生體重兒成年后具胰島素抵抗(insulin resistance,IR)傾向。
Kensara等[17]將成年健康人群分成低出生體重組(出生體重<3.23kg,n=16)和高出生體重組(出生體重>3.89kg,n=13)來(lái)研究出生體重對(duì)餐后反應(yīng)的影響。結(jié)果顯示,2組人群餐后6 h血糖、TG和FFA反應(yīng)無(wú)明顯變化,與其他研究結(jié)果相反[18]。Byrne等[19]對(duì)57例成人進(jìn)行出生體重對(duì)餐后TG和FFA反應(yīng)影響的研究。他們根據(jù)出生體重分為3層:<3.1 kg,3.1~4.1 kg,>4.1 kg。又根據(jù)有無(wú)吸煙分成吸煙組和非吸煙組,中等體型組為對(duì)照組。結(jié)果顯示,與對(duì)照組比較,低出生體重組的餐后TG和FFA水平均有輕微的升高,各體重組之間無(wú)明顯差異,提示出生體重對(duì)餐后TG和FFA反應(yīng)無(wú)明顯影響。此外,吸煙組較非吸煙組的餐后TG和FFA反應(yīng)均無(wú)明顯變化。然而,Lopez-Miranda等[20]發(fā)現(xiàn)吸煙組的餐后TG反應(yīng)比非吸煙組增加50%,故在餐后脂代謝研究中,排除吸煙因素仍是有必要的。
上述研究結(jié)果不一致,其主要原因可能是各實(shí)驗(yàn)組設(shè)計(jì)方案及研究重點(diǎn)不同,如有的側(cè)重于出生體重對(duì)餐后代謝的影響[16-17,19],而有的研究更看重研究對(duì)象的出生體型及嬰兒期的生長(zhǎng)速度[14]。此外,生命早期生長(zhǎng)狀況對(duì)疾病危險(xiǎn)因素的影響程度不同,如嬰兒期生長(zhǎng)緩慢較低出生體重與成人期空腹TG濃度的相關(guān)性更大??傊缙谏L(zhǎng)狀況能夠影響成人期餐后胰島素和TG水平的變化,且對(duì)餐后代謝有長(zhǎng)期效應(yīng)。
研究已證實(shí)機(jī)體餐后處于促炎狀態(tài)[21]。目前餐后炎癥主要通過(guò)檢測(cè)炎癥標(biāo)志物如急性時(shí)相蛋白、細(xì)胞因子等的變化進(jìn)行定量。Tzoulaki等[22]對(duì)5840名芬蘭人進(jìn)行長(zhǎng)期的流行病學(xué)隊(duì)列研究,結(jié)果顯示,出生體重每減少1 kg,成年后C反應(yīng)蛋白(C-reactive protein,CRP)水平升高16%;出生身高每降低10 cm,CRP水平升高21%;出生時(shí)體重指數(shù)(body mass index,BMI)每降低 1 kg/m3,CRP 水平升高24%。此結(jié)果表明胎兒期的生長(zhǎng)受損可通過(guò)增加CRP水平來(lái)激活炎癥反應(yīng)通路,進(jìn)而引起成人期輕度炎癥。另一項(xiàng)有關(guān)出生隊(duì)列隨訪的研究也支持上述結(jié)論,出生時(shí)和嬰兒期的BMI與成年后高敏CRP水平呈負(fù)相關(guān)[23]。上述研究結(jié)果提示生命早期生長(zhǎng)受損可能通過(guò)促進(jìn)炎癥反應(yīng)來(lái)參與成年后CVD的發(fā)生、發(fā)展。Perala等[24]研究了生命早期生長(zhǎng)狀況對(duì)餐后炎癥反應(yīng)的影響。結(jié)果顯示,與出生時(shí)體型、早期生長(zhǎng)正常的超重成人相比,出生時(shí)體型較小、早期生長(zhǎng)緩慢的超重成人的空腹白細(xì)胞介素-6、腫瘤壞死因子-α和單核細(xì)胞趨化蛋白-1水平無(wú)明顯變化,餐后三者水平均升高,但由其介導(dǎo)的炎癥反應(yīng)的2 h和4 h IAUC無(wú)明顯差異。上述結(jié)果表明生命早期生長(zhǎng)狀況與炎癥之間的相互作用并不是由餐后炎癥反應(yīng)來(lái)介導(dǎo)。
近年來(lái),越來(lái)越多的研究集中于對(duì)生命早期生長(zhǎng)狀況與口服葡萄糖耐量試驗(yàn)中葡萄糖和胰島素水平之間的探討,研究顯示低出生體重與成人期葡萄糖調(diào)節(jié)功能受損密切相關(guān),且與IR有關(guān)[25]。因此,有學(xué)者猜測(cè)生命早期生長(zhǎng)狀況可能通過(guò)作用于胰島β細(xì)胞來(lái)影響胰島素的分泌。動(dòng)物實(shí)驗(yàn)結(jié)果顯示孕期低蛋白或低能量飲食的母鼠所產(chǎn)仔鼠,其胰島β細(xì)胞群數(shù)量明顯低于正常對(duì)照組[26],但在人類口服/靜脈注射葡糖糖耐量試驗(yàn)或高血糖測(cè)試試驗(yàn)中,低出生體重兒成年后胰島素的分泌并未明顯減少。另有證據(jù)表明低出生體重對(duì)成年后腸促胰島素的分泌或胰島β細(xì)胞的活化無(wú)明顯作用[16]。上述結(jié)果提示生命早期生長(zhǎng)狀況主要影響胰島素的敏感性而非其分泌作用。
大量流行病學(xué)的調(diào)查顯示出生時(shí)或嬰兒期體型瘦小與胰島素敏感性的下降有關(guān)[27],且后者由胰島素敏感組織如骨骼肌的多發(fā)性畸形造成。研究已證實(shí)出生時(shí)或幼童時(shí)期瘦小的個(gè)體肌肉質(zhì)量大幅度下降[28],且存在肌肉結(jié)構(gòu)和功能的異常[29]。宮內(nèi)生長(zhǎng)受損可通過(guò)促進(jìn)異常脂肪蓄積使胎兒脂肪組織發(fā)育發(fā)生永久性的改變,進(jìn)而影響脂肪組織的功能,最終導(dǎo)致IR的發(fā)生[30]。
生命早期生長(zhǎng)狀況能夠影響成人期餐后代謝,主要?dú)w于生命早期所處的不良生長(zhǎng)環(huán)境造成的肝功能異常,即“肝臟程序化”。肝是調(diào)節(jié)脂質(zhì)代謝的關(guān)鍵器官,肝生長(zhǎng)的改變使脂質(zhì)代謝發(fā)生永久性的變化,從而引起餐后TG反應(yīng)的升高。動(dòng)物實(shí)驗(yàn)證實(shí)孕期營(yíng)養(yǎng)不良可影響出生時(shí)肝的大小并能改變肝的微結(jié)構(gòu),還可影響肝對(duì)脂質(zhì)代謝的調(diào)節(jié)作用[31-32]。流行病學(xué)的研究也支持上述結(jié)論,提示成人期餐后脂質(zhì)代謝的異常與宮內(nèi)肝生長(zhǎng)緩慢密切相關(guān)[8-9,33]。此外,低出生體重與成人期脂肪肝疾病標(biāo)志物如丙氨酸氨基轉(zhuǎn)移酶和γ-谷氨酰轉(zhuǎn)移酶水平升高有關(guān)[34],且脂肪肝可引起餐后血脂反應(yīng)升高和 IR[35-36]。
越來(lái)越多的證據(jù)表明餐后反應(yīng)較空腹水平能夠更好地預(yù)測(cè)心血管疾病的發(fā)病率和死亡率[10,12-13],其與餐后升高的血脂和血糖能夠促進(jìn)動(dòng)脈粥樣硬化的形成有關(guān)。目前推測(cè)后者是通過(guò)以下3種機(jī)制實(shí)現(xiàn):①餐后富含TG的脂蛋白能夠誘導(dǎo)炎癥反應(yīng)并促使內(nèi)皮細(xì)胞下脂質(zhì)的蓄積[37];②餐后高血糖可通過(guò)增加自由基的形成來(lái)促使As的進(jìn)展[38];③餐后升高的TG和血糖可通過(guò)增加促炎因子和氧化應(yīng)激的產(chǎn)生來(lái)促進(jìn)餐后炎癥反應(yīng)的發(fā)生,進(jìn)而導(dǎo)致內(nèi)皮功能障礙[21]。
目前,有關(guān)生命早期營(yíng)養(yǎng)和發(fā)育對(duì)成年期疾病的影響已逐漸引起人們的重視。然而究竟是空腹?fàn)顟B(tài)下還是餐后的血糖、血脂等指標(biāo)更能反映生命早期對(duì)機(jī)體的影響是一個(gè)非常值得關(guān)注的問(wèn)題。近年來(lái)研究發(fā)現(xiàn),對(duì)餐后反應(yīng)進(jìn)行評(píng)估更加接近正常的生理狀態(tài),研究方案將更科學(xué),結(jié)果更可靠。生命早期是個(gè)體生長(zhǎng)的敏感期,大量證據(jù)表明出生時(shí)小體型/低體重或嬰兒期生長(zhǎng)緩慢對(duì)成人期餐后代謝起關(guān)鍵作用,且后者與成人期慢性疾病如CVD和T2D的發(fā)生、發(fā)展有關(guān)。其機(jī)制可能涉及生命早期生長(zhǎng)狀況所引起的“肝臟程序化”和IR作用,使成人期餐后TG和胰島素水平升高,最終增加其成人期疾病發(fā)生的危險(xiǎn)性。此外,載脂蛋白代謝與TG代謝密切相關(guān),生命早期生長(zhǎng)狀況是否能夠影響餐后載脂蛋白水平尚需進(jìn)一步研究。
[1]Sola-Visner M.Cardiovascular disease and weight...at birth[J].Blood,2011,118(6):1439-1441.
[2]Whincup PH,Kaye SJ,Owen CG,et al.Birth Weight and Risk of Type 2 Diabetes A Systematic Review[J].JAMA,2008,300(24):2886-2897.
[3]Leunissen RW,Kerkhof GF,Stijnen T,et al.Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood[J].JAMA,2009,301(21):2234-2242.
[4]Kaijser M,Bonamy AK,Akre O,et al.Perinatal risk factors for diabetes in later life[J].Diabetes,2009,58(3):523-526.
[5]Kajantie E,Osmond C,Barker DJ,et al.Preterm birth a risk factor for type 2 diabetes?The Helsinki birth cohort study[J].Diabetes Care,2010,33(12):2623-2625.
[6]Warner MJ,Ozanne SE.Mechanisms involved in the developmental programming of adulthood disease[J].Biochem J,2010,427(3):333-347.
[7]Phillips DI,Goulden P,Syddall HE,et al.Fetal and infant growth and glucose tolerance in the Hertfordshire Cohort Study-A study of men and women born between 1931 and 1939[J].Diabetes,2005,54(suppl 2):S145-S150.
[8]Huxley R,Owen CG,Whincup PH,et al.Birth weight and subsequent cholesterol levels-Exploration of the"fetal origins"hypothesis[J].JAMA,2004,292(22):2755-2764.
[9]Kajantie E,Barker DJ,Osmond C,et al.Growth before 2 years of age and serum lipids 60 years later:The Helsinki Birth Cohort Study[J].Int J Epidemiol,2008,37(2):280-289.
[10]Lindman AS,Veierod MB,Tverdal A,et al.Nonfasting triglycerides and risk of cardiovascular death in men and women from the Norwegian Counties Study[J].Eur J Epidemiol,2010,25(11):789-798.
[11]張 承,李翰卿,梁元姣,等.妊娠婦女血清脂類及氧化型低密度脂蛋白濃度的動(dòng)態(tài)變化和臍血血脂特征[J].醫(yī)學(xué)研究生學(xué)報(bào),2011,24(4):364-367.
[12]Langsted A,F(xiàn)reiberg JJ,Tybjaerg-Hansen A,et al.Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality:the Copenhagen City Heart Study with 31 years of follow-up[J].J Intern Med,2011,270(1):65-75.
[13]Chan DC,Pang J,Romic G,et al.Postprandial hypertriglyceridemia and cardiovascular disease:current and future therapies[J].Curr Atheroscler Rep,2013,15(3):309.
[14]Perala MM,Valsta LM,Kajantie E,et al.Impact of early growth on postprandial responses in later life[J].PLoS One,2011,6(8):e24070.
[15]Perala MM,Kajantie E,Valsta LM,et al.Early growth and postprandial appetite regulatory hormone responses[J].Br J Nutr,2013,110(9):1591-1600.
[16]Schou JH,Pilgaard K,Vilsboll T,et al.Normal secretion and action of the gut incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in young men with low birth weight[J].J Clin Endocrinol Metab,2005,90(8):4912-4919.
[17]Kensara OA,Wooton SA,Phillips DI,et al.Substrate-energy metabolism and metabolic risk factors for cardiovascular disease in relation to fetal growth and adult body composition[J].Am J Physiol Endocrinol Metab,2006,291(2):E365-E371.
[18]Eriksson JG,F(xiàn)orsen TJ,Osmond C,et al.Pathways of infant and childhood growth that lead to type 2 diabetes[J].Diabetes Care,2003,26(11):3006-3010.
[19]Byrne CD,Wareham NJ,Phillips DI,et al.Is an exaggerated postprandial triglyceride response associated with the component features of the insulin resistance syndrome?[J]Diabet Med,1997,14(11):942-950.
[20]Lopez-Miranda J,Williams C,Lairon D.Dietary,physiological,genetic and pathological influences on postprandial lipid metabolism[J].Br J Nutr,2007,98(3):458-473.
[21]Klop B,Proctor SD,Mamo JC,et al.Understanding postprandial inflammation and its relationship to lifestyle behaviour and metabolic diseases[J].Int J Vasc Med,2012,2012:947417.
[22]Tzoulaki I,Jarvelin MR,Hartikainen AL,et al.Size at birth,weight gain over the life course,and low-grade inflammation in young adulthood:northern Finland 1966 birth cohort study[J].Eur Heart J,2008,29(8):1049-1056.
[23]Lakshmy R,F(xiàn)all CH,Sachdev HS,et al.Childhood body mass index and adult pro-inflammatory and pro-thrombotic risk factors:data from the New Delhi birth cohort[J].Int J Epidemiol,2011,40(1):102-111.
[24]Perala MM,Eriksson JG.Early growth and postprandial glucose,insulin,lipid and inflammatory responses in adulthood[J].Curr Opin Lipidol,2012,23(4):327-333.
[25]Newsome CA,Shiell AW,F(xiàn)all CH,et al.Is birth weight related to later glucose and insulin metabolism?A systematic review[J].Diabet Med,2003,20(5):339-348.
[26]Dumortier O,Blondeau B,Duvillie B,et al.Different mechanisms operating during different critical time-windows reduce rat fetal beta cell mass due to a maternal low-protein or low-energy diet[J].Diabetologia,2007,50(12):2495-2503.
[27]Raghupathy P,Antonisamy B,Geethanjali FS,et al.Glucose tolerance,insulin resistance and insulin secretion in young south Indian adults:Relationships to parental size,neonatal size and childhood body mass index[J].Diabetes Res Clin Pract,2010,87(2):283-292.
[28]Eriksson J,F(xiàn)orsen T,Tuomilehto J,et al.Size at birth fat-free mass and resting metabolic rate in adult life[J].Horm Metab Res,2002,34(2):72-76.
[29]Jensen CB,Martin-Gronert MS,Storgaard H,et al.Altered PI3-kinase/Akt signalling in skeletal muscle of young men with low birth weight[J].PLoS One,2008,3(11):e3738.
[30]Maiorana A,Del Bianco C,Cianfarani S.Adipose tissue:a metabolic regulator.Potential implications for the metabolic outcome of subjects born small for gestational age(SGA)[J].Rev Diabet Stud,2007,4(3):134-146.
[31]Cianfarani S,Agostoni C,Bedogni G,et al.Effect of intrauterine growth retardation on liver and long-term metabolic risk[J].Int J Obes,2012,36(10):1270-1277.
[32]Garg M,Thamotharan M,Dai Y,et al.Glucose intolerance and lipid metabolic adaptations in response to intrauterine and postnatal calorie restriction in male adult rats[J].Endocrinology,2013,154(1):102-113.
[33]Neitzke U,Harder T,Plagemann A.Intrauterine growth restriction and developmental programming of the metabolic syndrome:a critical appraisal[J].Microcirculation,2011,18(4):304-311.
[34]Fraser A,Ebrahim S,Smith GD,et al.The associations between birthweight and adult markers of liver damage and function[J].Paediatr Perinat Epidemiol,2008,22(1):12-21.
[35]Kotronen A,Yki-Jarvinen H.Fatty liver-A novel component of the metabolic syndrome[J].Arterioscler Thromb Vasc Biol,2008,28(1):27-38.
[36]俞小忠,夏 燕,董 敏,等.脂肪肝患者體重指數(shù)與胰島素抵抗及肝酶關(guān)系研究[J].醫(yī)學(xué)研究生學(xué)報(bào),2011,24(8):843-846.
[37]Kolovou GD,Mikhailidis DP,Kovar J,et al.Assessment and clinical relevance of non-fasting and postprandial triglycerides:an expert panel statement[J].Curr Vasc Pharmacol,2011,9(3):258-270.
[38]Mah E,Bruno RS.Postprandial hyperglycemia on vascular endothelial function:mechanisms and consequences[J].Nutr Res,2012,32(10):727-740.